b Y

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :

GOGF 15/60, HO3K 17/693 A2

(11) International Publication Number:

(43) International Publication Date:

WO 93/25975

23 December 1993 (23.12.93)

(21) International Application Number: PCT/US93/05222

(22) International Filing Date: 4 June 1993 (04.06.93)

(30) Priority data:

895,607 8 June 1992 (08.06.92) Us

(60) Parent Application or Grant
(63) Related by Continuation
Us 895,607 (CON)

Filed on 8 June 1992 (08.06.92)

(71X72) Applicant and Inventor: HYMAN, Edward [US/USJ;
1202 South Irena Avenue, Redondo Beach, CA 90277
(US).

(74) Agents: BERMAN, Charles et al.; Sheldon & Mak, 10990
Wilshire Boulevard, Suite 440, Los Angeles, CA 90024
(US).

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH,
CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU,
MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE,
SK, UA, US, VN, European patent (AT, BE, CH, DE,
DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE),
OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54)vTitle: A PROGRAMMABLE LOGIC DEVICE

(57) Abstract

A programmable logic device includes means for operat-
ing a computing element to compile a set of state-machine
states in an incompletely specified state-machine. The state-ma-
chine states are compiled into a set of cellular array states in a
rectilinear format of columns and rows (1). Multiple memory
cells (10) are located on a main diagonal. Function cells (11) are
located removed from the main diagonal for transferring infor-
mation between the memory cells. Compatible sets of sequences
(4) are formed of sequences which have non-equal effect. Com-
patible sets are processed to form a closed cover. A distinct
memory cell is then assigned to each compatible set constituting
that closed cover. The closed cover can be formed selectively by
having a compatible set and consist of either a single entry of
one sequence, two or more sequences, being at least a pair of se-
quences, a maximal compatible set (20) or less than maximal
compatible set from a pair of compatibles. Moreover, the com-
patible set could be a prime compatible set or less than prime
compatible set being derived from maximal (2) or less than
maximal compatible sets. The closed cover tree (3) contains
every sequence which does not have equal effect on the internal
states of the state-machine. Each implication set corresponding
to a compatible set which constitutes the tree is contained as a
subset of at least one compatible set.

114, 114 114 114
O g1
112] | T |-—108
! .l 108
108
|]/
Pl
/

/ /
110 110 110 110

4

124,124 124 124 154 154 154 154
o) s e I e OO T B e W s W B i BT
122] =118 [152] I |-—148
i o —118 l " 148
CT1T] " T 1'%
// // / ’/ '/ //
120 120 120 120 150 150 150 150
i - —_-~'16
o s e R e PSR
MEMORY 104

~130

FOR THE PURPOSES OF INFORMATION ONLY

Codes used 10 identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

AT Austria FR France MR Mauritania

AU Australia GA Gabon MW Malawi

BB Barbados GB United Kingdom NL Netherlands

BE Beigium GN Guinca NO Norway

BF Burkina Faso GR Greeee NZ New Zealand

BG Bulgaria Hy Hungary — PL Poland

BJ) Benin 1E Ireland PT Portugal

BR Brazil T ltaly RO Romania

CA Canada JP Japan RU Russian Federation
CF Central African Republic Ke Democratic People’s Republic sD Sudan

CcG Congo of Korca SE Sweden

CH Switzerland KR Republic of Korea SK Slovak Republic
Cl Cote d'bvoire Kz Razakhstan SN Scnegal

c™M Camcroon 8] Licchienstein su Sovict Union

cs Crechoslovakia . LK Sri 1anka TD Chad

CcZ Czech Republic LU F.usembourg TG Togo

DE Germany mC Monaco UA Ukraine

DK Denmark MC Maddguacar us United States of America
ES Spain ML Mali VN Viet Nam

Fl Finland MN Mongolia

WO 93/25975 PCT/US93/05222

A PROGRAMMABLE LOGIC DEVICE

BACKGROUND

5 Providing an efficient programmable logic
device and method is vital with the electronics industry

and all related industries.

This invention relates to a logic device and
10 method that can be efficiently configured. 1In
particular, the device is operable with fast and powerful
microprocessors, thereby enhancing speed and reducing
size in electronic applications. Also, the central logic
of the cellular array is amenable to desktop processor
15 implementation.

As microprocessors have become faster, circular
logic timing has become critical. At the same time, the
more information and logic that can be stored on a
20 silicon chip constituting a memory device, the more
beneficial is that device to the semiconductor industry.

The invention is directed to a universal
cellular array based on a state table method to logically

25 program such cellular array.

Prior art of programmable logic devices are

based on gate array technology. Such technology requires
a desired function to be broken into its basic parts such

30 that an end result function is described in terms of a
number of latches, shift registers, MUXS, counters and
Medium Scale Integration (MSI) building blocks. The
construction of MSI building blocks is decided with
proximity to I/O buffers and their construction and

35 placement determines the efficiency of the chip. The
reQUirement of MSI building blocks for a typical

sequential logic function is generally disadvantageous.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

2

There is the need to provide a different
programmable logic device which implements a cellular
array, having the advantage of a more replicable circuit

design.

SUMMARY

By this invention is provided a programmable
logic device and method which allows for very high
densities of cellular array circuit design. The function
of the cells of the array is controlled either by a
random access memory (RAM) or a programmable logic array
and the invented system requires relatively far less
programmable area, namely the area of a silicon chip for
the cellular array versus the case of the traditional

programmable logic approach.

The fundamental logic operation of the cellular
array is a "route" between latches which are located on
diagonal entries of the array. Boundary values are
loaded into the boundary value memory, and this memory
tells the memory cell in each column of the chip from
which other memory cells it will receive its next value.
The function of the device is the result of the boundary
value encodings which yield the resultant routings in the
cellular array.

According to the invention, there is provided
the means and method for operating a computing element to
compile a set of state-machine states in an incompletely
specified state-machine. The state-machine has an input
alphabet, internal states and multiple output functions.
The state-machine has the characteristic of present
internal states and next internal states, and not all of
the next internal state entries are specified. As such,
certain next internal state entries are considered as

unspecified entries.

WO 93/25975 PCT/US93/05222

3

The input alphabet includes a plurality of
input characters and the multiple output functions have
the characteristics that not all output value entries are
specified. As such, certain output value entries are

5 left open as unspecified entries.

The state-machine states are compiled into &

set of cellular array states.

10 The cells of the cellular array are created in
a rectilinear format in a plurality of columns and rows
and having locations along a main diagonal. Multiple
memory cells are located along the main diagonal.
Functions cells are located removed from the main

15 diagonal for transferring information between the memory
cells.

In the preferred form of the invention, there
are multiple additional columns of cells for providing

20 output values of the cellular array.

A programmable logic device includes means for
operating a computing element to compile a set of state-
machine states in an incompletely specified state-

25 machine. The state-machine states are compiled into a
set of cellular array states in a rectilinear format of
columns and rows. Multiple memory cells are located on a
main diagonal. Function cells are located removed from
the main diagonal for transferring information between

30 the memory cells. Compatible sets of sequences are
formed of sequences which have non-equal effect.
Compatible sets are processed to form a closed cover. A
distinct memory cell is then assigned to each compatible
set constituting that closed cover. The closed cover can

35 be formed selectively by having a compatible set consist

’ of either a single entry of one sequence, two or more
sequences, being at least a pair of sequences, a maximal

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

4

compatible set or less than maximal compatible set from a
pair of compatibles. Moreover, the compatible set could
be a prime compatible set or less than prime compatible
set being derived from maximal or less than maximal
compatible sets. The closed cover tree contains every
sequence which does not have equal effect on the internal
states of the state-machine. Each implication set
corresponding to a compatible set which constitutes the
tree is contained as a subset of at least one compatible

set.

The compiling procedure includes the steps of
generating a plurality of sequences of said input
characters. The sequences of input characters are
applied to a state-machine to obtain columns of internal

state entries and unspecified entries.

Multiple sets of binary values and unspecified
specifications on internal states are selected for
substitution for the columns of internal state entries so
that multiple output values and unspecified
specifications of the cellular array in the multiple
output columns conform to a predetermined set of output
value functions and unspecified output specifications of
the state-machine. The selected multiple sets of binary
values and unspecified specifications are substituted for
internal states. Testing the sequences for equal effect
on the internal states with said substitute set of binary

values and unspecified specifications is effected.

In a different preferred form of the invention,
all of the state-machine states and multiple output
functions are completely specified and all of the
multiple output functions, there being selectively at
least two output function columns, are simultaneously

determined.

WO 93/25975 : PCT/US93/05222

5

In such a case, a distinct memory cell is
assigned to the substituted value. Unique output columns
are assigned to each output function of the state-
machine. A control memory is provided for controlling a

5 transfer of information between memory cells.

Preferably, all of the multiple output
functions are simultaneously determined when the state-
machine is completely or incompletely specified.

10 Incompletely specified means specified with selected
entries and others being non-specified, namely having

being left as unspecified entries.

In the preferred form of the invention where
15 there is an incompletely specified state-machine, the
number of memory cells in the multiple diagonal locations
is at least no more than the number of memory cells
required where the state-machine states and multiple
output functions are completely specified.

20
Preferably, the memory cells support at least
two and preferably multiple output values from the
cellular array.
25 In a further preferred form of the invention, a

pair chart for recording compatibility or incompatibility
of pairs of sequences from sequences found to have non-
equal effect on the internal states of an incompletely
specified state-machine with multiple output values

30 substituted is constructed. The pair chart also records
pair implications for each pair of sequences found to be
compatible, for each input character of the state-
machine. The compatibility or incompatibility for each
pair of sequences from those sequences found to have non-

35 equal effect on the internal states of the state-machine
with multiple output functions substituted is determined

for entry into the pair chart.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

6

An antecedent pair of sequences for each pair
of sequences found to be compatible and for each input
character of the state-machine is determined. The pair
implication set of sequences for each antecedent pair of

sequences for entry into the pair chart is determined.

Thereafter, maximal compatible sets of
sequences from the pair chart is derived to exhibit
compatibility or incompatibility of each pair of
sequences comprising the maximal compatible set. An
implication set of sequences for the maximal compatible
set of sequences may be derived for each input character
of the state-machine from the pair chart.

In some forms of the invention, the distinct
memory cells in the multiple memory cells of the main
diagonal can be assigned a value based on the maximal
compatible sets and the implication sets of sequences. A
unique output column can be assigned to each output
function of the state-machine and the control memory for
controlling the transfer of information between the
memory cells can be provided.

In a further refinement of the invention, prime
compatible sets of sequences including, for each prime
compatible set of sequences, and input character of the
state-machine input alphabet, an implication set of
sequences are derived from the maximal compatible sets of
sequences and from the pair chart completed so as to
exhibit the pair implications.

Candidate minimal cover trees having nodes
wherein there is a minimal cover path having a 1least a
number of nodes is derived so that each node of the
candidate minimal cover trees corresponds to a prime

compatible set of sequences.

WO 93/25975 PCT/US93/05222

-

In the further preferred form of the invention,
each node of the minimal cover path is related to a
distinct memory cell located along the main diagonal of
the cellular array. Unique output columns are assigned
5 to output functions and the control memory is provided
for control of the transfer of information between the

memory cells.

The invention is further described with

10 reference to the accompanying drawings.

DRAWINGS

15 Figure 1 is a flow diagram illustrating the
compiling of state-machine states into cellular array
states for an incompletely specified state-machine having

multiple output functions.

20 Figure la illustrates the arrangement of the
arrays in rows and columns in relation to other
components of the programmable logic device (for storing
information as intermediate steps in control memory
encoding) .

25

Figure 2 is a flow diagram illustrating the
derivation of maximal compatible sets.

Figure 3 is a flow diagram illustrating the
30 derivation of candidate minimal cover trees, included in

which is a minimal cover path. —_

Figure 4 is a representation of a pair chart
illustrating the columns and rows of such chart.
35
Figure 5 is an example of an initial pair

chart.

WO 93/25975

10

15

20

25

30

35

8

Figure 6 is an example

pair compatibles indicated.

Figure 7 is an example

chart.

Figure 8 is an example

encoding under input state 0.

Figure 9 is an example

encoding under input state 1.

Figure 9a is an exampl
specifications of these memory c

cellular array.

Figure 10 is a memory
accordance with the invention.

Figure 11 are represen
cells or functions cells in acco

invention.

Figure 12 is an 8 x 8
out in relation to the boundary
transition step 1.

Figure 13 is an 8 x 8
out in relation to the boundary
transition step 2.

Figure 14 is an 8 x 8
out in relation to the boundary

transition step 3.

Figure 15 is an 8 x 8
out in relation to the boundary

PCT/US93/05222

of a pair chart with

of a completed pair

of a boundary value

of

b}

boundary value

e of initial binary value

ells comprising a

cell or latch in

tations of two logic
rdance with the

cellular array space set
logic and in the state

cellular array space set
logic and in the state

cellular array space set
logic and in the state

cellular array space set

logic and in the state

WO 93/25975 PCT/US93/05222

S

transition step 3 illustrating simultaneous routings.

Figure 16 is a representation of the state
table for a bus arbiter application of Figures 17a
5 through Figure 24 relate the development of the boundary

value encoding for the bus arbiter.

Figure 17a is a state-machine illustrating
specified values and unspecified "don’t care" values for

10 the bus arbiter application.

Figure 17b is part of the development of the
state table with the generated plurality of sequences of
the input characters.

15
Figure 17c is part of the development for one
output of the binary values and unspecified entries for
the sequences developed in Figure 17b.
20 Figure 17d is part of the development for a

second output of the binary values and unspecified
entries for the sequences developed in Figure 17b.

Figure 18 are column implications for
25 compatible pairs illustrating the antecedent pairs of
sequences for each pair of sequences.

Figure 19 is part of a pair chart completed for
determining maximal compatible sets of sequences.

30
Figure 20 are the implication sets for each

maximal compatible set of sequences.

Figure 21 is exemplary of a solution for the
35 cellular array determined up to the implication sets for

the maximal compatible sets for input states i,, 1i,.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

10

Figure 22 is exemplary of a solution for the
cellular array determined up to the implication sets for
the maximal compatible sets for input states i,, i,.

Figure 23 is exemplary of a solution for the
cellular array determined up to the implication sets for

the maximal compatible sets for input states i,, i;.

Figure 24 is an illustration of the boundary
logic applicable to the cellular array where the boundary

logic is implemented as a programmable logic array.

Figure 25 is a prior art block diagram for a
wide input line application exemplified by RAM or I/O

controllers.

Figure 26 is a prior art bus controller flow
diagram exemplified by said RAM or I/O controller.

Figure 27 is a system showing four different
cellular arrays with a feedback system in accordance with
the invention to implement the said prior art bus

controller.

Figure 28 shows the routings for the leftmost
cellular array illustrated in Figure 27 for the input
state 00.

Figure 29 shows the input state routings for
the leftmost cellular array illustrated in Figure 27 for
01.

, Figure 30 shows the input state routings for
the leftmost cellular array illustrated in Figure 27 for
10.

WO 93/25975 PCT/US93/05222

11

_ Figure 31 shows the input state routings for
the leftmost cellular array illustrated in Figure 27 for
11.

5 Figure 32 is the boundary value encoding for 9
of the 11 columns constituting the leftmost cellular

array illustrated in Figure 27.

DESCRIPTION
10
In this specification, the terms "cellular
array" and "cellular space" are used interchangeably.
The terms "boundary value" and "control value" are also
used interchangeably.
15

The Basic Cell

The programmable space consists of a two-
dimensional array of simple, repetitive cells. Two types
20 of cells comprise the array: a memory cell, or latch
Figure 10, residing in each main diagonal grid location
of the space, and a logic cell two of which are exhibited
in Figure 11 residing in all off-diagonal grid locations.
The two-dimensional array of logic cells comprise the
25 space, with the exception of the main diagonal which, as

indicated, is composed of memory cells.

As exhibited, the memory cell is composed of
three segments: a 3 to 1 multiplexer, a latch, and a
30 controlling logic segment.

The multiplexer segment of the memory cell has
three binary input lines - the left-most input line being
a feedback line for the latch, the middle input line
35 emanating from the lower portion of the column of the
space containing the latch, and the right-most input line
emanating from the upper portion of that column.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

12

A cellular space state transition is executed
upon the occurrence of a clock pulse. Upon the
occurrence of a clock pulse, the latch in each column
stores the binary value which is the output of the
multiplexer. This stored binary value is then placed on
two data lines, one data line directed to the right of
the memory cell and the other data line directed to the
left of the memory cell, as exhibited. These two data
lines propagate the binary value of the latch to all
logic cells in the space occupying the row of that latch.

As indicated in Figure 10, the controlling
logic segment of the memory cell determines the setting
of the 3 to 1 multiplexer. This controlling logic
segment is a simple combinational (memoryless) logic
function of a set of boundary values (those programmable
values which determine the function of the micro-device).
This set of boundary values (three are indicated in
Figure 10) controls not only the memory cell (that is,
the multiplexer portion of the memory cell) of each
column but these boundary values also control the
function of each of the logic cells which comprise the

remaining portion of the column.

Although three boundary values are shown, the
number of boundary values varies with the size of the
cellular space and this number is determined to be the
log base 2 of the size of one dimension of the space.
Our cellular space is the only programmable logic device
having so few boundary values that they can reside as a

strip in one small portion of the microchip.

Each logic cell, two of which are shown in
Figure 11, consists of two AND gates, a DECODER AND gate,
and a DATA SELECT AND gate, and BUS ACCESS logic. The
set of DECODER AND gates of all logic cells occupying a
column constitutes a LOGICAL DECODER of the set of

WO 93/25975

10

15

20

25

30

35

13

boundary values for that column. The output of the
DECODER AND gate of only one logic cell per column
becomes unity -- the particular logic cell occupying the
row which is designated as the value of the boundary

values when interpreted as a binary integer.

The DATA SELECT AND gate of the logic cell
performs the logical function AND of the binary value of
the DECODER AND gate, with the binary value of the data
line emanating from the latch residing in the row of that
logic cell. Hence, the output of the DATA SELECT AND
gate is one only if both the output of the DECODER AND
gate of that logic cell and the value of the diagonal
latch in the row of that logic cell are both one. Since
only one DECODER AND gate per column assumes the value
one, only one DATA SELECT AND gate per column, at most,

assumes the value one.

The Basic Cellular Array

A cellular array can be exhibited from the

schematic diagram of Figure 12, representing an 8 x 8

‘array for illustration purposes. Note that a memory cell

occupies each diagonal entry of the 8 x 8 array and logic
cells occupy all other entries. Note also that the three
entries into each memory cell multiplexer are:
1. the latch feedback line;
2. the bus connecting all logic cells of the
column below the memory cell; and
3. the bus connecting all logic cells of the
column above the memory cell.

The boundary values of the cellular array are
produced by the boundary logic block residing in a strip
on top of the array. This boundary logic block produces
the boundary values as logical functions of the input
lines of the sequential machine being emulated.

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

14

The State Transition Process

A state transition of the cellular array, which
emulates a state transition of an arbitrary synchronous
sequential device (a digital logic device containing
memory) occurs in three steps, illustrated in Figures 12,
13 and 14, respectively.

A step one, shown in Figure 12, the boundary
logic block produces a unique binary integer to be placed
on the boundary values of each column. Figure 12
illustrates this process for the second to right-most
column -- the integer 2 is placed on the boundary values

of that column.

At step two, shown in Figure 13, this boundary
value integer (the integer 2 in the second to right-most
column of the cellular space) is decoded by the set of
DECODER AND gates residing in that column, and the
DECODER AND gate in row 2 (labeling the rows of the
cellular space as rows 0 through 7) becomes one. Hence,
the DATA SELECT AND gate residing at the logic cell
location (row 2, column 6) assumes the value of the latch
in column 2. This selection process and data path are
highlighted in Figure 13.

At step three, shown in Figure 14, the bus
access logic at location (row 2, column 6) pulls the bus
connecting all logic cells above the memory cell of
column 6 to the logical value one only if the output of
the DATA SELECT AND gate at that location is unity (that
is, only if the latch in column 2 has value one);
otherwise, the bus connecting all logic cells above the
memory cell of column 6 retains its zero state.
Simultaneously, the controlling logic of the memory cell
of column 6 sets its multiplexer to accept the data bus

emanating from the upper portion of the column, so that

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

15

the value of this bus enters the latch in column 6 on the
next clock pulse to complete the cellular space state
transition. This final state transition process is

highlighted in Figure 14.

This operation of directing a binary value from
one diagonal latch to another, known as "routing," is the
fundamental operation of the cellular array. Figure 15
shows three simultaneous routings; however, an integer is
to be placed on the boundary values of each column and
routings for all columns of the cellular array are to

occur simultaneously.

A digital logic application requiring memory
elements and logic elements for implementation can
formally be specified in the vernacular of a state-
machine. The following narrative describes a procedure
to derive boundary value encodings for our cellular
array, beginning with a formal state-machine description
of our application.

.Encoding Process

As is known in the art of sequential machines,
a state-machine is said to exist in one of two general
categories:
(i) Completely Specified; and
(ii) Incompletely Specified.

Figure 4 of the patent application entitled UNIVERSAL
CELLULAR SEQUENTIAL LOGIC ARRAY, submitted to the U S
Patent And Trademarks Office in March, 1988, exhibits a
technique for compiling sets of state-machine states into
cellular array states for a completely specified state-
machine, whereas Figure 1 of this narrative gives a
method of compiling sets of state-machine states into
cellular array states for an incompletely specified

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

16

state-machine.

An example of a completely specified state-

machine is exhibited in Table 1:

Table 1

Completely Specified State Table

A
now
U e o Nl (@]

oAk
=R oN

In Table 1, the state-machine consists of the set of
internal states {a,b,c}, input states {0,1}, and output
states {0,1}. The left hand column of internal state
entries in Table 1 constitutes the set of present state
entries, whereas the column of internal state entries
under the input character 0 constitutes the set of next
state entries under input state 0 and the column of
internal state entries under input character 1
constitutes the set of next state entries under input
state 1. Finally, the column of binary value entries
under the output Z column constitutes the binary output
function, where each internal state in the present state
column (left hand column of the state table) is assigned
a binary value, designated by the value in the output Z
column which occupies the row of that present state
entry, which is the binary output value of the
state-machine when the state-machine is in that present
internal state. Each internal state typically represents
a binary encoding of internal memory, unique for each
such internal state. As depicted in Table 1, internal
state a is the initial state, or starting state of the
sequential machine. On the first clock pulse into the
sequential machine, under an input state of 0, the device

progresses from internal state a to internal state b,

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

17

resulting in an output state change from 0 to 1. If the
input state is 1 rather than 0, the occurrence of the .
first clock pulse causes the sequential machine to
progress from internal state a to internal state c, also
resulting in a change of output state from 0 to 1.
Typically, the input state is adjusted to a new value (in
this case, 0 or 1) prior to the occurrence of the next
clock pulse, at which time a new internal state and

output state is achieved as before.

In most practical instances, the formal state-
machine description of a sequential digital logic
procedure is an incompletely specified state-machine with

multiple output functions, as exhibited in Table 2.

Table 2

Incompletely Specified State Table

0
b
c

Qo w

Qoo
IO
H(DFJP

Table 2 differs from Table 1 in two categories.
First, more than one output function is specified.
Hence, there are two output lines, labelled Z, and Z,,
and, therefore, two binary state-machine output values
are specified for each internal state in the present
state (left hand) column. The second distinction between
Table 2 and Table 1 is that unspecified entries are
indicated. For instance, the leftmost. output line Z, is
left as a "-", meaning unspecifie&7 for internal state c.
That is, when the sequential machine, represented by the
state table of Table 2, is residing in internal state c,
the specification of the first output line is not
required and it can be either 0 or 1 in the above case.
Similarly, in Table 2, of] the next internal state entry
when the sequential machine represented by the state

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

18

table of Table 2 is in internal state ¢ and has an input
state of 0 is also an unspecified, or arbitrary entry,
and the next internal state in this case can be either a,

b, or c.

The advantage of leaving certain entries
unspecified when allowable, as in Table 2, is that the
procedure of deriving an optimal (least size cellular
array, or least amount of silicon area) cellular array
implementation from the incompletely specified state
table allows a reduced cellular array size, verses the
case for a completely specified state table. Also, in
specifying multiple output lines, the minimal size
cellular array required to compute multiple output lines
simultaneously is determined. That is, one section of
minimal size space can support multiple output functions

simultaneously.

Figure 1 shows a method of compiling
state-machine states into cellular array states for an
incompletely specified state-machine having multiple
output functions. This method will yield the minimal
size cellular array control memory encoding which will
support all output functions simultaneously for a
candidate incompletely specified state table. It ought
to be pointed out that the control memory encoding
procedure for the completely specified state table having
only one output function, as exhibited in Figure 4 of the
patent pending application entitled UNIVERSAL CELLULAR
SEQUENTIAL LOGIC ARRAY, submitted to the U S Patent And
Trademarks Office in March, 1988, is a special case of
this procedure and the procedure exhibited in this
narrative and Figure 1 reduces to the other case for the
completely specified state table and single output

function.

WO 93/25975 PCT/US93/05222

19

As in Figure 4 of the existing patent
application for the completely specified case,
equivalence classes of input sequences are generated.
Initially, as in the completely specified case with a

5 single output function, the space of all possible input
sequences is subjected to an exhaustive search, with
sequences yielding duplicate effect upon the
state-machine discarded, until all equivalence classes
have been found. 1In the incompletely specified case,

10 however, generating the set of final state-machine states
by applying an input sequence to the state-machine
constitutes only an intermediate step prior to comparison
of the newly generated column of final state-machine
states with those columns of state-machine states

15 generated by previously determined active input
sequences. In the incompletely specified case,
comparison of a column of final state-machine states
determined by a new active input sequence with a column
of state-machine states determined by a previously

20 generated active input sequence occurs only after
selected binary values and unspecified values determined
by the multiple output functions of the incompletely
specified state-machine are substituted for the columns
of final state-machine states determined by said active

25 input sequences applied to said state-machine, thus
facilitating the new concept of the "antecedent
sequence". It is as if, in the patent application
"Universal Cellular Sequential Logic Array", step 434 is
placed immediately after step 430 prior to comparison at

30 step 432 of the new column of entries created at step 430
with previously generated columns, with certain
embellishments due to the state-machine having multiple
output functions and unspecified entries. The
significance of the "antecedent sequence" will become

35 clear in the description of the algorithm for compiling
sets of state-machine states into cellular array states

for an incompletely specified state-machine having

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

20

multiple output functions.

The compilation method of Figure 1 may be
performed by a computing element under control of
appropriate software, as is well known in the art.

During operation of the compilation and assignment method
of Figure 1, the computing element may make use of
several registers in memory 104, including a Compilation
Table 106 having a set of rows 108, a unique row for each
present state entry of the state-machine, and columns 110
and associated with each column 110 a column header 114,
and a row entry 112 at the intersection of each row 108
and column 110. The computing element may also make use
of a set of output mapping tables 116, a unique output
mapping table associated with each output function of the
state-machine, each output mapping table having a set of
rows 118, a unique row for each present state entry of
the state-machine, and columns 120, and associated with
each column 120 a column header 124, and a row entry 122
at the intersection of each row 118 and column 120.
Finally, the computing element may also make use of an
antecedent table 146, the antecedent table consisting of
a set of rows 148, a unique row for each input character
of the state-machine, and columns 150, and, associated
with each column 150 a column header 154, and a row entry

152 at the intersection of each row 148 and column 150.

Therefore, at step 120, the Compilation Table
106 is created with one row 108 for each present state
entry of the state-machine and one column 110 for each
active input sequence 126. Initially, the null sequence
/\is the only active input sequence 126 and it is marked
as untried. Each row entry 112 for the null sequence /\
is set equal to that row entry of the present state
column of the state-machine. The column header 114 of
the initial column 110 of the compilation table is the /\

input sequence.

WO 93/25975 PCT/US93/05222

21

At step 122, each output mapping table is
created with one column per output mapping table, that
column consisting of a multiplicity of rows, one row for
each present state entry of the state-machine. The

5 number of output mapping tables created at step 122 is
the number of output functions of the state-machine.
Initially, only the first column of each output mapping
table is created. Each row entry 122 of the first column
120 of the first output mapping table is determined to be

10 that row entry 112 of the /\ column of the Compilation
Table replaced with its output value assignment given by
the first output function of the state-machine. The
column header 124 of the newly designated output mapping
column 120 is the /\ sequence further distinguished by

15 the first output function of the state-machine. Each row
entry 122 of the first column 120 of the second output
mapping table is determined to be that row entry 112 of
the /\ column of the Compilation Table replaced with its
output value assignment given by the second output

20 function of the state-machine. And, the column header
124 of the newly designated output mapping column 120 of
the second output mapping table is the /\ seguence
further distinguished by the second output function of
the state-machine, etc. An initial column of output

25 values substituted for present state entries is
determined for each output mapping table, one output
mapping table created for each output function of the
state-machine. And, the column header 124 of the newly
created output mapping column 120 is the /\ sequence

30 distinguished by the state-machine output function
associated with said output mapping table. There remains
at step 122 to designate the newly created column headers
of output mapping columns as active. The column header
of the first column of the first output mapping table is

35 designated active. Also, the column header of the first
column of the first output mapping table is entered as
the column header entry 154 of the initial column 150 of

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

22

the antecedent table 146. The column header of the first
column of the second output mapping table is designated
active if it does not have equal effect on the state-
machine as the first column of the first output mapping
table, that is, i1f the entries of this column are not
equal, entry for entry, including unspecified entries, to
the entries of the first column of the first output
mapping table, else the first column of the second output
mapping table is deleted from the second output mapping
table. If the column header of the first column of the
second output mapping table is designated active, then a
new column 150 of the antecedent table 146 is initiated
by entering the column header 124 of the first output
mapping column of the second output mapping table as a
new column header 154. The column header of the first
column of the third output mapping table is designated
active if the first column of the third output mapping
table does not have equal effect on the state-machine as
either the first column of the first output mapping table
or the first column of the second output mapping table,
else the first column of the third output mapping table
is deleted from the third output mapping table, etc. If
the column header of the first column of the third output
mapping table is designated active, then a new column 150
of the antecedent table 146 is initiated by entering this
column header as a new column header 154. The column
header of the first column of the lth output mapping
table is designated active if the first column of the 1lth
output mapping table does not have equal effect on the
state-machine as the first column of each kth output
mapping table, for all k < 1, else the first column of
the 1th output mapping table is deleted from the 1lth
output mapping table. Also, if the column header of the
first column of the lth output mapping table is
designated active, then a new column 150 of the
antecedent table 146 is initiated by entering this column
header as a new column header 154. Each unique output

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

23

function of the state-machine yields an initial active
output mapping column 120 for a unique output mapping
table as well as a unigue antecedent table column header
156.

A step 124, an active input sequence 126 is
selected from the Compilation Table and called the old
active input sequence 126. If no untried active input
sequence 126 exists, control transfers to step 138 to
terminate the compilation method of Figure 1. Else,
every character 128 from the state-machine input alphabet
130 is marked untried, and control transfers to step 126.

At step 126, a character 128 from the state-
machine input alphabet 130 is selected and marked as
tried. Typically, the entire state-machine input
alphabet will comprise the characters "0" and "1". If no
untried character 128 exists, control transfers to step
124 to try another selected active input sequence 126.
Else control transfers to step 128.

At step 128, a new input sequence 126 is
created, equal to the old active input sequence 126 with
the selected character 128 from the state-machine input
alphabet 130 appended. The new input sequence 126 is
marked untried.

At step 130, a new column 110 is created for
possible entry into the Compilation Table 106. Each row
entry 112 of the new column 110 is set equal to the
target state-machine state resulting by applying the new
active input sequence 126 created in step 128, one input
symbol 128 at a time, in reverse order, to the
state-machine state which is that entry in the identical
row.108 in the column 110 of the Compilation Table having
the null string (/\) as a column header. The column
header of this new column of internal state entries

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

24

created at step 130 is the new input sequence created at
step 128. Finally, at step 130, each active output
mapping column header 124 derived from the input sequence
selected at step 124 (that is, each active output mapping
column header 124 which consists of the input sequence
selected at step 124 further distinguished by a state-
machine output function) is marked untried. Control

proceeds at step 132.

At step 132, an untried active output mapping
column header 124 derived from the input sequence
selected at step 124 (an untried active output mapping
column header which consists of the input sequence
derived at step 124 further distinguished by a state-
machine output function) is selected and marked as tried
and the state-machine output function which distinguishes
this selected untried output mapping column header is
noted. If no untried active output mapping column header
derived from the input sequence selected at step 124
exists, then control returns to step 126. Else, control

transfers to step 134.

At step 134, a new output mapping column 120 is
created for possible inclusion in an output mapping table
by applying the state-machine output function noted at
step 132 to the column of final state-machine states
created at step 130. Each row entry 122 for the new
output mapping column 120 is determined to be the
identical row entry 112 of the new column 110, created at
step 130, replaced with its output value assignment as
designated by said output function noted at step 132.

The column header 124 of this new column 120 is the new
input sequence 126 created at step 128 distinguished by
the state-machine output function noted at step 132 (the
input sequence and state-machine output function required

to create this new column 120).

WO 93/25975 PCT/US93/05222

25

At step 136, the output mapping column 120
created at step 134 is compared with all previously
generated active output mapping columns of all output
mapping tables for equal effect. If the output mapping

5 column created at step 134 does not have equal effect
with any previously generated output mapping column, then
the column header 124 of the said output mapping column
created at step 134 is declared active and this column
header 124 is entered as a new column header 154

10 initiating a new column 150 of the antecedent table 146.
Furthermore, this column header 124 created at step 134
is designated the antecedent sequence of the column
header 124 of the output mapping column 120 selected at
step 132, under the input character selected at step 126.

15 And, this new output mapping column 120 created at step
134 is added to the output mapping table associated with
the output function noted at step 132. Also, the new
input sequence determined at step 128 is declared active
and its associated column of state-machine internal

20 states created at step 130 is added to the Compilation
Table 116. Alternatively, if the output mapping column
created at step 134 is found to have equal effect as a
previously generated output mapping column, then column
header 124 of the previously generated output mapping

25 column which is found to have equal effect with the
output mapping column created at step 134 is designated
the antecedent sequence of the column header 124 of the
output mapping column 120 selected at step 132 under the
input character selected at step 126. The said

30 antecedent sequence, whether it is the column header 124
of the output mapping column 120 created at step 134 or a
column header 124 of a previously generated output
mapping column which is found to have equal effect, is
then entered as an element 152 in that column 150 of the

35 antecedent table 146 which has as its column header the
column header 124 of the output mapping column 120
selected at step 132, in the row of that column

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

26

associated with the input character selected at step 126.

At step 138, an initial pair chart 404 is
constructed, exhibited in Figure 4. This pair chart is a
two dimensional indexed array which will contain as
entries the outputs of step 140 (determination of
compatible pairs) and of step 144 (derivation of pair
implications). Also, the completed pair chart - the
resulting pair chart after completion of steps 140,142,
and 144 - is used to derive the maximal compatible sets

at step 146.

The number of columns 410 in the pair chart 404
is the number of unique column headers 154 of the
antecedent table 146. Each column 410 of the pair chart
404 has a column header 416, the column header of each
column of the pair chart being a unique column header 154
of the antecedent table 146. The number of places for
entries 412 in the leftmost column of the pair chart
(other than the header) is one less than the number of
column headers 154 of the antecedent table 146. The
number of places for entries in each remaining column is
one less than the number of places for entries in the
column which is its left hand neighbor. Hence, the
second to the leftmost column in the array has one fewer
entry in it than the leftmost column and the second to
leftmost column begins in the array one entry lower than
the leftmost column. Equivalently, the third to the
leftmost column in the array has one fewer entry in it
than the second to the leftmost column and the third to
the leftmost column begins one entry lower than the
second to the leftmost column, etc. Hence, the pair
chart resembles the appearance of a pyramid, its highest
point being its leftmost column and its lowest point
(just a row labelling) being its rightmost column. The
input sequence which heads up a particular column is
aligned with a row 408 of each column to the left of the

WO 93/25975 PCT/US93/05222

27

column which it heads. For instance, the input sequence
which heads up the third to the leftmost column is
aligned with the top row of the second to the leftmost
column and with the second to the top row of the leftmost

5 column. Each entry 412 in the matrix which constitutes
the pair chart 404 is therefore indexed by two input
sequences, one input sequence heading the column of that
entry and the other input sequence aligned with the row
of that entry. Each input sequence 416 therefore

10 occupies a diagonal entry of the pair chart, heading a

column and aligning with a row.

The rightmost column of the pair chart consists
only of an input sequence which is aligned with the
15 bottom row.

At step 140, each input sequence which is
included as a column header 154 of the antecedent table
146 is compared with each other such input sequence for
20 compatibility. Two input sequences which are entered as
column headers 154 of the antecedent table 146 are said
to be incompatible if any entry 122 in the associated
column 120 of the output mapping table 116, which has as
a column header one such input sequence (that column of
25 an output mapping table created by applying the said
input sequence to the state-machine to obtain a column of
final state entries and further applying the
state-machine output function which distinguishes the
said input sequence to the column of final state-machine
30 state entries to obtain the output mapping column)
contains a 0 and the entry 122 in the identical row 118
of the associated output mapping column 120 which has as
a column header the other input sequence, contains a 1.
Two input sequences which are not incompatible for every

35 row entry 122 are said to be compatible.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

28

The initial pair chart 404 is used to enter the
results of step 140. For each entry 412 in the pair .
chart 404, an X is entered in that entry point if the
header 416 of the column of that entry is incompatible
with the input sequence 416 aligned with the row of that
entry, otherwise the entry is left blank. Note that
there is one entry 412 in the pair chart 404 for each
pair of unique input sequences which are column headers
154 of the antecedent table 146.

At step 142, for each compatible pair of input
sequences derived at step 140 and for each input
character of the input alphabet of the state-machine, an
antecedent pair of compatible input sequences is
determined. The antecedent pair of input sequences is
derived from the compatible pair of input sequences by
obtaining two entries from the antecedent table 146,
these two entries constituting the antecedent pair of
input sequences. One entry obtained from the antecedent
table is obtained from that column 150 of the antecedent
table having as a column header one member of the said
compatible pair of input sequences and the other entry of
the antecedent pair is obtained from that column 150 of
the antecedent table which has as a column header the
other member of the said compatible pair of input
sequences. Both input sequences which constitute the
antecedent pair are obtained from that row of the
antecedent table which is associated with the said input
character. Hence, an antecedent pair of input sequences
is determined (for the compatible pair of input
sequences) for each input character comprising the input

alphabet of the state-machine.

At step 144, a set of pair implications is
determined for each compatible pair derived at step 140.
It is noted that, at step 142, k antecedent pairs of

input sequences are associated with each compatible pair

WO 93/25975 PCT/US93/05222

29

derived at step 140, k being the number of input states
of the incompletely specified state-machine being
considered. Each one of these k antecedent pairs of
input sequences becomes a pair implication for the

5 associated compatible pair derived at step 140, with the
following four exceptions:

(i) If both antecedent input sequences of a
compatible pair (under a particular input state) are the
same input sequence, then this pair implication becomes

10 only the single input sequence.
(1i) 1If one of the antecedent input sequences
of a compatible pair (under a particular input state) is
the column header 124 of an output mapping column 120
which contains strictly "unspecified" ("-") entries, then
15 the associated pair implication becomes just the single
entry which is the other input sequence of the antecedent
pair.
(iii) 1If both of the antecedent input sequences
of a compatible pair (under a particular input state) are
20 column headers of output mapping columns containing
strictly "unspecified" ("-") entries, then the associated

pair implication becomes the null set.

25 (iv) If both of the antecedent input sequences
of a compatible pair (under a particular input state) are
contained as a subset of the compatible pair, then the
pair implication becomes the null set.

30 The pair chart is now used to enter the results
of step 144. As indicated, a blank entry in the pair
chart, resulting from step 140, indicates compatibility
of the input sequence which is the column header of the
column containing that blank entry with the input

35 sequence aligned with the row of that blank entry.

Hence, for each blank entry in the pair chart, we enter
the pair implications for the compatible pair (column

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

30

header and row label) associated with that blank entry,
derived at step 144. As indicated, the number of pair
implications per entry is the number of input characters
comprising the input alphabet of the state-machine being

considered.

At step 146, the set of pair compatibles
derived at step 140 are used to derive maximal compatible
sets. A maximal compatible set is a set of input
sequences having the following two characteristics:

(1) Each pair of input sequences in the set
are compatible, as in step 140.

(ii) There exists no superset of input
sequences having the two characteristics that (a) each
pair of input sequences in the superset is compatible and
(b) the superset of input sequences contains the maximal
compatible set of input sequences as a proper subset.

The maximal compatible sets of sequences are
derived in accordance with the flowchart of Figure 2,
with the associated explanation appended to this

narrative.

At step 148, all maximal compatible sets are
labeled prime compatible sets. Also, at step 148, all
subsets of all maximal compatible sets derived at step
146 are determined. Each subset of a maximal compatible
set is considered in turn and labelled, initially, a test
compatible set. Since each maximal compatible set is
trivially a subset of itself, each maximal compatible set
is included in consideration as a test compatible set.

An implication set is now created for each test
compatible set and input character. This implication set
created for each test compatible set and input character
is to include all input sequences which are members of
pair implication sets, for the given inpﬁt character,
associated with compatible pairs which comprise the test

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

31

compatible set. If the implication set so derived is
included as a subset of its associated test compatible
set, then the implication set is eliminated and the
implication set in this case becomes the null set. Note
that k implication sets are derived for each test
compatible set, k being the number of input characters
comprising the input alphabet of the state- machine. A
test compatible set is said to be eliminated by another
test compatible set (either a maximal compatible set or
another proper subset of a maximal compatible set) if the
other compatible set has the following two
characteristics: .

(1) The test compatible set is contained in
the other compatible set as a subset of the other
compatible set.

(ii) For each input state, the implication set
associated with the other compatible set and that input
state is contained as a subset of at least one of the
implication sets associated with the test compatible set.

A test compatible set which is not eliminated
is labelled a prime compatible set. It is noted that all
maximal compatible sets are prime compatible sets. All
prime compatible sets are retained and used for the
construction of the candidate minimal cover tree to
obtain the optimal encoding (least silicon area) of the

cellular array control memory.

At step 150, a set of candidate minimal cover
trees is constructed from which a minimal cover path is
determined, in accordance with Figure 3, with associated
explanation appended to this text.

At step 152, the number of memory cells in
multiple locations along the main diagonal and the number
of output columns of the cellular array which are to be

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

32

used for the state-machine implementation are determined.
This number of memory cells in multiple locations along
the main diagonal of the cellular array which are to be
used for the state-machine implementation is the number
of nodes in the minimal cover path. The number of output
columns designated for the implementation is the number
of output functions of the state-machine being emulated,
the memory cell of each output column feeding directly
into an output pin buffer. Hence, the total number of
columns in the cellular array to be used for a particular
implementation is the number of nodes in the minimal
cover path (each node corresponding to one of the memory
cells along the main diagonal) plus the number of output
functions of the state-machine under consideration (each
output function corresponding to an output column of the

cellular array).

At step 154, each memory cell of the cellular
array used for the implementation, whether the memory
cell occupies one of the multiple locations along the
main diagonal or whether the memory cell occupies a
location in one of the output columns, is to have
associated with it a prime compatible set which is a
member of the minimal cover path. A memory cell located
in each one of the multiple locations along the main
diagonal of the cellular array has associated with it a
unique prime compatible set represented in the minimal
cover path. A memory cell located in each one of the
output columns has associated with it a prime compatible
set, a member of the minimal cover path which contains
the sequence /\ further distinguished by the number of
the state-machine output function which that output
column of the cellular array generates.

WO 93/25975

10

-3
3]

N
n

3C

(8%}
(83}

1
(@)

(%)
(¥9)

AL step 156, a two dimensional contrcl memory
array is constructed. The number of entries required in
the control memory array is the number cof memory cells
used in the cellular array times the number of input
characters in the input alphabet of the state-machins
being emulated. In the case that the control memory
array is implemented as a programmable logic array rather
than as random access memory, the two-dimensional array
0of data represented by the control memoryv array is
generated by the programmable logic arrav, as a function
cf the state-machine input lines, rather than occupying a
two-dimensional location in physical memory. The control
memory array - Or the output of the control memory

programmable logic array - is a two dimensional arraw
indexed on its ordinate by each input character of the

input alphabet of the state-machine being emulated and on
its abscissa by a label corresponding to a unigue memory

cell of the cellular array, in accordance with Table 3.

Table 2

Control Memory Arrav

input state O

—r

[

input state

\ ! : } . ' ' [i
input state (k-21) | P P i
memory cell number: 0 I 2 (i-2Y 3¢ 2, 2o

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

34

In Table 3, the number of input characters in
the input alphabet of the state-machine under
consideration is assumed to be k, the number of memory
cells along the main diagonal of the cellular array
implementation (the number of nodes in the minimal cover
path) is assumed to be 1, and the number of output
functions of the state table under consideration is

assumed to be n.

In Table 3, memory cell number 0 - the leftmost
horizontal index - refers to the memory cell occupying
the leftmost column of the cellular array, the top left
main diagonal location; memory cell number 1 refers to
the memory cell occupying the second to the top main
diagonal location, etc.; finally, memory cell number
(1-1) refers to the memory cell occupying the bottom
right main diagonal location. This numerical labelling
of the memory cells in multiple locations along the main
diagonal has a physical significance, as the control
lines of a selector occupying a column of the cellular
array (whether a column maintaining a memory cell
occupying a location in the main diagonal or an output
column) are set to one of the values 0, 1, ... , (1-1) to
specify which memory cell in the main diagonal is to have
its binary value selected to enter the memory cell of the
column of that selector at the occurrence of the next
clock pulse. The memory cells occupying multiple
locations along the main diagonal are the cells which
have their binary contents routed to all parts of the
cellular array at the occufrence of each clock pulse.

The memory cells occupying the output columns, which
directly feed output pin buffers, receive their next
binary values from the memory cells occupying multiple

locations along the main diagonal.

The memory cells occupying the output column

locations are labelled Z,, 2,, ... , Z,,, in accordance

WO 93/25975 PCT/US93/05222

35

with the output functions which they support.

At step 158, the entries in the control memory
array of Table 3 are filled in. Each entry in the
5 control memory array exhibited in Table 3 is indexed on
its abscissa by a column number, or a column labelling
for the case of a column producing an output function,
and on its ordinate by an input character of the input
alphabet of the state-machine being emulated. The
10 integer which is to occupy a particular entry in the
array of Table 3 specifies which memory cell is to have
its contents routed to the memory cell designated by its
abscissa index, under the state-machine input character
designated by its ordinate index. The memory cell number
15 occupying that control memory entry is the memory cell
associated with the prime compatible set of the minimal
cover path which contains as a subset a particular
implication set. The implication set to be covered is
that implication set associated with the prime compatible
20 set of the minimal cover path selected at step 154 to
label the memory cell designated by the abscissa index of
that control memory location, under the input character
designated by the ordinate index of that control memory
location.
25
At step 160, the cellular array control memory
is configured as the two-dimensional control memory of
Table 3. The input lines of the state-machine, each
unique binary encoding of said input lines corresponding
30 to a unique input character of the input alphabet of the
state-machine, address the control memory. At each
address location of control memory, a word of data is to
exist, that word of data to consist of that particular
row of integers of Table 3 specifically indexed on its
35 ordinate axis by the state-machine input character
corresponding to the binary encoded values at the state-

machine input lines which address control memory. The

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

36

integers residing in the addressed word of control memory
are to exist in binary representation, each binary
encoded integer of the addressed word to be placed on the
control lines of a selector in a unigue column of the

cellular array.

For the case that the control memory of the
cellular array is implemented as a programmable logic
array, then at step 160, the programmable logic array is
to be programmed to produce the multi-output
combinational logic function specified by the control
memory of Table 3. Each unique binary interpretation of
the state-machine input lines, each such interpretation
corresponding to a unique input character of the state-
machine, therefore specifies the appropriate row of the
control memory array which is to be produced by the
programmable logic array as a multi-output binary
function of said state-machine input lines. This multi-
output function is to be produced as a minimal count two-
level AND-OR realization, as is well known in the art of
programmable logic implementation.

At step 162, the initial cellular array memory
values are determined. Typically, an initial
state-machine internal state is designated as a starting
state of the state-machine to be emulated. This internal
starting state is the key to specifying the initial
cellular array memory values. This internal starting
state indexes a row 118 of each output mapping table 116.
Each memory cell of the cellular array which is used to
emulate the state-machine has associated with it a prime
compatible set (output of step 154). This prime
compatible set contains a set of compatible input
sequences, each such input sequence further distinguished
by an output function of the state-machine. Each such
distinguished input sequence corresponds to a particular
column 120 of one of the output mapping tables 116.

WO 93/25975 PCT/US93/05222

37

Since all such distinguished input sequences contained in
the said prime compatible set are compatible, then, for a
designated row of the output mapping tables, specifically
that row designated by the starting state of the

5 state-machine, all row entries 122 for those columns 120
associated with input sequences of the said prime
compatible set are specified from the set {-,0}
("unspecified" and 0), or from the set {-,1}
("unspecified" and 1), or simply from the set {-}

10 ("unspecified"). That is, a row entry 122 for an output
mapping column 120 corresponding to one input sequence
contained in the said prime compatible set cannot be
specified as a 0 and the row entry 122 in the identical
row for an output mapping column 120 corresponding to

15 another input sequence contained in the said prime
compatible set be specified as a 1 (otherwise, the prime
compatible set would not consist of compatible input
sequences) . For the case that all row entries 122, for
that row 118 corresponding to the starting state of the

20 state-machine, in those columns 120 of the output mapping
tables associated with the input sequences contained in
the said prime compatible set, are specified from the set
{—,O}, then the said memory cell is set to the initial
binary value of 0. For the case that said row entries

25 122 of the output mapping tables 116 are specified from
the set {-,1}, then the said memory cell is set to the
initial binary value of 1. Finally, for the case that
the said row entries 122 of the output mapping tables are
contained in the set {-}, then the initial value of said

30 memory cell can be left unspecified.
CONSTRUCT MAXIMAL COMPATIBLE SETS

Figure 2 exhibits the technique of constructing

35 the maximal compatible sets.

WO 93/25975 PCT/US93/05222

38

At step 222, the two rightmost column headers
of the pair chart are selected for construction of trial
maximal compatible sets. These two input sequences are

marked as tried.

At step 224, the appropriate entry (bottom row,
second to the rightmost column) in the pair chart is
inspected to determine whether or not the two rightmost
column headers are compatible.

10

If the answer at step 224 is yes, then , at
step 226, one trial maximal compatible set is created
consisting of both selected column headers.

15 If, on the other hand, the answer at step 224
is no, then, at step 228, two trial maximal compatible
sets are created, each trial maximal compatible set

consisting of one of the selected column headers.

20 At step 230, the question is posed: are any

untried column headers remaining in the pair chart?

If the answer at step 230 is no, then, at step
232, the trial maximal compatible sets become the maximal
25 compatible sets and the procedure continues at step 148.

If, on the other hand, the answer at step 230
is yes, then, at step 234, the rightmost untried column
header of the pair chart is selected and marked as tried.

30

At step 236, a set of new trial maximal
compatible sets is created, to be combined with the set
of existing trial maximal compatible sets. For each
existing trial maximal compatible set, a corresponding

35 new trial maximal compatible set is created by combining
the most recently selected column header, that column
header selected at step 234, with those input sequences

WO 93/25975 PCT/US93/05222

39

of the existing trial maximal compatible set which are
compatible with the most recently selected column header.
The determination of compatibility is easily made from
the pair chart by observing the entries in those rows

5 associated with the input sequences contained in the
existing trial maximal compatible set, in the column of
the most recently selected column header. At each such
entry point 412 of the completed pair chart 404, an "X"
specifies incompatibility whereas the non-existence of an

10 "X" specified compatibility.

At step 238, the new trial maximal compatible
sets created at step 236 are combined with the existing
trial maximal compatible sets to form the new trial

15 maximal compatible sets.

At step 240, any trial maximal compatible set
which is a proper subset of another trial maximal
compatible set is deleted as a trial maximal compatible

20 set.

The procedure continues at step 230.

CONSTRUCT MINIMAL COVER PATH
25
Figure 3 exhibits the technique of constructing

the minimal cover path.

At step 322, the covering table consisting of
30 two columns is constructed. The leftmost column of the
covering table contains all of the input sequences which
are column headers of the pair chart, each such input
sequence occupying a unique row of the leftmost column of
the covering table. The rightmost column contains, in
35 each row, the number of prime compatible sets having the
input sequence of that row (residing in the leftmost

column) as an element.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

At step 324, the input sequence which is
contained in the fewest number of prime compatible sets

is chosen from the covering table.

A set of candidate "minimal covering trees" are
to be formed. Each candidate tree consists of a
leftmost, or root, node. This root node is connected to
the right to a multiplicity of nodes, each connection
between nodes made by a single line which is called a
branch. Each new node encountered on the right side of a
branch is further connected to a multiplicity of nodes on
its right hand side, each connection again made by a
branch, and so on. A path through the tree originates at
the tree’s root, or leftmost node, then proceeds to the
right, one branch and node at a time, until no further
branches exist which extend the path beyond the rightmost
node encountered. A path through a tree is said to have
a length, the length being the number of nodes
encountered in the path.

Each node comprising the set of candidate
minimal cover trees which are to be constructed
represents a prime compatible set. 1Initially, each prime
compatible set containing the input sequence selected at
step 324 represents the root node of a unique candidate
tree. Hence, the number of trees to be constructed is
limited to the number of prime compatible sets which
contain the input sequence selected at step 324, each
such prime compatible set chosen as the root node of a
candidate minimal cover tree. In most applications, each
root node will be extended to the right via the addition
of branches and nodes, in accordance with the procedure
to be detailed.

Therefore, at step 326, each prime compatible

set containing the initially selected input sequence is

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

41

entered as a root node of a candidate tree.

At step 328, the path containing the fewest
number of nodes is selected from the set of candidate
trees. This path is labelled the test path. Initially,
of course, each path contains only one node, a root node
of a candidate tree to be constructed. If there is more
than one minimal path (a multiplicity of paths having the
same number - a minimal number - of nodes), then any one

of the minimal paths can be chosen as the test path.

As indicated, each node of the test path
represents a prime compatible set. Associated with each
prime compatible set is a set of implication sets, one
implication set for each input state of the input
alphabet of the state-machine under consideration. At
step 330, the question is posed: does the test path
satisfy closure, i.e., is each implication set associated
with each node (prime compatible set) of the test path
included as a subset of at least one of the prime
compatible sets represented by the various nodes of the
test path?

If the answer at step 330 is yes, then the
procedure goes to step 334, else the procedure goes to
step 332.

At step 332, there exist one or more
implication sets associated with prime compatible sets,
represented by nodes of the test path, which are not
contained as subsets of any of the prime compatible sets
associated with the remaining nodes of the test path.
Therefore, at step 332, all possible minimal combinations
of prime compatible sets (prime compatible sets which are
cleérly not represented in the test path) which contain
the excluded implication sets are compiled and, for each
such minimal combination of prime compatible sets, the

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

42

test path is extended to the right by adding, serially, a
branch and node representing each prime compatible set of
a derived combination. The procedure then returns to
sStep 328.

At step 334, the question is posed: does the
test path exhibit a cover, i.e., is each input sequence
which constitutes the leftmost column of the covering
table contained in at least one prime compatible set
associated with the test path?

If the answer at step 334 is no, then, at step
336, all input sequences which are not contained as
members of prime compatible sets associated with the test
path are compared in the covering table. That input
sequence which is contained in the least number of

remaining prime compatible sets is selected.

At step 338, the test path is extended to the
right by adding, in parallel to the rightmost node of the
test path, a branch and node representing each prime
compatible set which contains that input sequence
selected at step 336 as a member. The procedure then
returns to step 328.

If the answer at step 334 is yes, then the test
path constitutes a minimal cover of prime compatible sets
and this minimal cover path is then used to complete the
control memory encoding procedure of the cellular array
for the application of interest. Control then proceeds
at step 152.

EXAMPLE
The following example will serve to clarify the

procedure, as detailed, of deriving an optimum boundary
value encoding for an incompletely specified,

WO 93/25975 PCT/US93/05222

43

multi-output state table.

Consider the state table exhibited as Table 4.

5 Table 4

Example For Boundary Value Encoding

10 0 1 2, 7,
alb a 0 1
bia - 1 -

Note, in Table 4, that the next state entry for internal

15 state b, input state 1 is a "-", or unspecified entry and
it can be either a or b in the above case. Similarly,
the output state for the second (rightmost) output
function under internal state b is a "-", meaning
unspecified and it can be either 0 or 1.

20

Proceeding, as in Figure 1, for the

construction of the boundary values for the cellular
array and beginning at step 120, the Compilation Table
106 is created with one row 108 for each state-machine

25 state and one column 110 for each active input sequence
116. 1Initially, the null sequence (/\) is the only
active input sequence and this entry in table 106 is
exhibited in Exemplar 1. As noted, the column header of

this initial column is the /\ sequence.

30
Exemplar 1
35 Initial Column of Compilation Table
A
v a
40 ' b

In essence, Exemplar 1 consists of a single column headed
by the /\ sequence and having entries which are the

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

44

present state entries of Table 4, the state table under

consideration.

At step 122, two output mapping tables 116 are
created, one output mapping table for each output
function of the state-machine under consideration, Table
4. An initial column 120 for each output mapping table
is designated, the initial column for the first output
mapping table being the /\ column of the Compilation
Table 106, each entry in that column replaced with its
output value assignment specified by the first output
function of the state-machine, Table 4. The column
header of this first output mapping column of the first
output mapping table is the /\ sequence distinguished by
the first state-machine output function. Equivalently,
the initial column of the second output mapping table is
the /\ column of the Compilation Table 106, each entry in
that column replaced with its output value assignment
specified by the second output function of the
state-machine, Table 4. And, the column header of this
first output mapping column of the second output mapping
table is the /\ sequence distinguished by the second
state-machine output function. These two initial output

mapping columns are exhibited in Exemplar 2.

Exemplar 2
Initial Columns of Output Mapping Tables
A
0
~ 1
VAW
1

There remains at step 122 to designate those column
headers of Exemplar 2 which are associated with unigue

WO 93/25975

10

15

20

25

30

35

40

45

columns as active and to initialize the antecedent table
146 by designating each such active column header of
Exemplar 2 as a column header 156 of the antecedent
table. Since both columns of Exemplar 2 are unique, the
column header of each column of Exemplar 2 is included as
a column header of the antecedent table. These initial
two column headers of the antecedent table are exhibited

in Exemplar 3.

Exemplar 3

Initial Column Headers of Antecedent Table

0 Al_Az
1

At step 124, the /\ (null) input sequence 116
is the only untried active input sequence in the
Compilation Table, Exemplar 1; it is therefore selected
and called the old active input sequence. Also, every
character 128 from the state-machine input alphabet {0,1}
is marked untried.

At step 126, the character 0 is selected from
the input alphabet {0,1} and marked as tried. The choice
is arbitrary - the character 1 could have been selected.

At step 128, the new input sequence 0 (0
appended to the /\ sequence) is created. This new input

sequence 1s marked untried.

At step 130, a new column is created for
possible entry into the Compilation Table, 106. This new
column is headed by the new input sequence, 0. In this
case, the new column is identical to the column in Table
4 under the 0 input state entry, exhibited in Exemplar 4.
Finally, all output mapping column headers of Exemplar 2
are marked untried and control proceeds at step 132.

PCT/US93/05222

WO 93/25975 PCT/US93/05222
46
Exemplar 4
New Column Created at Step 130
5
0
b
a
10 At step 132, an untried active output mapping

15

20

25

30

35

40

column header in Exemplar 2 derived from the input
sequence selected at step 124 (/\) is selected and marked
as tried. We select the column header of the topmost
column, /\,, and mark it as tried. Also, we note the
state-machine output function which distinguishes the
selected output mapping column header, which in this case

is the first state-machine output function.

At step 134, a new output mapping column is
created. This new output mapping column is determined by
applying the state-machine output function noted at step
132 (the first state-machine output function) to the
column of internal states created at step 130 (Exemplar
4) as if each entry were a present state entry of the
state-machine. The top entry of Exemplar 4 is the
internal state "b" and its output mapping under the first
state-machine output function is "1", whereas the bottom
entry of Exemplar 4 is the internal state "a" and its
output mapping under the first state-machine output
function is "0". This new column is exhibited in
Exemplar 5. Note that the column header of Exemplar 5 is
the input sequence determined at step 128 distinguished
by the state-machine output function noted at step 132,
0,, that input sequence and state-machine output function
used to create the new output mapping column.

WO 93/25975 PCT/US93/05222

47

Exemplar 5

New Output Mapping Column Created at Step 134

o Rrijo

10 At step 136, The output mapping column
exhibited in Exemplar 5 is compared with all previously
generated output mapping columns of all output mapping
tables, that is with all output mapping columns exhibited
in Exemplar 2, for equal effect. Since the output

15 mapping column of Exemplar 5 is not identical to any
previously generated active output mapping column, the
column header of this output mapping column (0,) is
declared active and its column is entered in the output
mapping table 116 corresponding to the first

20 state-machine output function, that state-machine output
function which was used to create the output mapping
column of Exemplar 5. The two output mapping tables with
the new column entry is exhibited in Exemplar 6.

25 Exemplar 6

Output Mapping Table Created at Step 136

30 N\, 0,
0 1
1 0
VAW

35 1

Since the header of the new output mapping column created
at step 134 (Exemplar 5) is declared active, then the

40 input sequence determined at step 128 is also declared
active and its associated column of internal state
entries determined at step 130 (Exemplar 4) is entered
into the Compilation Table 106, the new Compilation Table

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

48

exhibited as Exemplar 7.

Exemplar 7

New Compilation Table Created at Step 136

VAN
a b

b a

Since the header of the new output mapping column created
at step 134 (Exemplar 5) is declared active, then this
column header, 0,, is entered as the antecedent sequence
152 of the column header of the output mapping column
chosen at step 132, /\,, under input character 0. There
are two rows 148 of the antecedent table, each row
corresponding to a unique input character of the input
alphabet of the state-machine. The top row of the
antecedent table corresponds to the input character 0,
whereas the bottom row of the antecedent table
corresponds to the input character 1. Hence, the column
header of the column created at step 134, 0,, is entered
in the top row, column headed by /\, of the antecedent
table. Finally, since the column header of the output
mapping column of Exemplar 5 is declared active, a new
column of the antecedent table is created by entering
this active column header as a new column header of the
antecedent table. The antecedent table, with new
entries, is exhibited in Exemplar 8. Control now
transfers to step 132.

Exemplar 8

New Antecedent Table Created at Step 136

Al_&z_(h
0 0,
1

At step 132, the header of the second output

WO 93/25975 PCT/US93/05222

49

mapping column of Exemplar 6, the remaining output
mapping column derived from the /\ input sequence, is
selected and marked as tried. Also, the state-machine
output function used to create the selected output

5 mapping column, the second output function, is noted.

At step 134, a new output mapping column is
created, as before. This new output mapping column is
determined by applying the state-machine output function

10 noted at step 132 (the second state-machine output
function) to the column of internal states created at
step 130 (Exemplar 4) as if each entry were a present
state entry of the state-machine. As before, the top
entry of Exemplar 4 is "b" and its mapping under the

15 second state-machine output function is "-", or
"unspecified". The bottom entry of Exemplar 4 is "a" and
its mapping under the second state-machine output
function is "1". This new column is exhibited in
Exemplar 9. Note that the column header of Exemplar 9 is

20 the input sequence determined at step 128 distinguished
by the state-machine output function noted at step 132,
0,, that input sequence and state-machine output function
used to create the new output mapping column.

25 Exemplar 9

Qutput Mapping Column Determined at Step 134

30 0,

1

At step 136, the output mapping column of
35 Exemplar 9 is compared with all output mapping columns of
Exemplar 6, the output mapping columns of all previously
geﬁerated output mapping tables, for equal effect. Since
the output mapping column of Exemplar 9 is unique - it is
not identical to any output mapping column of Exemplar 6,
40 the column header of Exemplar 9 is declared active and

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

50

this column header is placed as a column header to
initiate a new column of the antecedent table.
Furthermore, the column header of Exemplar 9 is
designated the antecedent sequence of the column header
of the output mapping column selected at step 132, the
only column header of the second output mapping table of
Exemplar 6, /\,, under the input character 0. Hence, the
column header of Exemplar 9, 0,, is entered as an element
in the antecedent table in that column having as a column
header /\,, in the row associated with the input character
selected at step 126, the input character 0. The new
antecedent table is exhibited in Exemplar 10.

Exemplar 10

New Antecedent Table Created at Step 136

Al /\7 01 01
0 0, O,
1

Since the column header of the output mapping column of
Exemplar 9 is declared active, then the output mapping
column of Exemplar 9 is entered as a new column of the
second output mapping table, that output mapping table of
Exemplar 6 associated with the second state-machine
output function. The output mapping tables with the new
column added is exhibited in Exemplar 11.

Exemplar 11

Output Mapping Tables

A1 Ql
0 1
1 0
A, 0,

WO 93/25975 _ PCT/US93/05222

51

Since the column header of Exemplar 9 is declared active,
then the new input sequence determined at step 128 is
declared active and its associated column, that column
exhibited in Exemplar 4, is entered into the Compilation
5 Table. However, the column of Exemplar 4 has already
been entered into the Compilation Table, as exhibited in
Exemplar 7 and, therefore, it need not be re-entered.

Control returns to step 132.

10 At step 132, no further untried active output

' mapping column headers derived from the input sequence
selected at step 124 (/\) exist (the column headers of
the first output mapping columns of both output mapping
tables of Exemplar 11 having been tried), control returns

15 to step 126.

At step 126, the character 1 is selected from
the state-machine input alphabet and marked as tried.

20 At step 128, the new input sequence 1 (the
input character 1 appended to the old active input

sequence /\) is created.

At step 130, a new column is created for

25 possible entry into the Compilation Table. This new
column is headed by the new active input sequence, 1. In
this case, the new column is identical to the column in
Table 4 under the 1 input state entry, exhibited in
Exemplar 12. Finally, at step 130, all active column

30 headers of the output mapping tables exhibited in
Exemplar 11 derived from the /\ input sequence (/\,, /\,)
are marked untried and control proceeds at stop 132.

35

WO 93/25975 PCT/US93/05222 -

10

15

20

25

30

35

40

52
Exemplar 12

Column Created at Step 130

At step 132, an untried active output mapping
column header of Exemplar 11 associated with the /\ input
sequence, that input sequence selected at step 124, is
selected and marked as tried. We select the column
header of the first column, /\,, of the first output
mapping table, and mark it as tried. Also, we note the
state-machine output function which distinguishes the
selected output mapping column header, in this case the
first state-machine output function.

At step 134, a new output mapping column is
created. This new output mapping column is determined by
applying the state-machine output function noted at step
132 (the first state-machine output function), to the
column of internal states created at step 130 (Exemplar
12) as if each entry were a present state entry of the
state-machine. The top entry of Exemplar 12 is "a" and
its output mapping under the first state-machine output
function is "0". The bottom entry of Exemplar 12 is "-",
or "unspecified", resulting in a "-", or "unspecified"
output value. This new column is exhibited in Exemplar
13 . Note that the column header of Exemplar 13 is the
input sequence determined at step 128 distinguished by
the state-machine output function noted at step 132, 1,,
that input sequence and state-machine output function
used to create the output mapping column.

WO 93/25975 PCT/US93/05222

53
Exemplar 13

Output Mapping Column Created at Step 134

L,
0

10 At step 136, the output mapping column
exhibited in Exemplar 13 is compared with all previously
generated output mapping columns of all output mapping
tables, that is, with all output mapping columns
exhibited in Exemplar 11, for equal effect. Since the

15 output mapping column of Exemplar 13 is not identical to
any previously generated output mapping column, the
column header of this output mapping column (1,) is
declared active and it is entered as a column header for
a new column of the antecedent table. Furthermore, the

20 column header of Exemplar 13 is designated the antecedent
sequence of the column header of the output mapping
column selected at step 132 (/\,), under the input
character 1, that input character selected at step 126.
Hence, the column header of Exemplar 13 is entered as an

25 element of the antecedent table in that column having as
a column header /\, in the row associated with the input
character 1, the bottom row. The new antecedent table is
exhibited in Exemplar 14.

30 Exemplar 14

Antecedent Table Created at Step 136

35 /\1 /\2 01 02 11
0 0, O,
101,

Since the column header of the output mapping column of
40 Exemplar 13 is declared active, then the output mapping
column of Exemplar 13 is entered as a new column of the

first output mapping table, that output mapping table of

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

54

Exemplar 11 associated with the first state-machine
output function, that state-machine output function noted
at step 132. The output mapping tables with the new

column added is exhibited in Exemplar 15.

Exemplar 15

Output Mapping Tables Created at Step 136

Al Ql ll
0 1 0
1 0

A, 0,

1 -

Since the column header of Exemplar 13 is declared
active, then the new input sequence determined at step
128 is declared active and its associated column, that
column exhibited in Exemplar 12, is entered into the
Compilation Table. The new Compilation Table is
exhibited in Exemplar 16.

Exemplar 16

Compilation Table Created at Step 136

Control returns to step 132.

At step 132, the column header of the first
output mapping column of the second output mapping table
of Exemplar 15 (/\,), the remaining untried output mapping
column header derived from the input sequence determined
at step 124 (/\), is selected and marked as tried. Also,
the state-machine output function used to create the

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

55

selected output mapping column, the second state-machine

output function, is noted.

At step 134, a new output mapping column is
created. This new output mapping column is determined by
applying the state-machine output function noted at step
132 (the second state-machine output function) to the
column of internal states created at step 130 (Exemplar
12) as if each entry were a present state entry of the
state-machine, resulting in the output mapping column
exhibited in Exemplar 17. Note that the column header of
Exemplar 17 is the input sequence determined at step 128
distinguished by the state-machine output function noted
at step 132, 1,, that input sequence and state-machine
output function used to create the new output mapping

column.

Exemplar 17

Output Mapping Column Created at Step 134

1,

At step 136, the output mapping column of
Exemplar 17 is compared with all output mapping columns
of Exemplar 15, the output mapping columns of all
previously generated output mapping tables, for equal
effect. It is noted that the output mapping column of
Exemplar 17 is identical to the initial output mapping
column of the second output mapping table of Exemplar 15,
that output mapping column having the column header /\,.
Hence, the column header /\,, is designated the antecedent
sequence of the column header of the output mapping
column selected at step 132, /\,, under input state 1, the
input state selected at step 126 (that is, /\, is its own
antecedent sequence under input state 1) and this input

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

56

sequence, /\,, 1s entered in the antecedent table in that
column having as a column header /\,, in the row .
associated with the input character 1, the bottom row.

The new antecedent table is exhibited in Exemplar 18.

Control returns to step 132.

Exemplar 18

Antecedent Table Created at Step 136

N\v /N 0 0L

At step 132, since no remaining untried active
column headers derived from the input sequence /\, that
input sequence selected at step 124, exist in the output
mapping tables, Exemplar 15, control returns to step 126.

At step 126, since no untried input character
from the state-machine input alphabet remains, control

returns to step 124.

At step 124, an active sequence is selected
from the Compilation Table, Exemplar 16, and marked as
tried. The two untried active input sequences of
Exemplar 16 are 0 and 1. We choose the first such
sequence, 0. Also, every character of the state-machine

input alphabet is marked untried.

At step 126, the character 0 is selected from
the state-machine input alphabet and marked as tried.

At step 128, the new input sequence 00 (the 0
input character selected at step 126 appended to the old
active input sequence 0 selected at step 124) is created.
This new input sequence is marked untried.

WO 93/25975 PCT/US93/05222

57

At step 130, a new column is created for
possible entry into the Compilation Table. This new
column is headed by the new input sequence, 00, and it is
determined by applying the new input sequence 00,

5 character at a time, in reverse order, to the present
state entries of the state-table under consideration
(Table 4). Since the column entries for the input
sequence 0 already exist (the column headed by 0 in
Exemplar 16), the desired new column is obtained by

10 applying the input state 0 to the existing 0 column as if
the entries in the existing 0 column were present state
entries. The top entry in the existing 0 column is "b";
applying the input state 0 to the present state "b"
(entry under input state 0 for present state "b" in Table

15 4), yields internal state "a" as the top entry of the new
input sequence 00 column. The second entry in the
existing 0 column is "a"; applying the input state 0 to
present state "a" yields internal state “b" as the second
entry of the 00 column. Exemplar 19 exhibits the 00

20 column.

Exemplar 19

Column Created at Step 130

25
00
a
b
30
Finally, at step 130, all active column headers of output
mapping columns of Exemplar 15 (0, and 0,) derived from
the input sequence selected at step 124 (0) are marked
untried.
35

At step 132, an untried active output mapping
cinmn header of Exemplar 15 derived from the input
sequence selected at step 124 (the 0 sequence) is
selected and marked as tried. We select the column

40 header of the first output mapping table, 0.. Also, we

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

58

note the state-machine output function which
distinguishes the selected output mapping column header,
which is the first state-machine output function.

At step 134, a new output mapping column is
created, this new output mapping column determined by
applying the state-machine output function noted at step
132 (the first state-machine output function) to the
column of internal states created at step 130 (Exemplar
19), as 1f each entry were a present state entry of the
state-machine, resulting in Exemplar 20.

Exemplar 20

Output Mapping Column Control At Step 134

(=]

—1

R O

We note that the column header of the output mapping
column of Exemplar 20 is the input sequence determined at
step 128 distinguished by the state-machine output
function noted at step 132, that input sequence and
state-machine output function used to create the new

output mapping column.

At step 136, the output mapping column of
Exemplar 20 is compared with all output mapping columns
of Exemplar 15 for equal effect. It is noted that the
output mapping column of Exemplar 20 is identical to the
output mapping column of Exemplar 15 having the /\, input
sequence as its column header. Hence, the column header
/\,; is designated the antecedent sequence of the column
header selected at step 132 (0,), under the input
character 0, that input character selected at step 126.
Therefore, the /\, input sequence is entered in the
antecedent table in that column headed by 0, in the row
associated with the input character 0, the top row. The

WO 93/25975 PCT/US93/05222

59

new antecedent table is exhibited in Exemplar 21.

Exemplar 21

5 Antecedent Table Created at Step 136

/\1 /\2 Ol 02 11
0 o0, 0, /\.
10 1 1, /\,

Control returns to step 132.

At step 132, the remaining untried active
15 column header of Exemplar 15 derived from the input
sequence selected at step 124 (the 0 sequence) is
selected and marked as tried, 0,. Also, the state-machine
output function used to create the selected output
mapping column, the second state-machine output function,

20 is noted.

At step 134, a new output mapping column is
created, as before, by applying the state-machine output
function noted at step 132, the second state-machine

25 output function, to the column of internal state entries

in Exemplar 19, resulting in Exemplar 22.

Exemplar 22

30 Output Mapping Column Created at Step 134
00,
1

35 -

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

60

At step 136, the output mapping column of
Exemplar 22 is compared with all output mapping columns
of Exemplar 15 for equal effect. It is noted that the
output mapping column of Exemplar 22 is identical to the
output mapping column of Exemplar 15 having the column
header /\,. Hence, /\, is designated the antecedent
sequence of the column header selected at step 132 (0,)
under the input character selected at step 126 (0) and /\,
is entered in the appropriate location of the antecedent
table. The new antecedent table is exhibited in Exemplar
23. Control returns to step 132.

Exemplar 23

Antecedent Table Created At Step 136

Na /N2 0p 0, 1
0 0, O, /\
101, /\,

At step 132, since all active output mapping
headers derived from the input sequence selected at step
124 (the 0 input sequence), are marked as tried, control
returns to step 126.

At step 126, the remaining untried input
character, "1", is selected from the state-machine input

alphabet and marked as tried.

At step 128, the new input sequence 01 is
created (the input character "1" selected at step 126
appended to the old active input sequence "0O" selected at
step 124, for possible entry into the Compilation Table
106.

WO 93/25975 PCT/US93/05222

61

At step 130, a new column of internal state
entries is created, this new column having as a column
header the input sequence determined at step 128. This
new column is determined by applying the new input

5 sequence 01, character at a time, in reverse order, to
the present state entries of the state-machine under
consideration. Since the column entries for the input
sequence 1 already exist (the column headed by 1 in
Exemplar 16), the desired new column is obtained by

10 applying the input character 0 to the existing 1 column
as if the entries in the existing 1 column were present
state entries. The top entry in the existing 1 column is
"a", applying the input state 0 to the present state "a"
(entry under input state 0 for the present state "a" in

15 Table 4) yields internal state "b" as the top entry of
the new column. The second entry in the existing 1
column is "-". Hence, the next state entry of the
present state "-" entry is also specified as a "-". This

new column is exhibited in Exemplar 24.

20
Exemplar 24
Column Created at Step 130
25

1 U‘IS

30 Finally, at step 130, the two active column headers of
the output mapping tables of Exemplar 15 (0, and 0,) which
were derived from the input sequence chosen at step 124
(0) are marked untried.

35 At step 132, one of the untried active column -
headers (0, or 0,) of Exemplar 15 derived from the input
seduence selected at step 124 (the 0 sequence) is
selected and marked as tried. We choose the column
header 0,. Also, we note the state-machine output

40 function which distinguishes this sequence - the first

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

62

state-machine output function.

At step 134, a new output mapping column is
created by applying the state-machine output function
noted at step 132 (the first state-machine output
function) to the column of internal states created at
step 130 (that column exhibited in Exemplar 24, yielding
Exemplar 25.

Exemplar 25

Qutput Mapping Column Created at Step 134

01,
1

Note that the column header of the output mapping column
of Exemplar 25 is the input sequence created at step 128
distinguished by the state-machine output function
selected at step 132, that input sequence and state-
machine output function used to create the output mapping
column of Exemplar 25.

At step 136, the output mapping column of
Exemplar 25 is compared with all output mapping columns
of all previously generated output mapping tables, that
is, with all output mapping columns of Exemplar 15, for
equal effect. Since the column of Exemplar 25 is
identical to the column headed by /\, (the initial column
of the second output mapping table of Exemplar 15), then
the column header /\, is designated the antecedent
sequence of the column header selected at step 132 (0,)
and /\, is entered in the antecedent table in that column
having as a column header 0, in the row associated with
the input character selected at step 126 (input character
1), the bottom row. The new antecedent table is
exhibited in Exemplar 26. Control returns to step 132.

WO 93/25975 PCT/US93/05222

63

Exemplar 26

Antecedent Table Created at Step 136

5
/\s /\: 0, 0, 1,
0 0, 0, VAVERVAW
101, /\. /\;
10 At step 132, the remaining untried active

column header (0,) derived from the input sequence
selected at step 124 (the 0 sequence) is selected and
marked as tried. Also, we note the state-machine output
function which distinguishes this sequence, the second

15 state-machine output function.

At step 134, a new output mapping column is
created by applying the state-machine output function
noted at step 132 (second state-machine output function)

20 to the column of internal states created at step 130
(that column exhibited in Exemplar 24) yielding Exemplar
27. Note that the column header of Exemplar 27 is the
input sequence created at step 128 distinguished by the
state-machine output function selected at step 132, the

25 input sequence and state-machine output function used to
create the output mapping column of Exemplar 27.

Exemplar 27

30
Output Mapping Column Created at Step 134
01,
35

At step 136, the output mapping column
40 exhibited in Exemplar 27 is compared with all previously
generated output mapping columns of all output mapping
tables, that is, with all output mapping columns of
Exemplar 15 for equal effect. Since the output mapping

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

64

column of Exemplar 27 is not identical to any previously
generated output mapping column of Exemplar 15, the
column header of the output mapping column (01,) is
declared active and it is entered as a column header for
a new column of the antecedent table. Furthermore, the
column header of Exemplar 27 (01,) is designated the
antecedent sequence of the column header of the output
mapping column selected at step 132 (0,) under the input
character 1, that input character selected at step 126.
Hence, the input sequence 01, is entered as an element of
the antecedent table in that column having as a column
header 0,, in the row associated with the input character
1, the bottom row. The new antecedent table is exhibited

in Exemplar 28.

Exemplar 28

Antecedent Table Created at Step 136

/\v /\; 0, 0,
0 0, 0, /\i /\;
11, /\, /\, 01,

1, 01,

Since the column header of the output mapping column in
Exemplar 27 is declared active, then the output mapping
column of Exemplar 27 is entered as a new column of the
second output mapping table, that output mapping table
associated with the output mapping function noted at step
132. The new output mapping tables are exhibited in
Exemplar 29.

Exemplar 29

OQutput Mapping Tables Created at Step 136

WO 93/25975 PCT/US93/05222

5 Since the column header of the output mapping column of
Exemplar 27 is declared active, then the new input
sequence determined at step 128 (01) is declared active
and its associated column, that column exhibited in
Exemplar 24, is entered as a new column of the

10 Compilation Table. The new Compilation Table is
exhibited in Exemplar 30. Control proceeds at step 132.

Exemplar 30

15 Compilation Table Created at Step 136
/\ 0 1 01
a b a b

20 b a - -

At step 132, since no remaining untried active
column headers derived from the input sequence 0 (that
input sequence selected at step 124) exist in the output

25 mapping tables, control returns to step 126.

At step 126, since no untried input character
from the input alphabet remains (both input characters 0
and 1 are marked as tried), control returns to step 124.
30
At step 124, two untried active input strings
exist in the Compilation Table, Exemplar 30, 1 and 01.
We choose the leftmost active input string, 1, and mark
it as tried. Also, every character of the state-machine
35 input alphabet is marked untried.

‘ At step 126, the character 0 is selected from
the state-machine input alphabet and marked as tried.

40 ' At step 128, the new input sequence 10 (the 0

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

66

input character selected at step 126 appended to the old
active input sequence 1 selected at step 124) is created. .

This new input sequence is marked untried.

At step 130, a new column is created for
possible entry into the Compilation Table. This new
column is headed by the new input sequence 10, and it is
created by applying this new input sequence created at
step 128, one character at a time, in character reverse
order, to the present state entries of the state table
under consideration, Table 4, resulting in Exemplar 31.
Finally, at step 130, the single active column header of
the output mapping tables of Exemplar 29 (1,) derived from
the input sequence selected at step 124 (1) is marked

untried.

Exemplar 31

Column Created at Step 130

10

a

At step 132, an untried active output column
header of Exemplar 29 which is derived from the input
sequence selected at step 124 (the 1 input sequence) is
selected and marked as tried. Only one such untried
active column header exists in Exemplar 29, 1,. We choose
1, and mark it as tried. Also, wé—hote the state-machine
output function which distinguishes the selected output
mapping column header, the first state-machine output

function.

At step 134, a new output mapping column is
created by applying the state-machine output function

WO 93/25975

10

15

20

25

30

35

40

67

noted at step 132 (the first state-machine output
function) to the column of internal state entries created
at step 130 (Exemplar 31) as if each entry in Exemplar 31
were a present state entry of the state-machine,
resulting in Exemplar 32.

Exemplar 32

Output Mapping Column Created at Step 134

10,

Note that the column header of the output mapping column
of Exemplar 32 is the input sequence determined at step
28 distinguished by the state-machine output function
noted at step 132, that input sequence and state-machine
output function used to create the new output mapping
column.

At step 136, the output mapping column of
Exemplar 32 is compared with all output mapping columns
of all previously generated output mapping tables, that
is, with all output mapping columns of Exemplar 29, for
equal effect. Since the output mapping column of
Exemplar 32 is not identical to any previously generated
output mapping column, the column header of the output
mapping column of Exemplar 32 (10,) is entered as a new
column header of the antecedent table. Furthermore, this
column header (10,) is designated the antecedent sequence
of the column header of the output mapping column
selected as step 132 (1,), under the input character
selected at step 126 (0). Hence, the column header 10, is
entered as an element of the antecedent table in that
column having as a column header 1, in that row associated
with the input character 0, the top row. The new
antecedent table is exhibited in Exemplar 33.

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

68
Exemplar 33

Antecedent Table Created at Step 136

/\1 /\2 0, 0, 1, 1, 10,
0 0, 0, /Ny /\; 10,
1 1, /\. /\, 01,

Since the column header of the output mapping column of
Exemplar 32 is declared active, then the output mapping
column of Exemplar 32 is entered as a new column cof the
first output mapping table, that output mapping table
associated with the output function noted at step 132,
the first output function. The new output mapping tables

are exhibited in Exemplar 34.

Exemplar 34

OQutput Mapping Tables Created at Step 136

/\; 0, 1, 10,

Since the column header of the output mapping column of
Exemplar 32 is declared active, then the new input
sequence determined at step 128 (10) is declared active
and its associated column, that column exhibited in
Exemplar 31, is entered as a new column of the
Compilation Table. The new Compilation Table is
exhibited in Exemplar 35. Control then proceeds at step
132.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

69
Exemplar 35

Compilation Table Created at Step 136

At step 132, since no remaining untried active
column headers derived from the input sequence 1 (that
input sequence selected at step 124) exist, control
returns to step 126.

At step 126, the remaining untried input
character, "1", is selected from the state-machine input
alphabet and marked as tried.

At step 128, the new input sequence 11 is
created, (the input character "1" selected at step 126
appended to the old active input sequence "1" selected at
step 124).

At step 130, a new column is created for
possible entry into the Compilation Table. This new
column is headed by the new input sequence 11, and it is
created by applying this new input sequence created at
step 128, one character at a time, in character reverse
order, to the present state entries of the state table
under consideration, Table 4, resulting in Exemplar 36.

Exemplar 36

Column Created at Step 130

11
a

Finally, at step 130, all active column headers of output
mapping columns of Exemplar 34 (1,) derived from the input

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

70

sequence selected at step 124 (1) are marked untried.

At step 132, an untried active output column
header of Exemplar 34 which is derived from the input
sequence selected at step 124 (the 1 input sequence) is
selected and marked as tried. Only one such untried
active column header exists in Exemplar 34, 1,. We choose
1, and mark it as tried. Also, we note the state-machine
output function which distinguishes the selected output

mapping column header, the first state-machine output

function.

At step 134, a new output mapping column is
created by applying the state-machine output function
noted at step 132 (the first state-machine output
function) to the column of internal state entries created
at step 130 (Exemplar 36) as if each entry in Exemplar 36
were a present state entry of the state-machine,
resulting in Exemplar 37.

Exemplar 37

Output Mapping Column Created at Step 134

11,

0

Note that the column header of the output mapping column
of Exemplar 37 is the input sequence determined at step
128 distinguished by the state-machine output function
noted at step 132, that input sequence and state-machine
output function used to create the new output mapping

column.

At step 136, the output mapping column of
Exemplar 37 is compared with all output mapping columns

of all previously generated output mapping tables, that

WO 93/25975 PCT/US93/05222

71

is, with all output mapping columns of Exemplar 34, for
equal effect. It is noted that the output mapping column
of Exemplar 37 is identical to that output mapping column
of the first output mapping table of Exemplar 34 having

5 as its column header the input sequence 1,. Hence, the
column header 1, is designated the antecedent sequence of
the column header of the output mapping column selected
at step 132, 1,, under the state-machine input character
selected at step 126, the input character 1 (that is, 1,

10 is its own antecedent sequence under the state-machine
input character 1) and this input sequence, 1,, is entered
in the antecedent table in that column having as a column
header 1,, in the row associated with the input character
1, the bottom row. The new antecedent table is exhibited

15 in Exemplar 38. Control returns to step 132.

Exemplar 38

Antecedent Table Created At Step 136

20
/\. /\, 0O, 0, 1, 01, 10,
0 0, 0, /\, /\; 10,
25 1 1, /\, /\, 01, 1,

At step 132, since no remaining untried active
column headers associated with the input sequence 1, that
input sequence selected at step 124, exist in the output

30 mapping tables, Exemplar 34, control returns to step 126.

At step 126, since no untried input character
from the state-machine input alphabet remains, control
returns to step 124. o

35

At step 124, an active sequence is selected
from the compilation table, Exemplar 35, and marked as
tried. The two untried active input sequences of
Exemplar 35 are 01 and 10. We choose the first such

40 sequencé, 01, and designate it the old active input

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

72

sequence. Also, every character of the state-machine

input alphabet is marked untried.

At step 126, the character 0 is selected from

the state-machine input alphabet and marked as tried.

At step 128, the new input sequence 010 (the 0
input character selected at step 126 appended to the old
active input sequence 01 selected at step 124) is

created. This new input sequence is marked untried.

At step 130, a new column is created for
possible entry into the Compilation Table. This new
column is headed by the new active input sequence, 010,
and it is determined by applying the new input sequence
010, character at a time, in character reverse order, to
the present state entries of the state-table under
consideration (Table 4), resulting in Exemplar 39.

Exemplar 39

Column Created At Step 130

010

Finally, at step 130, all active column headers of output
mapping columns of the output mapping tables, Exemplar
34, which are derived from the input sequence selected at
step 124 (01), are marked untried. Only one such
outpost mapping column header exists, 01,.

At step 132, an untried active output column
header of Exemplar 34 which is derived from the input
sequence selected at step 124 (the 01 input sequence) is
selected and marked as tried. Only one such untried
active column header exists in Exemplar 34, 01,. We
choose 01, and mark it as tried. Also, we note the

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

73

state-machine output function which distinguishes the
selected output mapping column header, the second
state-machine output function.

At step 134, a new output mapping column is
created by applying the state-machine output function
noted at step 132 (the second state-machine output
function) to the column of internal state entries created
at step 130 (Exemplar 39) as if each entry in Exemplar 39
were a present state entry of the state-machine,

resulting in Exemplar 40.

Exemplar 40

Qutput Mapping Column Created At Step 134

010,

Note that the column header of the output mapping column
of Exemplar 40 is the input sequence determined at step
28 distinguished by the state-machine output function
noted at step 132, that input sequence and state-machine
output function used to create the new output mapping
column.

At step 136, the output mapping column of

Exemplar 40 is compared with all output mapping columns
of all previously generated output mapping tables, that
is, with all output mapping columns of Exemplar 34, for
equal effect. It is noted that the‘ouﬁput mapping column
of Exemplar 40 is identical to that output mapping column
of the second output mapping table of Exemplar 34 having
as its column header the input sequence 0l1,. Hence, the
column header 01, is designated the antecedent sequence of
the column header of the output mapping column selected
at step‘132, 01,, under the state-machine input character

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

74

selected at step 126, the input character 0 (that is, 01,
is its own antecedent sequence under the state-machine
input character 0) and this input sequence, 01,, is
entered in the antecedent table in that column having as
a column header 01,, in the row associated with the input
character 0, the top row. The new antecedent table is
exhibited in Exemplar 41. Control returns to step 132.

Exemplar 41

Antecedent Table Created At Step 136
/\v /\, 0, 0, 1, 01, 10,

0 0, 0, /\, /\, 10, 01,
1 11 /\2 /\2 012 11

At step 132, since no remaining untried active
column headers associated with the input sequence 01,
that input sequence selected at step 124, exist in the
output mapping tables, Exemplar 34, control returns to
step 126.

At step 126, the untried input character "1" is
selected from the state-machine input alphabet {0,1} and

marked as tried.

At step 128, the new active input string 011 is
created (the input character 1 selected at step 126
appended to the input string 01 created at step 124).
This new input string is marked untried.

At step 130, a new column is created for
possible entry into the Compilation Table. This new
column is headed by the new input sequence, 011, and it
is determined by applying this new input sequence 011,
character at a time, in character reverse order, to the
present state entries of the state-table under
consideration (Table 4), resulting in Exemplar 42.

WO 93/25975 PCT/US93/05222

75

Exemplar 42

Column Created At Step 130

011
b

10
Finally, at step 130, all active column headers of output
mapping columns of the output mapping tables, Exemplar
34, which are derived from the input sequence selected at
step 124 (01), are marked untried. Only one such column
15 header exists, 01,.

At step 132, an untried active output column
header of Exemplar 34 which is derived from the input
sequence selected at step 124 (the 01 input sequence) is

20 selected and marked as tried. Only one such untried
active output column header exists in Exemplar 34, 01,.
We choose 01, and mark it as tried. Also, we note the
state-machine output function which distinguishes the
selected output mapping column header, the second

25 state-machine output function.

At step 134, a new output mapping column is
created by applying the state-machine output function
noted at step 132 (the second state-machine output

30 function) to the column of internal state entries created
at step 130 (Exemplar 42) as if each entry in Exemplar 42
were a present state entry of the state-machine,
resulting in Exemplar 43.

35

40

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

- 40

76

Exemplar 43

Output Mapping Column Created At Step 134

011,

Note that the column header of the output mapping column
of Exemplar 43 is the input sequence determined at step
128 distinguished by the state-machine output function
noted at step 132, that input sequence and state-machine
output function used to create the new output mapping
column.

At step 136, the output mapping column of
Exemplar 43 is compared with all output mapping columns
of all previously generated output mapping tables, that
is, with all output mapping columns of Exemplar 34, for
equal effect. It is noted that the output mapping column
of Exemplar 43 is identical to that output mapping column
of the second output mapping table of Exemplar 34 having
as its column header the input sequence 01,. Hence, the
column header 01, is designated the antecedent sequence of
the column header of the output mapping column selected
at step 132, 01,, under the state-machine input character
selected at step 126, the input character 1 (that is, 01,
is its own antecedent sequence under the state-machine
input character 1) and this input sequence, 01,, is
entered in the antecedent table in that column having as
a column header 01,, in the row associated with the input
character 1, the bottom row. The new antecedent table is
exhibited in Exemplar 44. Control returns to step 132.

WO 93/25975 PCT/US93/05222

77
Exemplar 44

Antecedent Table Created At Step 136

5 /\. /\, 0, 0, 1, 01, 10,

0 0, 0, /\; /\, 10, o031,
1 L, /\, /\, 01, 1, 01,

10 At step 132, since no remaining untried active
column headers derived from the input sequence 01, that
input sequence selected at step 124, exist in the output
mapping tables, Exemplar 34, control returns to step 126.

15 At step 126, since no untried input character
from the state-machine input alphabet remains, control
returns to step 124.

At step 124, an untried active input sequence
20 is selected from the Compilation Table, Exemplar 35, and
marked as tried. The only untried active column header
remaining in Exemplar 35 is the 10 input sequence. The
10 input sequence is therefore selected and marked as
tried. Also, every character of the state-machine input
25 alphabet is marked untried.

At step 126, the character 0 is selected from
the state-machine input alphabet and marked as tried.

30 At step 128, the new input sequence 100 (the 0
input character selected at step 126 appended to the old
active input sequence 10 selected at step 124) is
created. This new input sequence is marked untried.

35 At step 130, a new column is created for
possible entry into the Compilation Table. This new
coiumn is headed by the new active input sequence, 100,
and it is determined by applying the new input sequence
100, character at a time, in character reverse order, to

40 the present state entries of the state-table under

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

78

consideration (Table 4), resulting in Exemplar 45.

Exemplar 45

Column Created At Step 130

100
a

Finally, at step 130, all active column headers of output
mapping columns of the output mapping tables, Exemplar

34, which are derived from the input sequence selected at
step 124 (10,), are marked untried. Only one such active
output mapping column header exists, 10.

At step 132, an untried active output column
header of Exemplar 34 which is derived from the input
sequence selected at step 124 (the 10 input sequence) is
selected and marked as tried. Only one such untried
active column header exists in Exemplar 34, 10,. We
choose 10, and mark it as tried. Also, we note the
state-machine output function which distinguishes the
selected output mapping column header, the first
state-machine output function.

At step 134, a new output mapping column is
created by applying the state-machine output function
noted at step 132 (the first state-machine output
function) to the column of internal state entries created
at step 130 (Exemplar 45) as if each entry in Exemplar 45
were a present state entry of the state-machine,
resulting in Exemplar 46.

WO 93/25975 , PCT/US93/05222

79

Exemplar 46

Output Mapping Column Created At Step 134

100,

10
Note that the column header of the output mapping column
of Exemplar 46 is the input sequence determined at step
128 distinguished by the state-machine output function
noted at step 132, that input sequence and state-machine
15 output function used to create the new output mapping
column.

At step 136, the output mapping column of

Exemplar 45 is compared with all output mapping columns

20 of all previously generated output mapping tables, that
is, with all output mapping columns of Exemplar 34, for
equal effect. It is noted that the output mapping column
of Exemplar 46 is identical to that output mapping column
of the first output mapping table of Exemplar 34 having

25 as its column header the input sequence 1,. Hence, the
column header 1, is designated the antecedent sequence of
the column header of the output mapping column selected
at step 132, 10,, under the state-machine input character
selected at step 126, the input character 0, and this

30 input sequence, 1,, is entered in the antecedent table in
that column having as a column header 10,, in the row
associated with the input character 0, the top row. The
new antecedent table is exhibited in Exemplar 47.
Control returns to step 132.

35

40

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

80
Exemplar 47

Antecedent Table Created At Step 136

/\.+ /\; 0, 0, 1, 01, 10,

0 0, ©0, /\, /\, 10, 01, 1,
11, /\, /\, 01, 1, o1,

At step 132, since no remaining untried active
column headers associated with the input sequence 10,
that input sequence selected at step 124, exist in the
output mapping tables, Exemplar 34, control returns to
step 126.

At step 126, the untried character "1" is
selected from the state-machine input alphabet {0,1} and

marked as tried.

At step 128, the new active input sequence 101
is created (the input character 1 selected at step 126
appended to the input sequence 10 selected at step 124).

This new active input sequence is marked untried.

At step 130, a new column is created for
possible entry into the Compilation Table. This new
column is headed by the new active input sequence, 101,
and it is determined by applying the new input sequence
101, character at a time, in character reverse order, to
the present state entries of the state-table under
consideration (Table 4), resulting in Exemplar 48.

Exemplar 48

Column Created At Step 130

101

WO 93/25975 PCT/US93/05222

81

Finally, at step 130, all active column headers of output
mapping columns of the output mapping tables, Exemplar

34, which are derived from the input sequence selected at
step 124 (10), are marked untried. Only one such active

5 output mapping column header exists, 10,.

At step 132, an untried active output column
header of Exemplar 34, which is derived from the input
sequence selected at step 124 (the 10 input sequence) is

10 selected and marked as tried. Only one such untried
active column header exists in Exemplar 34, 10,. We
choose 10, and mark it as tried. Also, we note the
state-machine output function which distinguishes the
selected output mapping column header, the first

15 state-machine output function.

At step 134, a new output mapping column is
created by applying the state-machine output function
noted at step 132 (the first state-machine output

20 function) to the column of internal state entries created
at step 130 (Exemplar 48) as if each entry in Exemplar 48
were a present state entry of the state-machine,
resulting in Exemplar 49. It is noted that, since each
entry of the column of internal states exhibited in

25 Exemplar 48 is a "-", then each entry in that column
which results in an output assignment applied to the
column of internal states exhibited in Exemplar 48 is

trivially a "-".

30 Exemplar 49

Output Mapping Column Created At Step 134

35 101,

40 Note that the column header of the output mapping column

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

82

of Exemplar 49 is the input sequence determined at step
128 distinguished by the state-machine output function
noted at step 132, that input sequence and state-machine
output function used to create the new output mapping

column.

At step 136, the output mapping column of
Exemplar 49 is compared with all output mapping columns
of all previously generated output mapping tables, that
is, with all output mapping columns of Exemplar 34, for
equal effect. It is noted that the output mapping column
of Exemplar 49 is identical to that output mapping column
of the second output mapping table of Exemplar 34 having
as its column header the input sequence 01,. Hence, the
column header 01, is designated the antecedent sequence of
the column header of the output mapping column selected
at step 132, 10,, under the state-machine input character
selected at step 126, the input character 1, and this
input sequence, 01,, is entered in the antecedent table in
that column having as a column header 10,, in the row
associated with the input character 1, the bottom row.
The new antecedent table is exhibited in Exemplar 50.
Control returns to step 132. '

Exemplar 50

Antecedent Table Created At Step 136

/\1 /\2 01 02 11 012 l01

0 o, o0, /\, /\, 10, 01, 1

1
1 1L, /\; /\; 01, 1, 01, 01,

At step 132, since no remaining untried active
column headers derived from the input sequence 10, that
input sequence selected at step 124, exist in the output
mapping tables, Exemplar 34, control returns to step 126.

At step 126, since no untried input character

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

83

from the state-machine input alphabet remains, control
returns to step 124.

At step 124, since no untried active input
sequences remain as column headers of the Compilation
Table, Exemplar 35, control proceeds at step 138.

At step 138, an initial pair chart is
constructed, exhibited in Figure 5. As indicated, the
number of columns of the pair chart is 7, the number of
unique column headers of the antecedent table, Exemplar
50. Each such column header of Exemplar 50 resides on a
diagonal entry, representing both a row and a column of
the pair chart. There is a location in the pair chart
allowing an entry indicating compatibility or
incompatibility for every pair of unique column headers
of Exemplar 50, one such column header heading the column
of that entry in the pair chart and the other such column
header labelling the row of that entry in the pair chart.

At step 140, each pair of unique column headers
of the pair chart of Figure 5, corresponding to each pair
of unique column headers of the Antecedent Table of
Exemplar 50, is compared for compatibility. We begin
with the leftmost two column headers in Figure 5, /\,, and
0,, and compare their two associated columns in the output
mapping tables, Exemplar 34. The top entry in the /\,
column contains a 0, whereas the top entry in the 0,
column contains a 1;'hence, the two input sequences, /\,,
and 0,, are incompatible and an X is entered as the
topmost entry in the leftmost column of the pair chart,

exhibited in Figure 6.

Equivalently, we observe the leftmost column
header and the column header third from the left (/\, and
1,) in the initial pair chart, Figure 5, and compare their

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

84

two associated columns in Exemplar 34. The top entries

of both columns contain 0 whereas the second entry of the .
/\, column contains a 1 and the second entry of the 1,
column contains a "-". In no instance is there a row of
Exemplar 34 in which the /\; column is specified as either
a 1l or 0 and that same row of the 1, column is specified

as the complementary value; hence, the two input

sequences, /\,; and 1,, are compatible and the second entry
of the leftmost column of the pair chart (column headed

by /\, and row labelled with 1,) is left blank.

The remaining elements of the pair chart are
completed accordingly. ©Note that, in the pair chart,
there exists a location corresponding to every pair of
unique column headers of the antecedent table, Exemplar
50, one such column header heading a column of the pair
chart and the other such column header labelling a row of
the pair chart. The pair chart, with the outputs of step
140 entered, is exhibited in Figure 6.

At step 142, for each compatible pair of input
sequences exhibited in Figure 6, and for each input
character of the state-machine, an antecedent pair of
input sequences is determined. Beginning with the
topmost compatible pair in the leftmost column of the
pair chart, /\, and 1,, the antecedent pair of this
compatible pair under input state 0 is 0, and 10,. (The
entry in the column of the antecedent table of Exemplar
50, having the column header /\,, in that row
corresponding to the 0 state-machine input character, the
top row, is 0,. Equivalently, the entry in the column of
the antecedent table of Exemplar 50, having the column
header 1, in that row corresponding to the 0 input
character, the top row, is 10,). Now, observing the
antecedent pair for the same compatible pair, /\, and 1,,
under the 1 input state, we obtain 1, and 1, (the entry in
the Antecedent Table of Exemplar 50, having the column

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

85

header /\,, in that row corresponding to the 1 state-
machine input character is 1,. And, the entry in the
Antecedent Table of Exemplar 50, having the column header
1,, in that row corresponding to the 1 state-machine input

character, is 1,).

We now proceed to step 144 to derive pair
implications for the compatible pair under consideration:
/\, and 1,. We note that 2 antecedent pairs of input
sequences have been generated for this compatible pair,
one antecedent pair for each input state (or,
equivalently, input character) of the sequential machine
under consideration. However, the antecedent pair under
input state 1 contains the input string 1, twice;
therefore, in accordance with the instructions
accompanying step 144, the pair implication under input
state 1 becomes the single entry 1,. We note, however,
that the single entry 1, is a subset of the compatible
pair under consideration (/\,, 1,) and, therefore, in
accordance with the instructions accompanying step 144,
the antecedent pair under input state 1 becomes the null
set (¢). The 2 pair implications ((0,, 10,) and $) for
the designated compatible pair are entered in the
appropriate location of the pair chart. This entry is
exhibited in Figure 7.

We now proceed to the next entry indicating
compatibility in the leftmost column of the pair chart,
Figure 6. Compatibility is indicated for the input
sequences /\, and 0,. At step 142, as before, we
determine two antecedent pairs for the compatible pair
under consideration, one antecedent pair for each state-
machine input state. For input state 0, the antecedent
pair is 0, and /\, (as before, the entry in the antecedent
table of Exemplar 50, having the column header /\:, in
that row corresponding to the 0 state-machine input
character, the top row, is 0,. And, the entry in the

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

86

Antecedent Table of Exemplar 50, having the column header
0,, in that row corresponding to the 0 state-machine input
character, the top row, is /\,). For input state 1, the
antecedent pair is, by observing the appropriate entries
in the Antecedent Table of Exemplar 50, as before, 1, and
01,.

As before, we proceed to step 144 to derive
pair implications for the compatible pair under
consideration: /\, and 0,. The antecedent pair under the
0 input state, 0, and /\,, becomes a pair implication.
However, under the 1 input state, the input sequence 01,,
a member of the (1,, 01,) antecedent pair, has an
associated column in the its Output Mapping Table
containing strictly "-" entries (refer to Exemplar 34);
hence, in accordance with instructions accompanying step
144, the pair implication for the 1 state-machine input
state becomes the single entry 1,. The 2 pair
implications ((0,, /\,) and 1,) for the designated
compatible pair are entered in the appropriate location
of the pair chart, Figure 7.

Proceeding through steps 142 and 144 for each
compatible pair designated in the pair chart of Figure 6,
entering the derived pair implications into the
appropriate locations of the pair chart, we obtain the
completed pair chart, exhibited in Figure 7.

At step 146, the set of maximal compatible sets
is derived from the completed pair chart, Figure 7. The
procedure of deriving maximal compatible sets is

exhibited in Figure 2 and the accompanying narrative.

‘ At step 222, the two rightmost column headers
are chosen from the completed pair chart, Figure 7, and
marked as tried: 0, and 01,.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

87

At step 224, the two chosen input sequences
(column headers of the completed pair chart) are
determined to be compatible (there is no X in the
corresponding location of the completed pair chart -

bottom row, right hand entry).

At step 226, one trial maximal compatible set
is created, consisting of both of the selected column
headers. It is exhibited in Exemplar 51.

Exemplar 51

Initial Trial Maximal Compatible Set

(0,, 01,)
At step 230, there are 5 untried input
sequences remaining (column headers of the completed pair

chart): /\,, 0,, 1,, 10,, and /\,.

At step 234, the rightmost untried input
sequence is selected and marked as tried: /\,.

At step 236, a new trial maximal compatible set
is created by determining those input sequences in the
existing trial maximal compatible set which are
compatible with the most recently selected column header:
/\,. This determination of compatibility is readily made
by observing the /\, column of the completed pair chart,
Figure 7, and noting that input sequence /\, is compatible
with 0, and 01, (there is no X in the /\, column of the
completed pair chart). Hence, the new trial maximal
compatible set is (/\,, 0,, 01,).

At step 238, the new trial maximal compatible
set‘created at step 236 is combined with the existing
trial maximal compatible set to yield a new set of trial
maximal compatible sets, exhibited in Exemplar 52.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

88
Exemplar 52

Trial Maximal Compatibles Sets
Created at Step 238

(/\21 021 012)r (02/ 012)

At step 240, any trial maximal compatible set
which is a proper subset of another trial maximal
compatible set is deleted from the set of trial maximal
compatible sets. Hence, after step 240, the single trial
maximal compatible set remaining is exhibited in Exemplar
53.

Exemplar 53

Trial Maximal Compatible Set
Created at Step 240

(/\:» 0, 01,)

Control now returns to step 230, where 4
untried column headers remain in the completed pair
chart, Figure 7: /\,, 0,, 1,, and 10,.

At step 234, the rightmost untried input
sequences is selected and marked as tried: 10,.

At step 236, a new trial maximal compatible set
is created. The new trial maximal compatible set is
created, as before, by combining the most recently
selected column header (10,) with those input sequences of
the existing trial maximal compatible set which are
compatible with it. We note, in Figure 7, that the input
sequence 10, is compatible with the input sequence /\, and
01,, but not with the input sequence 0,. Hence, the new
trial maximal compatible is composed of 10, and the two

input sequences with which it is compatible, as indicated

WO 93/25975

10

15

20

25

30

35

40

89

in Exemplar 54.

Exemplar 54

New Trial Maximal Compatible Sets

Created at Step 236

(101/ /\21 012)

At step 238, the new trial maximal compatible
set exhibited in Exemplar 54 is combined with the
existing trial maximal compatible set exhibited in

Exemplar 53, yielding Exemplar 55.

Exemplar 55

Trial Maximal Compatible Sets

Created at Step 238

(10,, /\,, 01,), (/\,, 0,, 01,)

At step 240, all proper subsets are deleted to
form the set of trial maximal compatible sets. No proper
subsets exist in Exemplar 55; hence, the set of trial
maximal compatible sets at step 240 remains as exhibited
in Exemplar 55. Control then returns to step 230.

At step 230, three untried column headers

remain in the completed pair chart: /\,, 0,, and 1,.

At step 234, the rightmost untried column
header is selected and marked as tried: 1,.

At step 236, two new trial maximal compatible
sets are created, as before, one for each existing trial
maximal compatible set of Exemplar 55. Observing the 1,
column of the completed pair chart, Figure 7, we note
that the most recently selected column header, 1,, is not

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

i5

20

25

30

35

40

90

compatible with the input sequence /\,, but 1, is
compatible with all remaining input sequences composing
the two existing trial maximal compatible sets. Each new
trial maximal compatible set created at step 236 consists
of the input sequence 1, combined with those input
sequences of an existing trial maximal compatible set
with which 1, is compatible. These two trial maximal

compatible sets are exhibited in Exemplar 56.

Exemplar 56

New Trial Maximal Compatible Sets

Created at Step 236

(111 1011 012)1 (111 021 012)

At step 238, the new trial maximal compatible
sets exhibited in Exemplar 56 are combined with the
existing trial maximal compatible sets exhibited in

Exemplar 55, yielding Exemplar 57.

Exemplar 57

Trial Maximal Compatible Sets
Created at Step 238

(111 101; 012) ' (111 021 012)
(10,, /\,, 01,), (/\,, 0,, 01,)

At step 240, any trial maximal compatible set
in Exemplar 57 which is a proper subset of another trial
maximal compatible set is deleted from consideration.
Since no proper subsets exist, the set of trial maximal
compatible set remains as exhibited in Exemplar 57,
without alteration, and control returns to step 230.

At step 230, two untried column headers remain:
/\, and 0,.

WO 93/25975 PCT/US93/05222

91

At step 234, the rightmost untried column
header is selected and marked as tried: O,.

At step 236, four new trial maximal compatible
5 sets are created. Each new trial maximal compatible set
is created, as before, by combining the most recently
selected column header, 0,, with those input sequences of
an existing trial maximal compatible set which are
compatible with it. These four new trial maximal

10 compatible sets are exhibited in Exemplar 58.

Exemplar 58

New Trial Maximal Compatible Setss

15
Created at Step 236
(0,, 10,, 01,), (0,, 01,)
20 (011 1011 /\21 012)1 (011 /\21 012)

At step 238, the set of new trial maximal
compatible sets, exhibited in Exemplar 58, is combined
with the set of existing trial maximal compatible sets

25 exhibited in Exemplar 57, yielding Exemplar 59.

Exemplar 59

Trial Maximal Compatible Sets

30
Created at Step 238
(0,, 10,, 01,), (0,, 01,)
35 (011 1011 /\2! 0 2): (011 /\2/ Ol:)

1
(1,, 10,, 01,), (1,, 0,, 01,)
(10,, /\,, 01,), (/\,o. 0,, 01,)

At step 240, all proper subsets are deleted
40 from Exemplar 59. We note that the following trial
maximal compatible sets are proper subsets of other trial
maximal compatible sets in Exemplar 59: (0,, 10,, 01,),
(0,, 01,), (0,, /\,, 01,) and (10,, /\,, 01,). The

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

92

remaining trial maximal compatible sets in Exemplar 59
are retained and exhibited in Exemplar 60. Control then

returns to step 230.

Exemplar 60

Trial Maximal Compatible sets

Created at Step 240

(0,, 10,, /\,, 01,), (1,, 10,, 01,)
(11, 02, 012)/ (/\21 021 012)

At step 230, one remaining untried column

header exists: /\,.

At step 234, the /\, input sequences is selected
and marked as tried.

At step 236, four new trial maximal compatible
sets are created. Each new trial maximal compatible set
is created, as before, by combining the most recently
selected column header, /\,, with those input sequences
of an existing trial maximal compatible set which are
compatibleAwith it. These four new trial maximal
compatible sets are exhibited in Exemplar 61.

Exemplar 61

New Trial Maximal Compatible Sets

Created at Step 236

(/\11 Olz): (/\11 111 012)
(/\1' 111 021 012): (/\11 OZI 012)

At step 238, the set of new trial maximal
compatible sets exhibited in Exemplar 61 is combined with
the set of existing trial maximal compatible sets '
exhibited in Exemplar 60, yielding Exemplar 62.

WO 93/25975 PCT/US93/05222

93
Exemplar 62

Trial Maximal Compatible Sets

5 Created at Step 238

(/\;, 01,), (/\;, 1,, 01,)
(/\y, 1,, 0,, 01,), (/\,, 0,, 01,)
10 (0,, 10,, /\,, 01,), (1,, 10,, 01,)
(1,, 0, 01,), (/\,, 0,, 01,)

At step 240, all proper subsets are deleted

from the set of trial maximal compatible sets exhibited
15 in Exemplar 62. We note, in Exemplar 62, that the

following trial maximal compatible sets are proper

subsets of others: (/\,, 01,), (/\,, 1,, 01,), (/\,, 0,,

01,), and (1,, 0,, 01,). The remaining trial maximal

compatible sets in Exemplar 62 are retained and exhibited
20 in Exemplar 63. Control then returns to step 230.

Exemplar 63

Maximal Compatible sets

25
(/\1: 111 021 012)1 (/\21 021 012)
(011 1011 /\2! 012)1 (11, 101, 012)
30 At step 230, no untried input sequences remain.

Control transfers to step 232.

At step 232, the trial maximal compatible sets
exhibited in Exemplar 63 become the set of maximal
35 compatible sets for our example. Control then returns to
step 148.

At step 148, all prime compatible sets are
derived. Each proper subset of each maximal compatible
40 set i1s labelled a test compatible set and is considered
along with its two associated implication sets (one
implication set for each input state), for elimination.
As indicated in the instructions accompanying step 148, a

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

94

test compatible set is eliminated if it is contained as a
proper subset of a second test (or maximal) compatible .
set and simultaneously, the two implication sets of the
second test (or maximal) compatible set are contained as
subsets (not necessarily proper subsets) of either one or
both implication sets of the initial test compatible set
under consideration. A test compatible set which is not

eliminated is labelled a prime compatible set.

As indicated in the instructions accompanying
step 148, each implication set consists of all input
sequences which are members of pair implications, for the
given input state-machine, associated with compatible
pairs which comprise the test compatible set. Also, as
indicated in the instructions accompanying step 148, each
maximal compatible set is a trivial subset of itself and
is, therefore, considered as a test compatible set.

Also, it is noted that each maximal compatible set

becomes a prime compatible set.

We begin with the maximal compatible set (/\,,
1,, 0,, 01,) as exhibited in Exemplar 63, label it a test
compatible set, and derive its two implication sets. For
input state 0, we observe the pair implications
associated with the first two elements, /\, and 1,, from
the appropriate entry in the completed pair chart, Figure
7. The pair implication is (0,, 10,). Hence, 0, and 10,
are members of the implication set associated with this
test compatible set and input state 0. We now observe,
for input state 0, the pair implications associated with
the first and third elements of the test compatible set,
/\, and 0,, from the appropriate entry in the pair chart,
Figure 7. This pair implication is (0,, /\,). Hence, /\,
is included as a member of the implication set associated
with this test compatible and input state 0. We
continue, as before, to determine all pair implications

for input state 0 and for all pairs of input strings

WO 93/25975 ’ PCT/US93/05222

10

15

20

25

30

35

95

comprising the test compatible set. The pair implication
associated with /\, and 01, is the single input string 0,,
which has already been included in the implication set.
The pair implication associated with 1, and 0, is (10,,
/\,), both strings having already been included. The pair
implication associated with 1, and 01, is the single
element 10,, which, as before, has already been included.
Finally, the pair implication associated with the pair 0,
and 01, is /\,, which also has already been included. The
implication set associated with this test compatible set

and input state 0 is therefore (0,, 10,, /\,).

Note that, for the maximal compatible set (/\,,
1,, 0,, 01,) and input state 1, the singleton entry 1, is
initially determined to be a valid implication set.
However, in accordance with the instructions accompanying
step 148, the input sequence 1, is a member of the maximal
compatible set (/\,, 1,, 0,, 01,) and it is therefore
eliminated and replaced by the null set.

We now consider each proper subset of the
maximal compatible set (/\,, 1,, 0,, 01,), label each such
proper subset a test set, and determine its two
implication sets.

Beginning with its proper subset consisting of
its first three elements (/\;, 1,, 0,), the implication
set associated with this proper subset and input state 0
is (by observing, as before, the completed pair chart -
Figure 7) (0,, 10,, /\,). Equivalently, the implication
set associated with this proper subset and input state 1
is the null set. Note that this test compatible (/\,, 1,,
0,) is eliminated since it is contained as a proper subset
of the prime compatible set (/\,, 1,, 0,, 01,) and,
simultaneously, the implication sets of the prime
(maximal) compatible set (the implication sets (0,, 10,,
/\,) and the null set) are contained as subsets of the

WO 93/25975 PCT/US93/05222

10

15

20

25

30

96

implication sets of the test compatible under

consideration.

We now observe the proper subset of the maximal
compatible set (/\,, 1,, 0,, 01,) consisting of the first,
second, and fourth elements, (/\,, 1,, 01,), and label
this proper subset a test set; the implication set
associated with this proper subset and input state 0 is
(0,, 10,). And the implication set associated with this
proper subset and input state 1 is the null set. Note
that this test set (/\,, 1,, 01,) is not eliminated by the
maximal compatible set (/\,, 1,, 0,, 01,) in Table 5 since
this only maximal compatible which contains this test set
as a subset (the maximal compatible set (/\,, 1,, 0,, 01,))
has for input state 0 an implication set (0,, 10,, /\,)
which is not contained as a subset of the implication set
of the test compatible set under consideration. This
subset test compatible set may possibly be eliminated by
a future test compatible set under consideration, but for

now it is retained.

All proper subsets of maximal compatible sets
are considered, in turn, as test compatible sets; any
test compatible set not eliminated by an existing maximal
compatible set or by another test compatible set is
labelled, along with each existing maximal compatible
set, as a prime compatible set and it is retained for
possible inclusion in the Minimal Cover Tree. The list
of prime compatible sets, along with their associated im-
plication sets, is exhibited in Table 5.

WO 93/25975

10

15

20

25

30

35

40

45

input
input

input
input

input
input

input
input

input
input

input
input

input
input

input
input

97

Table 5

PCT/US93/05222

Prime Compatible Sets

With Tmplication Sets

prime compatible

(/\1 [111 021 012)

state O
state 1

(/\11 111 012)

state 0
state 1

(/\1, 0z, 01,)

state 0
state 1
(111 021 012)

state 0
state 1

(/\y, 01,)

state 0
state 1
(0,, 10,, /\,, 01,)

state 0
state 1

(01: /\2:

state 0
state 1

01,)

(0,, 10,, 01,)

state 0
state 1

(1011 /\2r 012)

implication sets

(01/ 1011 /\2)

(/\1) 0,)
¢

(/\1: 11)
/\z

WO 93/25975 PCT/US93/05222

98

Table 5
(continued)

5 input state 0 (1,, 0,)
input state 1

(011 012)

10 input state 0 /\,
input state 1 /\

(1,, 10,, 01,)

15 input state 0
input state 1

(/\,, 0,, 01,)

20 input state 0
input state 1

At step 154, the Candidate Minimal Cover Trees
25 are constructed, from which a minimal cover path is
derived, in accordance with Exemplar 3 and the
accompanying narrative. The number of nodes of the
Minimal Cover Path yields the minimal size cellular array
for the application under consideration.
30
At step 322 (Exemplar 3), the Covering Table is
constructed. The Covering Table consists of two columns,
each row of the leftmost column containing a unique input
sequence derived at step 136, and each row of the
35 rightmost column containing the number of prime
compatible sets in Table 5 having the input sequence of
that row as an element. The Covering Table is exhibited
as Table 7.

40

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

45

99
Table 6

Covering Table

input string # of prime compatibles
containing input string

/\1 4

0, 4

1, 4

10, 4

/\2 4

0, 4

01, 12

At step 324, the input sequence which is
contained in the fewest number of prime compatible sets
is chosen from the Covering Table. We note that all
input sequences with the exception of 01, are contained in
exactly 4 prime compatible sets, the fewest number in
Table 7. We choose the first input sequence, /\,, to form
the root nodes of the Candidate Minimal Covering Trees.

At step 326, each prime compatible set from
Table 6 which contains the selected input sequence /\, as
an element is listed as a root node of a Candidate
minimal covering tree. These 4 root nodes are exhibited

in Exemplar 35.

Exemplar 64

Root Nodes

(/\1: 11: 02/ 012)

(/\1; 15, 01,)
(/\1s 0z, 01;)
(/\1, 01,)

At step 328, a test path is chosen from the set

of candidate minimal covering trees, Exemplar 35. This

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

100

test path is the path having the fewest number of nodes
of all paths. 1In Exemplar 35, all paths have only 1
node; consequently, any path in Exemplar 64 may be chosen
as the initial test path. We choose the top node (/\;,
1,, 0,, 01,) and label it the test path.

At step 330, the guestion is posed: does the
test path satisfy closure? In this case, is the single
implication set (0,, 10,, /\,) associated with the root
node contained as a subset of at least one node of the
test path. Clearly, the answer is no, since the single
node comprising the test path is the prime compatible set
associated with this implication set. Hence, the
procedure goes to step 332.

At step 332, we determine all prime compatible
sets which contain the uncovered implication set as a
subset. 1In this case, only one prime compatible set from
Table 6 contains the uncovered implication set (0,, 10,,
/\,) . This prime compatible set is (0,, 10,, /\,, 01,).
Hence, at step 332, the test path is extended to the
right by adding a branch and node representing the prime
compatible set which covers the uncovered implication
set. The new set of candidate minimal covering trees,
with the new extended path, is exhibited in Exemplar 36.
Control then returns to step 328.

Exemplar 65

Candidate Minimal Covering Trees

Generated at Step 332

(/\11 11/ 021 012)___(01: 1011 /\21 012)
(/\1: 111 012)
(/\11 02! 012)

(/\y, 01,)

WO 93/25975 PCT/US93/05222

101

At step 328, as before, the path containing the
fewest number of nodes is selected from the set of
candidate minimal covering trees, in this case from the
set of candidate trees in Exemplar 36. There are 3 paths

5 containing only 1 node. Hence, we choose the topmost
path containing only one node (/\,, 1,, 01,), and label it
the test path.

At step 330, the question is posed: does the
10 test path satisfy closure? 1Is the single implication- set
(0,, 10,) associated with the prime compatible set (/\,,
1,, 01,) contained as a subset of at least one node of the
test path? As before, the answer in this case is clearly
no; hence, control transfers to step 332.
15
At step 332, all prime compatible sets from
Table 6 are selected which contain the uncovered
implication set (0,, 10,) as a subset. 1In this case,
there are two such prime compatible sets: (0,, 10,, /\,,
20 01,) and (0,, 10,, 01,). The test path in Exemplar 36 is
then extended to the right by adding a branch and node
for each prime compatible set containing the uncovered
implication set. The new set of candidate minimal
covering trees, with the new extended path, is exhibited
25 in Exemplar 37. The procedure then returns to step 328.

Exemplar 66

Candidate Minimal Covering Trees

30
Generated at Step 332
(/\11 111 021 012)———-—(01' 1011 /\2' 012)

35
(/\1/ 111 012)___.___(01l 1011 /\2I 012)

(0,, 10,, 01,)
40 (/\1y 0, 01,)

(/\y, 01,)

WO 93/25975 PCT/US93/05222

10

15

20

102

At step 328, as before, the path containing the
fewest number of nodes is selected from the set of
candidate trees, in this case from the candidate trees
exhibited in Exemplar 37. There are two paths containing
only one node. We choose the topmost node representing
the prime compatible set (/\,, 0,, 01,) and label it the
test path.

At step 330, as before, the question is posed:
does the test path satisfy closure? 1In this case, are
the two implication sets (0,, /\,) and 1,, associated with
the prime compatible set (/\,, 0,, 01,) contained as
subsets of various nodes of the test path? As before,
the answer is clearly no. Hence, control transfers to
step 332.

At step 332, all combinations of prime
compatible sets from Table 6 are selected which contain
the two implication sets (0,, /\,) and 1, as subsets.
These combinations are then used to extend the test path,

resulting in Exemplar 38.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

40

103

Exemplar €7

Candidate Minimal Coverinc Trees

GCeneratec &t Step 332

(/\1, Z,, 0y, O1,)_____(C,, 1C,, /\,, 01,) ¥
(/\y, 4, Oy (C,, 1C), /\., 01,)
\\\\\\‘\\(c“ 1c,, 01,)
(/\ys Gy 01;) —————— (C), 10,, /\;, O01;)—— (/\,, I,, Gy, 01,
\\(/\,, L, Gl
\\ (1,, C,, 0.}
\(1“ 1C,, ©1y)
(Cyv /\q» 01y} —————— (/\y, I;, 0, 01,)
X(/\,, 1, 01,)
(,, C., 01y
(1,, 1C;, 01,)
(/\;, 01,)

The procedure then returns tc step 328.

At step 328, the path containing the fewest
number of nodes is selected from the set of candidate
trees, in this case from the set of candidate trees
exhibited in Exemplar 67. One path contains a single
node, that node representing the prime compatible set
(/\., 01,). This path is selected as the test path.

At step 330, as before, the gquestion is posed:
does the test path satisfy closure? In this case, the
two singleton implication sets 0, and 1. associated with
the prime compatible set (/\,, 01,) must be covered. As

before, neither implication set is covered by the prime

e}

ne

t

compatible set associated with the single node c:

WO 93/25975

10

15

20

25

30

35

40

45

50

test path.

Rt step 332,

104

PCT/US93/05222

Control then transfers to step 332.

all combinations of prime

compatible sets from Table 5 are selected which contain

the two singletcon implication sets 0, and 1, as subsets.

These combinations are then used to extend the test path,

resulting in Exemplar

68.

Exemplar 6§&

Eypancsion of the Root Node (/\,, 0i.;
rt Step 332
(/\i, ©1) (0,, 10,, /\s, 037) ——(/\y, 1y, Oz 01y
\ \xu\“ 1, 01y
\ \ (2, 02/ 012)

\\ \(;1, 10,, 01.)
\\ (Cy, /\as 012)————(/\1' 1y, 0y, 03y)
\\ \:::::::::::::: (/\y, %y, 01y)

\ N (1, G, 01y)

\ (1,, 10,, 01y
\
\.\ (0,, 1C;, 01y) —— (/\y, 1y, 0Oz, Ciz
\\ <:::::::::T(/\)' 2y, 013
\\ (1,, Gy, 01
\ (i,, 10;, 01.)
\
(0,, 01) (/\vs Ly Gy, 01y)

Contrcl then returns to step 328.

At step 32§,

fewest

as before,

the path containing the

number of nodes is selected from the set of

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

105

candidate minimal covering trees, in this case from the
set of candidate trees exhibited in Exemplars 67 and 68.
As the top three paths of Exemplar 67 contain only two
nodes each, whereas all other paths of Exemplars 67 and
68 contain three nodes each, we choose one of the top
three paths of Exemplar 67, arbitrarily the top path, as
the test path.

At step 330, the question is posed, as before,
does the test path satisfy closure? 1Is each implication
set associated with each node of the test path included
as a subset of at least one prime compatible set
associated with the test path? 1In this case, there are
two prime compatible sets associated with the test path:
(/\,, 1,, 0,, 01,) and (0,, 10,, /\,, 01,). The only
implication set associated with the prime compatible set
(/\., 1,, 0,, 01,) is (0,, 10,, /\,) - the implication set
for input state 1 is the null set - and this implication
set is contained as a subset of the other prime
compatible set of the test path. The implication set
associated with the prime compatible set (0,, 10,, /\,,
01,) is (/\,, 1,, 0,) and this implication set is contained
as a subset of the prime compatible set which is the root
node of the test path. Hence, all implication sets are
contained as subsets of prime compatible sets associated

with the test path and control proceeds at step 334.

At step 334, the question is posed: does the
test path constitute a cover? Is each unique input
sequence listed in the left hand column of the covering
table, Table 6, contained as a member of at least one of
the prime compatible sets associated with the test path?
We note that the 7 input sequences listed in the left
hand column of the covering table are indeed contained in
the two prime compatible sets comprising the test path.
Hence, the designated test path constitutes a minimal

closed cover and control proceeds at step 152.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

106

At step 152, the designated test path (the test
path starred in Exemplar 67), which contains two prime
compatible sets, is labelled the minimal cover path and
it is used to encode the control memory for the minimal

size cellular array which will emulate our application.

As indicated in the instructions accompanying
step 340, the number of memory cells in multiple
locations along the main diagonal of the cellular array
which are to be used for this implementation is the
number of nodes in the minimal cover path, in this case
two. The number of output columns designated for this
implementation is the number of output functions of the
sequential machine being emulated - hence two additional
columns, one column for each output function of Table 4,
each column having a memory cell feeding directly into an
output pin buffer, are added to the two columns
containing memory cells in multiple locations along the
main diagonal, yielding four memory cells total for this

example.

At step 154, each memory cell of the cellular
array used for the implementation, whether the memory
cell occupies one of the multiple locations along the
main diagonal or whether the memory cell occupies a
location in one of the output columns, has associated
with it a prime compatible set. A memory cell located in

one of the multiple locations along the main diagonal has

‘associated with it a unique prime compatible set

represented in the minimal cover path. A memory cell

located in one of the output columns has associated with
it a prime compatible set which contains the /\ sequence
distinguished by the number of the output function which

that output column generates.

For instance, the four memory cells in the

above example are labelled in accordance with Exemplar

WO 93/25975 . v PCT/US93/05222

10

15

20

25

30

40

107

€%: each memory cell occupying one of the multiple
locations of the main diagonal has associated with it a
unique prime compatible set representing a node of the
minimal cover path whereas the memory cell residing in
the leftmost output column, that output column which
realizes output function Z,, has associated with it the
prime compatible set (/\,, 1,, 0,, 01,), the prime
compatible set of the minimal cover path containing /\,
the input sequence, and the memory cell residing in the
rightmost output column, that output column which
realizes output function Z,, has associated with it the
prime compatible set (0,, 10,, /\,, 01,), the prime
compatible set of the minimal covering path containing

the /\. input sequence.

Exenplar 6°

Memorv Cell Labelling

(Ly B’ !,J Ol, O’a)

\ / Fa) ~ \ \
(/;1}’,/,u:/u/£/ {Oi /O'J-/_ =, O/l)
[—
i | i i
[] !
! 3 t

At step 156, a control memory array 1is
constructed. The number of bytes of data reguired in the
control memory array is the number of memory cells used
in the cellular array times the number of input states of
the seguential machine being emulated, hence eight bytes
cf control memcry data are required - four memory cells
total, two memory cells occupying multiple locations
along the main diagonal and two memory cells occupying
locations in output columns, times two input states of
the sequential machine being emulated. In the case that
the control memory is implemented as a programmable logic

array rather than as random access memory, 8 unigue byvtes

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

40

108

of data are generated by the programmable logic array, as
a function of the sequential machine input lines, rather
than the 8 bytes occupying physical memory, as in the
above case of random access control memory. The two
dimensional array representing the control memory - or
the output of the control memory programmable logic array
- is exhibited in Table 7. The two dimensional array is
indexed on its ordinate by each input state of the
sequential machine being emulated and on its abscissa by
a number corresponding to a unique memory cell of the

cellular array.

Table 7

Control Memory Array

input state 0 : 1 0 1 0
input state 1 0 1 0 1
memory cell number: 0 1 Z, Z,

In Table 7, memory cell number 0 - the leftmost
horizontal index - refers to the memory cell occupying
the leftmost column, the top left diagonal location,
whereas memory cell number 1 refers to the memory cell
occupying the second to leftmost column, the bottom right
diagonal location. This numerical labelling of the
memory cells in multiple locations along the main
diagonal has a physical significance, as the control
lines of a selector occupying a column of the cellular
array ({(whether a column maintaining a memory cell
occupying a location in the main diagonal or an output
column) are set to the value 0 or 1 to specify which
memory cell in the main diagonal is to have its binary
value selected to enter the memory cell of the column of
that selector at the occurrence of the next clock pulse.
The memory cells occupying multiple locations along the

main diagonal are the cells which have their binary

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

109

contents routed to all parts of the cellular array at the
occurrence of each clock pulse. The memory cells
occupying the output columns, which directly feed output
pin buffers, receive their next binary values from the
memory cells occupying multiple locations along the main
diagonal.

The memory cells occupying the two output
column locations are labelled Z, and Z, in accordance with
the output functions which they support.

Each location of the control memory of Table 7
is indexed on its abscissa by a column number, or a
column labelling for the case of a column producing an
output function, and on its ordinate by an input state of
the sequential machine being emulated. The integer
occupying a particular location in the array of Table 7
specifies which memory cell is to have its contents
routed to the memory cell designated by its abscissa
index, under the input state designated by its ordinate
index. The memory cell designated in that control memory
location is the memory cell associated with the prime
compatible set which covers the implication set of the
prime compatible set associated with the abscissa index
of that control memory location, under the input state
designated by the ordinate index of that control memory
location.

For instance, in the above case, the integer
entry in the upper left corner in the array of Table 7,
the entry indexed by memory cell 0, input state 0 - that
is, the entry which specifies which memory cell along the
main diagonal is to be routed to memory cell 0 under
input state 0 - is that memory cell of the main diagonal
corresponding to the prime compatible set which covers
the implication set of the prime compatible set

associated with memory cell 0 under input state 0.

WO 93/25975

10

15

20

25

30

35

PCT/US93/05222

110

Specifically, the prime compatible set
associated with memory cell 0 (refer to Exemplar 69) is
(/\,, 1,, 0,, 01,) and its implication set under input
state 0 is (0,, 10,, /\,). This implication set is
covered by the prime compatible set which is the second
node of the minimal cover tree (0,, 10,, /\,, 01,), that
prime compatible set associated with memory cell number
1. Hence, the integer 1 is entered in the upper left
location, specifying that the contents of memory cell
number 1 is routed to memory cell number 0 under input
state 0.

Again, we observe the entry in the control
memory array, Table 7, indexed by memory cell 1, input
state 0 (second to left entry, top row). The prime
compatible set associated with memory cell 1 (refer to
Exemplar 69) is (0,, 10,, /\,, 01,) and this prime
compatible set has as an implication set, under input
state 0 (/\,, 1,, 0,). This implication set is covered by
the prime compatible set which is the root node of the
minimal covering tree (/\,, 1,, 0,, 01,), the prime
compatible set associated with memory cell number O.
Hence the integer 0 is entered in this location,
specifying that the contents of memory cell number 0 is
routed to memory cell number 1 under input state 0.

We now observe the second to rightmost column
in the control memory array, Table 7, that column indexed
by memory cell Z,. The prime compatible set associated
with memory cell z, is (/\,, 1,, 0,, 01,), the prime
compatible set associated with the root node of the
minimal covering tree. Since this prime compatible set
is the same prime compatible set that is associated with
memory cell 0, then the memory cell which routes to
memory cell Z,, under each input state, is the same memory
cell which routes to memory cell 0 under that input

state. That is, the prime compatible set which cover the

WO 93/25975

10

15

20

25

30

35

PCT/US93/05222

111

implication sets of the prime compatible set associated
with the root node of the minimal covering path cover
those implication sets for both memory cell 0 and memory
cell Z,, the two memory cells associated with that prime
compatible set. Hence, the Z, column of the control memory
array is identical to the leftmost column, the 0 column.

We now observe the leftmost column, bottom
entry of Table 7, that entry associated with memory cell
0, input state 1. As before, the prime compatible set
associated with memory cell 0 is (/\,, 1,, 0,, 01,), the
prime compatible set associated with the root node of the
minimal cover tree. The implication set for this prime
compatible set under input state 1 is the null set (refer
to Table 5). Since the null set comes about when the
implication set is contained as a subset of its
associated prime compatible set (refer to the
instructions for step 148), that is, the null set is
specified when the prime compatible set covers its own
implication set, then the memory cell associated with
this prime compatible set must route to itself under the
appropriate input state when the null set is indicated.
Hence, the integer 0 is entered into this location of the

control memory array.

The remaining entries of the control memory
array are completed accordingly.

The schematic diagram indicating boundary value
encoding and memory cell routing under input state 0, the
routing designators extracted from the top row of the
control memory array, is exhibited in Figure 8 whereas
the schematic diagram indicating boundary value encoding
and memory cell routing under input state 1, the routing
designators extracted from the bottom row of the control
memory array, is exhibited in Figure 9.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

112

At step 160, the control memory of the cellular
array is set to produce, for each unique binary
representation of the state-machine input line, a unique

row of binary encoded integer values of Table 7.

Each such binary encoded integer produced by
the control memory occupies a unique column of the
cellular array and designates, for a given state-machine
input state (corresponding to a binary interpretation at
the state-machine input lines), that memory cell number
of a memory cell occupying a main diagonal location which
is to have its binary contents routed to the memory cell

occupying the column of said binary encoded integer.

The control memory may be implemented as a
random access memory, addressed by the state-machine
input lines. In such a case, each word of the random
access memory is loaded with a binary encoded row of the
control memory array of Table 7. Alternatively, the
control memory may be implemented as a programmable logic
array, in which case the programmable logic array is
programmed to produce the binary encoded integers of each
row of the control memory array as a multi-output,
combinational logic function of the state-machine input
lines. This multi-output, combination logic function is
to be produced as a two-level minimal gate count, AND/OR
realization, as is well known in the art of programmable

logic array implementation.

A step 162, the initial cellular array memory
values are determined for those memory cells occupying
multiple locations along the main diagonal as well as for
those memory cells occupying output columns. An internal
state of the state-machine being implemented, Table 4,
must be selected as an initial state. We assume for
purposes of initial memory cell assignment that this
initial state is state "a". At step 154, each memory

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

113

cell of the cellular array is labelled with a prime
compatible set associated with the minimal cover path, as .
exhibited in Exemplar 69. The prime compatible set which
is used to label memory cell number 0, the top left
diagonal memory cell, is (/\,, 1,, 0,, 01,). Each input
sequence which is contained in this prime compatible set
is a column header 124 of an output mapping column 120
exhibited in Exemplar 34. That row 118 of each such
output mapping column corresponding to the initial state
of the state-machine, state "a", (the top row) has as its
entry 122 the initial value of memory cell 0. Beginning
with the first input sequence of the said prime
compatible set, /\,, the top row entry 122 in the output
mapping table having as its column header /\, is "0";
hence, the binary value "0 is the initial value of memory
cell number 0. The top row entry of each output mapping
column corresponding to the other input sequences of said
prime compatible set must either be "0" or "-". For
verification, the top row entry of the output mapping
column having as its column header 1,, is "0", the top row
entry of the output mapping column having as its column
header 0, is "-" and, finally, the top row entry of the
output mapping column having as its column header 0/, is

""".

For that memory cell occupying the bottom right
diagonal location (memory cell number 1), its associated
prime compatible set as exhibited in Exemplar 69 is (0.,
10,, /\,, 01,). The top row entries of the output mapping
columns which are headed by the input sequences contained
in this prime compatible set are respectively, "1", "-",
"1, "-v_ Hence, the initial value of memory cell number

1 is "1".

The memory cell occupying the leftmost output
column has an associated prime compatible set which is
the same prime compatible set associated with memory cell

WO 93/25975

10

15

20

25

30

35

114

number 0; here, the memory cell occupying the leftmost
output column has an initial value which is the same
initial value as memory cell 0 - the initial value "O".
Equivalently, the memory cell occupying the rightmost
output column has an associated prime compatible set
which is the same prime compatible set that is associated
with that memory cell number 1; hence, the memory cell
occupying the rightmost output column has an initial
value which is the same initial value as memory cell
number 1 - the initial value "1". These initial memory
cell values of the cellular array are exhibited in Figure
9A.

A sub optimal application is described with
reference to Figures 16 through 24 in relation to a bus

arbiter system.

As a practical application of certain of the
concepts exhibited in the present embodiment, a cellular
array implementation of a bus arbiter system is ‘
exhibited. The bus arbiter system which is exhibited is
a standard memory interface for a Cache/Memory Management
Unit device and the arbitration scheme used for this
practice application is pre-arbitration - that is,
arbitration occurs while the bus is being utilized, thus
saving latency time between transfers. The cellular
array is implemented for an arbiter to arbitrate between
two bus masters and the state-machine description of this
process is exhibited in Figure 16.

There are three input lines into the state-
machine, as exhibited in Figure 16, MBRO, MBRI and MRBB,
which indicate, respectively, bus request for
masternumber 0, bus request for masternumber 1, and bus
busy. Two state-machine output functions are exhibited
for the bus arbiter - MBGO and MBGI which signify,
respectively, bus grant for master number 0 and bus grant

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

115

for master number 1.

Each unique binary encoding of the three input
lines of the state-machine constitute an input state, or
input character, of the input alphabet of the state-
machine - six such unique binary encodings being
specified for this application. Hence, the state-machine

exhibited in Figure 16 has six input characters.

The initial step on the process cof cellular
array control memory encoding is to determine that state-
machine having a minimal number of internal states which
is equivalent (performs the identical process) to the
state-machine which describes the application (that
state-machine of Figure 16). This "minimal" equivalent
state-machine is exhibited in Figure 172 and the
procedure of determining this minimal equivalent state-
machine exhibited in Figure 17A is well known in the art
of state-machine theory.

Certain concepts of the present embodiment are
now applied to the state-machine exhibited in Figure 17A
to obtain an efficient cellular array boundary value

encoding.

Figure 17B exhibits a portion of the
Compilation Table 106, whereas Figures 17C and 17D
together exhibit a portion of the output mapping tables
116. Figure 18 exhibits the concept of a compatible pair
of input sequences as well as the concept of a pair
implication. Figure 19 exhibits a portion of the pair
chart 404 for this application with pair compatibles
indicated and certain pair implications specified.

Figure 20 exhibits the maximal compatible sets and
associated implication sets. Each unique number included

in a member of a maximal compatible set or implication

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

116

set corresponds to a column header 124 of a unique output
mapping column 120 (a column of an output mapping table
which does not have equal effect on the state-machine as
any other output mapping column) of an output mapping
table, of which there are 57 total.

The control memory encoding for this state-
machine application is a sub-optimal encoding, in that a
portion of the encoding procedure of the present
embodiment is used, rather than the complete encoding
procedure. Certain maximal compatible sets exhibited in
Figure 20 are selected to form an efficient closed cover
implementation, rather than performing the additional
steps of forming prime compatible sets, constructing
candidate minimal cover trees, and a minimal cover path.
The maximal compatible sets chosen for the closed cover
solution are those maximal compatible sets labelled with
a unique integer in Figure 20. Each such integer
labelling (0-7) corresponds to a memory cell number of
the main diagonal of memory cells. There are eight
maximal compatible sets which form the closed cover
implementation, hence there are eight memory cells
occupying main diagonal locations of the cellular array
for this implementation, as well as two additional output
columns, one column for each state-machine output

function.

Although there are six input characters of the
sequential machine to be implemented, the control memory
array for this application can be configured with only
three unique rows, that is, three unique sets of routing
designators, one set of routing designatories for a pair
of input characters. These three rows of routing
designators (outputs of boundary logic, or control
memory) and schematic diagrams exhibiting the associated
routings between memory cells occupying main diagonal

locations as well as routings to the output column memory

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

117

cells, are exhibited in Figures 21-23.

Finally, Figure 24 exhibits the boundary logic
(control memory) implemented as a programmable logic

array.

Example of Cellular Array Application to a Wide Input
Line Embodiment

A different format is described with regard to
a wide input line embodiment in relation to Figures 25-
32.

One type of state table application which
permeates the programmable logic industry is the wide
input line application, an example being an exemplary
system of Altera Corporation in San Jose, California.
This type of application, as exemplified by RAM or I/O
controllers, consists typically of 10 or more input and
output lines and is depicted by a sparse state table
having a sizable number of input state columns, most
entries being unspecified. For each input state column,

only a few entries are typically specified.

A third example exhibits an implementation of
the prior art Altera embodiment of the preseht invention.
The example is an 80386 Bus Controller, depicted in
Figure 25. This process is further segmented into four
distinct processes, as depicted by Figure 26. Of these
four processes, three of them are simple state table
applications, whereas one of them - DECODE - requires 8
input lines, 6 output lines and a reasonably complex
process description as illustrated in the following
Table 8.

WO 93/25975

10

15

20

25

30

35

40

45

50

55

SUBDESIGN decode

{ clk2,
clk,
/na,
mio,
wr,
dc,
a3l,
time_delay,
bus_active,
reset:
INPUT;
recv,
iord,
iowr,
eprd,
inta,
iordy,
OUTPUT;
VARIABLE io_state
WITH STATES:

o\® o o\® o\® o\° o\° o\

BEGIN
(iord, iowr, ep
io_state.clk
io_state.res

CASE (io_
WHEN id
IF

PCT/US93/05222

118

TABLE 8

80386 2x clock (66 MHz)

80386 clock

low to begin bus cycles

high for memory, low for i/o cycles
high for write, low for read cycles
high for data, low for control cycles
processor address line A31

% time delay input

low during active bus cycles

high for reset of device

o\°® o\®

low during float and recovery
low to read i/o

low to write i/o

low to read eproms

low for interrupt acknowledge
low to indicate ready

o\® o\ o\°® o\® o\° o\°

: MACHINE OF BITS (io[5..0])

(idle = b"111111", % state
ioread 1 = b"011111", % assignments
ioread 2 = b"011101",
iowritel = b"011110",
iowrite2 = b"111101",
epreadl = b"l110111",
epread2 = b"110101",
intackl = b"i111011",
intack2 = b"111001",
recover = b"111110");
rd, inta,iordy,recv) = io[l; % assign
= clk2; % outputs
et = reset; % to state
% register
% bits
state) IS
le = >
(/na & !'bus_active & clk) THEN

IF (a31 & mio & dc & !wr) THEN
io_state = epreadl;

ELSEIF (!a3l & !mio & dc & wr) THEN
io_state = iowritel;

ELSEIF (!a3l & !mio & dc & !wr) THEN

io_state = ioreadl;

o\® o\® o\@ o\ o\® o\® o\ o\® o\° o\°

o\® o\® o\% o\@ o\@ o\°

o o\°

o\o 0\0 o\o 0\0 °\°

ELSEIF (!a3l & !mio & !dc & !wr) THEN

io_state = intackil;
ELSEIF (mio & !dc & wr) THEN
io_state = iowrite2;
ELSE io_state = recover;
END IF;

END IF;

WO 93/25975 PCT/US93/05222

119

TABLE 8 (continued)

WHEN epreadl = >
5 IF (time_delay) THEN io_state = epread2;
END IF;
WHEN epread2 = >
IF (clk) THEN io_state = idle; END IF;
WHEN iowritel = >
10 IF (time_delay) THEN io_state = iowrite2;
END IF;
WHEN iowrite2 = >
IF (!mio & clk) THEN io_state = recover;
ELSEIF (mio & clk) THEN io_state =
15 idle; END IF;
WHEN joreadl = >
IF (time_delay) THEN io_state = ioread2;

END IF;
WHEN ioread2 = >
20 IF (clk) THEN io_state = recover; END IF;

WHEN intackl = >
IF (time_delay) THEN io_state = intack2;
END IF;
WHEN intack 2 = >
25 IF (clk) THEN io_state = recover; END IF;
WHEN recover = >
IF (time_delay & clk) THEN io_state =
idle; END IF;
END CASE;
30 END;

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

120

The invented approach taken in implementing
this wide input line application is one which maintains
the positive aspects of the cellular array technology -
competitive propagation delay and favorable density - and
one which yields an approach suitable for other wide
input line, wide output line applications. The invented
implementation of the DECODE device in the cellular array
architecture is displayed in Figures 27-32. Figure 27
exhibits a block diagram of the implementation. Four
distinct "small" cellular array spaces are used to
implement this application, as indicated in the figure:
two 8 x 8 spaces and two 9 x 9 spaces. All four spaces
operate simultaneously to produce the six output
functions as well as two global feedback lines. These
global feedback lines are, in turn, input data into the
boundary logic block of each cellular array space.

To comprehend the approach, note in Figure 26
the DECODE state diagram. Although it is a
simplification of the actual processing, the flow of
control through the various internal states is exhibited.
Beginning in the "idle" state, the DECODE processor

‘transfers to one of 4 internal states depending upon the

value of 7 input lines (actually, control is passed to
one of 6 internal states). Each such target internal
state in Figure 26 initiates an I/O transfer. This I/0
transfer is delayed by a time delay signal, after which
time control is transferred to an appropriate I/O enable
state. The two global feedback lines represent internal
states "idle" and "iowrite2," whereas each cellular array
implementation represents the computation required for
the remaining portion of the state diagram on each of the
six output functions as well as the computation required
to compute the two global feedback lines.

WO 93/25975 PCT/US93/05222

121

As indicated in Figure 27, three output bits
are computed in the leftmost space, two output bits in
the second to leftmost space, and one output bit computed
in the third to leftmost space. The rightmost space

5 computes the global feedback lines.

Each output function can be computed by its own
state table implementation - hence its own cellular array
implementation. The computation of most of the output

10 functions requires such small sections of space that, in
most instances, the computation of multiple output

functions fit into one small cellular array.

The boundary logic block of each cellular array
15 is further segmented into two sections - a global control
section and a local control section, as exhibited in
Figure 27. The global control section is a simplified
boundary logic block requiring the encoding of only one
boundary line per column whereas the local control
20 section requires encoding the boundary value
specifications for the complete space.

The global portion of each boundary logic block
serves two purposes, the first purpose being the
25 determination of which piece of the state diagram is
being executed, the second purpose being which internal
state is the next internal state in the process. The
determination of next internal state requires the
specification of a binary n-tuple for each space, i.e., a
30 0 or 1 for each column. This determination requires the

programming of only one line per column.

The technique of using a simplified segment of
each boundary logic block for global control is suitable
35 for implementation of other wide input lines, wide output
line applications as well. 1In the general case, the
glecbal control will determine which section of a sparse

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

122

state table matrix the process is to reside in, as well

as the next internal state, at the next clock pulse. ,

Figure 32 depicts the appropriate routing

designations.

Clearly, the cellular array architecture is
well suited to implement wide input line applications of

this nature.

With the invention, a system designer does not
necessarily have to custom create circuitry for
performing each function. Using a systems flow approach,
the end result function can be reached using the present

invention under software control.

The benefits of the present invention include
the creation of a simple replicable circuit design. The
simplicity and uniformity of the design permits for
producing chip designs of very high densities with lower
reject rates and consequently, lower costs. Moreover,
since there are fewer boundary values, few programming
bits are required, thereby allowing a least-cost design.
Further, the speed of operation is enhanced. The gate
delays are independent of the functions selected and the
size of the space used. The number of gate delays in a
state transition is independent of the size of the

cellular space.

Many other forms of the invention exist, each
differing from others in matters of detail only. The
invention is to be considered solely in terms of the
following claims.

WO 93/25975

10

15

20

25

30

35

123

CLAIMS

1. A method of operating a computing element
to compile a set of state-machine states in an
incompletely specified state-machine having an input
alphabet and internal states and at least one output
function, said state-machine having present internal
states and next internal states, and having the
characteristic that at least some of the next internal
state entries are unspecified, said input alphabet having
a plurality of input characters, said at least one output
function having the characteristic that at least some of
the oqtput value entries are unspecified, into a set of
cellular array states comprising:

(a) locating cells in a rectilinear
cellular array with multiple locations in a plurality of
columns and rows, including providing locations along a
main diagonal;

(b) locating in the cellular array,
multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the
memory cells, and at least one column of cells for
providing output values of the cellular array;

(c) generating a plurality of sequences
of said input characters;

(d) applying said sequences of step (c)
to a state-machine;

(e) selecting a set of binary values and
unspecified assignments on internal states for
substitution for each output function of the state-
machine so that multiple output values and unspecified
values of the cellular array in the at least one output
column conforms to a predetermined set of output value
functions;

(f) substituting the sets of binary

values and unspecified assignments of step (e) for in-

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

124

ternal states and testing said sequences for equal effect
on said internal states with said substituted sets;

assigning a distinct memory cell of the
multiple memory cells of the main diagonal of step (b) to
each sequence of characters found not to have equal ef-
fect in step (f) so that the memory cells collectively
store information corresponding to cellular array states;
and

providing a control memory for controlling

the transfer of information;

2. A method of operating a computing element
to compile a set of state-machine states in an
incompletely specified state-machine having an input
alphabet and internal states and at least one output
function, said state-machine having present internal
states and next internal states, and having the
characteristic that at least some of the next internal
state entries are unspecified, said input alphabet having
a plurality of input characters, said at least one output
function having the characteristic that at least some of
the output value entries are unspecified, into a set of
cellular array states comprising:

(a) 1locating cells in a rectilinear
cellular array with multiple locations in a plurality of
columns and rows, including providing locations along a
main diagonal;

(b) 1locating in the cellular array,
multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the
memory cells, and at least one column of cells for
providing output values of the cellular array;

(c) generating a plurality of sequences
of said input characters;

(d) applying said sequences of step (c)

to a state-machine;

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

125

(e) selecting a set of binary values and
unspecified assignments on internal states for
substitution for each output function of the state-
machine so that multiple output values and unspecified
values of the cellular array in the at least one output
column conforms to a predetermined set of output value
functions;

(f) substituting the sets of binary
values and unspecified assignments of step (e) for
internal states and testing said sequences for equal
effect on said internal states with said substituted
sets;

(g) constructing a pair chart for
recording compatibility or incompatibility for each pair
of sequences from those sequences found to have non-equal
effect on the internal states of the state-machine in
step (f), and for recording pair implications for each
pair of sequences found to be compatible;

(h) determining compatibility or
incompatibility for each pair of sequences from those
sequences found to have non-equal effect on the internal
states of the state-machine in step (f) for entry into
the pair chart of step (g);

(i) determining an antecedent pair of
sequences for each pair of sequences found to be
compatible in step (h), from an antecedent table, and for
each input character of the state-machine;

(j) determining a pair implication set of
sequences for each antecedent pair of sequences
determined in step (i) for entry into the pair chart of
step (9);

processing the pair of compatible sets
determined in step (h) and the pair implication sets of
step (j) to obtain a closed cover;

assigning a distinct memory cell of the
multiple memory cells of the main diagonal of step (b) to
each compatible set constituting the closed cover so that

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

126

the memory cells collectively store information
corresponding to the cellular array states; and
providing a control memory for controlling

the transfer of information between memory cells.

3. A method of operating a computing element
to compile a set of state-machine states in an
incompletely specified state-machine having an input
alphabet and internal states and at least one output
function, said state-machine having present internal
states and next internal states, and having the
characteristic that at least some of the next internal
state entries are unspecified, said input alphabet having
a plurality of input characters, said at least one output
function having the characteristic that at least some of
the output value entries are unspecified, into a set of
cellular array states comprising:

(a) locating cells in a rectilinear
cellular array with multiple locations in a plurality of
columns and rows, including providing locations along a
main diagonal;

(b) 1locating in the cellular array,
multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the
memory cells, and at least one column of cells for
providing output values of the cellular array;

(c) generating a plurality of sequences
of said input characters;

(d) applying said sequences of step (c)
to a state-machine;

(e) selecting a set of binary values and
unspecified assignments on internal states for
substitution for each output function of the state-
machine so that multiple output values and unspecified
values of the cellular array in the at least one output
column conforms to a predetermined set of output value

WO 93/25975

10

15

20

25

30

35

127

functions;

‘ (f) substituting the sets of binary
values and unspecified assignments of step (e) for
internal states and testing said sequences for equal
effect on said internal states with said substituted
sets;

(g) constructing a pair chart for
recording compatibility or incompatibility for each pair
of sequences from those seqguences found to have non-equal
effect on the internal states of the state-machine in
step (f), and for recording pair implications for each
pair of sequences found to be compatible;

(h) determining compatibility or
incompatibility for each pair of sequences from those
sequences found to have non-equal effect on the internal
states of the state-machine in step (f) for entry into
the pair chart of step (g);

(1) determining an antecedent pair of
sequences for each pair of sequences found to be
compatible in step (h), from an antecedent table, and for
each input character of the state-machine;

(j) determining a pair implication set of
sequences for each antecedent pair of sequences
determined in step (i) for entry into the pair chart of
step (9);

(k) deriving maximal compatible sets of
sequences from the pair chart of step (g) completed to
exhibit compatibility or incompatibility of each pair of
sequences as determined at step (h);

(1) deriving an implication set of
sequences for each maximal compatible set of sequences
determined at step (k) and for each input character of
the state-machine from the pair chart of step (g)
completed to exhibit the pair implications determined at
step (3);

processing the maximal compatible sets of
input sequences derived in step (k) and the implication

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

128

sets of sequences derived in step (1) to form a closed
cover;

assigning a distinct memory cell of the
multiple memory cells of the main diagonal of step (b) to
each maximal compatible set that constitutes the closed
cover so that the memory cells collectively store
information corresponding to the cellular array states;
and

providing a control memory for controlling

the transfer of information between memory cells.

4. A method of operating a computing element
to compile a set of state-machine states in an
incompletely specified state-machine having an input
alphabet and internal states and at least one output
function, said state-machine having present internal
states and next internal states, and having the
characteristic that at least some of the next internal
state entries are unspecified, said input alphabet having
a plurality of input characters, said at least one output
function having the characteristic that at least some of
the output value entries are unspecified, into a set of
cellular array states comprising:

(a) 1locating cells in a rectilinear
cellular array with multiple locations in a plurality of
columns and rows, including providing locations along a
main diagonal;

(b) locating in the cellular array,
multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the
memory cells, and at least one column of cells for
providing output values of the cellular array;

(c) generating a plurality of sequences
of said input characters;

(d) applying said sequences of step (c)

to a state-machine;

WO 93/25975

10

15

20

25

30

35

129

(e) selecting a set of binary values and
unspecified assignments on internal states for
substitution for each output function of the state-
machine so that multiple output values and unspecified
values of the cellular array in the at least one output
column conforms to a predetermined set of output value
functions;

(f) substituting the sets of binary
values and unspecified assignments of step (e) for
internal states and testing said sequences for equal
effect on said internal states with said substituted
sets;

(g) constructing a pair chart for
recording compatibility or incompatibility for each pair
of sequences from those sequences found to have non-equal
effect on the internal states of the state-machine in
step (f£), and for recording pair implications for each
pair of sequences found to be compatible;

(h) determining compatibility or
incompatibility for each pair of sequences from those
sequences found to have non-equal effect on the internal
states of the state-machine in step (f) for entry into
the pair chart of step (g);

(i) determining an antecedent pair of
sequences for each pair of sequences found to be
compatible in step (h), from an antecedent table, and for
each input character of the state-machine;

(j) determining a pair implication set of
sequences for each antecedent pair of sequences
determined in step (i) for entry into the pair chart of
step (9);

(k) deriving maximal compatible sets of
sequences fromvthe pair chart of step (g) completed to
exhibit compatibility or incompatibility of each pair of
sequences as determined at step (h);

(m) deriving prime compatible sets of
sequences including, for each prime compatible set of

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

130

sequences and input character of the state-machine input
alphabet, an implication set of sequences, from the
maximal compatible sets of sequences determined at step
(k) and from the pair chart of step (g) completed to
exhibit the pair implications determined at step (j);

(n) deriving a set of candidate cover
trees containing a cover path having a least number of
nodes, wherein each node of the set of candidate trees
corresponds to a prime compatible set of sequences
determined at step (m);

(o) assigning a distinct memory cell of
the multiple memory cells of the main diagonal of step
(b) to each node of the minimal cover path determined at
step (n) and assigning a unique output column of step (b)
to each output function of the state-machine; and

(p) providing a control memory for
controlling the transfer of information between memory
cells.

5. A method of operating a computing element
to compile a set of state-machine states in a completely
specified state-machine having an input alphabet and
internal states and at least two output functions, said
state-machine having present internal states and next
internal states, said input alphabet having a plurality
of input characters, into a set of cellular array states
comprising:

(a) locating cells in a rectilinear
cellular array with multiple locations in a plurality of
columns and rows, including providing locations along a
main diagonal; '

(b) locating in the cellular array,
multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the
memory cells, and at least two columns of cells for
providing an output values of the cellular array;

WO 93/25975

10

15

20

25

30

35

131

(c) generating a plurality of sequences
of said input characters;

(d) applying said sequences of step (c)
to a state-machine and testing said sequences for equal
effect, on the internal states when said sequences are
applied to said state-machine;

(e) selecting a set of binary values for
substitution for each output function of the state-
machine so that multiple output values of the cellular
array in the at least two output columns conform to a
predetermined set of output value functions;

(f) substituting the sets of binary
values for internal states and testing said sequences for
equal effect on said internal states with said
substituted sets;

assigning a distinct memory cell of the
multiple memory cells of the main diagonal of step (b) to
each sequence of characters found not to have equal
effect in step (f) so that the memory cells collectively
store information corresponding to collector array
states; and |

| providing a control memory for controlling

the transfer of information.

6. A method as claimed in claim 4, wherein
step (c¢) includes:

(g) generating a null sequence and making
said null sequence the prior active sequence;

(r) distinguishing said prior active
sequence for each unique state-machine output function
and making such distinguished prior active sequence
active;

(s) selecting an input character from
said input alphabet and appending said input character to
a prior active sequence to make a new sequence;

(t) distinguishing said new sequence for
each state-machine output function which distinguishes

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

132

said prior active sequence;

(u) making each said distinguished new
sequence active as long as said distinguished new
sequence does not have equal effect, with a substituted
set of binary values determined by the distinguishing
output function, on the set of machine states of the
state-machine, including unspecified entries, as a
previously generated distinguished prior active sequence;
and making said new sequence active if at least one said
distinguished new sequence is made active;

(v) assigning a distinguished antecedent
sequence to each such distinguished prior active
sequence, this distinguished antecedent sequence
consisting of said new sequence distinguished by the
identical output function as the distinguished prior
active sequence if the distinguished new sequence is
declared active, or if the distinguished new sequence is
not declared active, making the distinguished prior
active sequence which has equal effect the antecedent
sequence;

(w) repeating steps (s) through (v) until
said input alphabet is exhausted;

(x) making the prior active sequence to
which input characters had been appended in steps (s)
through (w) inactive, making each active distinguished
new sequence an active distinguished prior sequence, and
making each active new sequence an active prior sequence;
and

(y) repeating steps (s) through (x) until
all active sequences have been made inactive.

7. A method as claimed in claim 4 wherein
step (d) is applied in reverse order of input characters

to said state-machine.

8. A method as claimed in claim 6 wherein

step (d) is applied in a reverse order of input

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

133

characters to said state-machine.

9. A method as claimed in claim 4 wherein
sequences of input characters are applied in character
reverse order so that a pair of sequences have equal
effect when both sequences comprising the pair result in
a state-machine having identical final state-machine
states in step (f), including identical locations of
unspecified entries.

10. A method as claimed in any one of claims 2
to 4 wherein the pair chart of step (g) is constructed to
include a unique entry point indexed by each pair of
sequences found to have non-equal effect on the internal

states of the state-machine at step (f).

11. A method as claimed in any one of claims 2
to 4 wherein incompatibility of a pair of seguences at
step (h) is determined by both such sequences being
completely specified for at least one state-machine state
at step (f), the specification of that state-machine
state for one sequence of the pair being a different
value than the specification of that state-machine state
for the other sequence of the pair.

12. A method as claimed in any one of claims 2
to 4 wherein compatibility of two sequences at step (h)
is determined by the two sequences not being incompatible
for all final state-machine state specifications at step
(£).

13. A method as claimed in any one of claims 2
to 4 wherein an antecedent pair of sequences is
determined from a compatible pair of sequences at step
(1) by including in the antecedent pair of sequences the
antecedent sequence from the antecedent table of each
input sequence which constitutes the compatible pair of

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

134

sequences.

14. A method as claimed in any one of claims
2 to 4 wherein a pair implication set of sequences at
step (j) is determined from an antecedent pair of
sequences by having the antecedent pair of sequences
become the pair implication set of sequences, except
where:

(i) both antecedent input sequences (under a
particular input state) are the same input sequence, then
the pair implication set becomes only the single input
sequence;

(ii) one of the antecedent input sequences
(under a particular input state) has the effect of an
unspecified entry on all state-machine states at step
(£), then the pair implication set becomes just the
single entry which is the other input sequence of the
antecedent pair;

(iii) both of the antecedent input sequences
(under a particular input state) has the effect of an-
unspecified entry on all state-machine states at step
(£), then the pair implication set becomes the null set;

(iv) Dboth of the antecedent input sequences
(under a particular input state) are contained as a
subset of the compatible pair, then the pair implication
set becomes the null set.

15. A method as claimed in either claim 3 or 4
wherein step (k) includes creating compatible sets of
input sequences constrained by the characteristic that no
compatible superset of input sequences contains the said
maximal compatible set as a proper subset.

16. A method as claimed in claim 3 wherein
step (1) includes creating, for the compatible set, and
for each input character of the state table, a set of

input sequences which contain and which is limited to

WO 93/25975

10

15

20

25

30

35

PCT/US93/05222

135

each implication pair of sequences for each compatible
pair of sequences contained in the compatible set, under -
said input character. If the implication set of input
sequences so determined is a subset of the said
compatible set, then the implication set of input
sequences so determined is replaced by the null set.

17. A method as claimed in claim 4 wherein
step (m) includes creating, from the maximal compatible
sets of input sequences, compatible sets of sequences,
each such compatible set of sequences being a subset of a
maximal compatible set, and, for each such subset of a
maximal compatible set and input character, its
implication set, this said subset of a maximal compatible
set and associated implicating set being constrained so
that there is no superset of compatible input sequences
satisfying the following two conditions:

(i) the superset of compatible input
sequences contains the said compatible set as a proper
subset;

(ii) each implication set associated with
the superset of compatible input sequences is contained
as a subset (not necessarily a proper subset), of at

least one implication set of the said compatible set.

18. A method as claimed in any one of claims 2
to 4 wherein step (n) includes creating a set of
candidate trees, each such candidate tree consisting of
nodes, and branches connecting nodes, each node
corresponding to a compatible set (a prime compatible set
and for claim 4) and determining a path from the set of
candidate trees having the characteristics that:

(1) (cover) each input sequence having
non-equal effect at step (f) is contained in at least one
compatible set corresponding to a node of the path;

’ (ii) (closure) each implication set of

each compatible set corresponding to a node of the path

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

136

is contained as a subset of at least one other compatible
set corresponding to a node of the path;

(iii) (least length) any other path from
the set of candidate trees having characteristics (1)
(cover) and (ii) (closure) has at least as many nodes as

the said determined path.

(pp) constructing a covering table consisting
of two columns wherein the first column contains, at each
row, a unique input sequence determined to have non-equal
effect on the state-machine states at step (f) and the
wherein the second column contains, at each row, the
number of prime compatible sets of sequences which
contain the input sequence in the first column of that
row;

(gg) choosing an input sequence in the
first column contained in the fewest number of prime
compatible sets, as specified in the second column;

(rr) for each unique prime compatible set
which contains the input sequence chosen at step (qq),
making that prime compatible set a root node of a
candidate minimal cover tree;

(ss) choosing the candidate minimal cover
tree having the fewest number of nodes, or, if more than
one candidate minimal cover tree has a minimum number of
nodes, choosing arbitrarily one of the candidate minimal
cover trees which has the fewest number of nodes;

(tt) testing the chosen candidate minimal
cover tree for closure,which is testing to determine if
each implication set of those prime compatibles
represented as nodes of the candidate minimal cover tree
is contained as a subset of at least one prime compatible
represented as a node of the candidate minimal cover
tree; if the candidate minimal cover tree does satisfy
closure, then testing the chosen candidate minimal cover
tree for a cover, which is determining if each input
sequence found to have non-equal effect at step (f) is

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

137

included in at least one of the prime compatible sets
represented as a node of the candidate minimal cover
tree; '

(uu) 1f the answer at step (tt) is that
the candidate minimal cover tree does not satisfy
closure, then choosing the minimal combination of prime
compatible sets determined at step (16) which contain as
subsets all implication sets not contained as subsets of
prime compatible sets represented as nodes of the
candidate minimal cover tree at step (tt) and extending
the chosen candidate minimal cover tree by a branch and
node connected in series for each prime compatible set
chosen in this minimal combination, then returning to
step (ss);

(vv) if the answer at step (tt) is that
the candidate minimal cover tree does not constitute a
cover, then choosing that input sequence which is
contained in the fewest number of the remaining prime
compatible sets determined at step (16), from those input
sequences not contained as a member of any prime
compatible set associated with nodes of the candidate
minimal cover tree, and extending the candidate minimal
cover tree in parallel by a branch and node representing
each prime compatible set containing the selected input
sequence as a member, then returning to step (ss);

(ww) 1f the answer at step (tt) is that
the candidate minimal cover tree does indeed satisfy both
closure and a cover, then selecting the chosen candidate
minimal cover tree as the minimal cover tree for encoding
the control memory of the cellular array;

(xx) performing steps (ss) through (ww)

until a minimal cover tree is determined.]

» 19. A method as claimed in claim 4 wherein
step (o) includes:
(z) associating a unique prime compatible
set of the least length path with each memory cell

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

138

located along the main diagonal of the cellular array,
thereby relating number of the memory cells along the
main diagonal to be used in the implementation to be the
number of nodes in the least length path and

(aa) assigning a unique output column of
the cellular array to each output function of the
multiple output functions contained in the state-machine
and, for each memory cell occupying an output column,
assigning a prime compatible set of the cover tree which
contains a null sequence distinguished by the output
function supported by that output column.

20. A method as claimed in claim 4 wherein
step (p) includes configuring a control memory or
programmable logic array which performs a Boolean
function mapping of input states of the state-machine to
binary encoded routing designators, one such binary
encoded routing designator for each column of the
cellular array, each routing designator having the
characteristic that its binary encoded integer, specified
as a Boolean function of said state-machine input states,
designates that memory cell on the main diagonal
corresponding to the compatible set which contains as a
subset the implication set of the compatible set
associated with the memory cell occupying the column of
said routing designator under said input state.

21. Apparatus for operating a computing
element to compile a set of state-machine states in an
incompletely specified state-machine having an input
alphabet and internal states and at least one output
function, said state-machine having present internal
states and next internal states, and having the
characteristic that at least some of the next internal
state entries are unspecified, said input alphabet having
a plurality of input characters, said at least one output
function having the characteristic that at least some of

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

139

the output value entries are unspecified, into a set of
cellular array states comprising:

(a) means for locating cells in a
rectilinear cellular array with multiple locations in a
plurality of columns and rows, including providing
locations along a main diagonal;

(b) means for locating in the cellular
array, multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the
memory cells, and at least one column of cells for
providing output values of the cellular array;

(c) means for generating a plurality of
sequences of said input characters;

(d) means for applying said sequences of
(c) to a state-machine;

(e) means for selecting a set of binary
values and unspecified assignments on internal states for
substitution for each output function of the state-
machine so that multiple output values and unspecified
values of the cellular array in the at least one output
column conforms to a predetermined set of output value
functions;

(f) means for substituting the sets of
binary values and unspecified assignments of (e) for
internal states and testing said sequences for equal
effect on said internal states with said substituted
sets;

means for assigning a distinct memory cell
of the multiple memory cells of the main diagonal of (b)
to each sequence of characters found not to have equal
effect in (f) so that the memory cells collectively store
information corresponding to cellular array states; and

means for providing a control memory for

controlling the transfer of information;

22. Apparatus for operating a computing

WO 93/25975 PCT/US93/05222

140

element to compile a set of state-machine states in an
incompletely specified state-machine having an input
alphabet and internal states and at least one output
function, said state-machine having present internal

5 states and next internal states, and having the
characteristic that at least some of the next internal
state entries are unspecified, said input alphabet having
a plurality of input characters, said at least one output
function having the characteristic that at least some of

10 the output value entries are unspecified, into a set of
cellular array states comprising:

(a) means for locating cells in a
rectilinear cellular array with multiple locations in a
plurality of columns and rows, including providing

15 locations along a main diagonal;

(b) means for locating in the cellular
array, multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the

20 memory cells, and at least one column of cells for
providing output values of the cellular array;

(c) means for generating a plurality of
sequences of said input characters;

(d) means for applying said sequences of

25 (c) to a state-machine;

(e) means for selecting a set of binary
values and unspecified assignments on internal states for
substitution for each output function of the state-
machine so that multiple output values and unspecified

30 values of the cellular array in the at least one output
column conforms to a predetermined set of output value
functions;

(f) means for substituting the sets of
binary values and unspecified assignments of (e) for

35 internal states and testing said sequences for equal
effect on said internal states with said substituted

sets;

WO 93/25975 PCT/US93/05222

141

(g) means for constructing a pair chart
for recording compatibility or incompatibility for each |,
pair of sequences from those sequences found to have
non-equal effect on the internal states of the state-

5 machine in (f), and for recording pair implications for
each pair of sequences found to be compatible;

(h) means for determining compatibility
or incompatibility for each pair of seqguences from those
sequences found to have non-equal effect on the internal

10 states of the state-machine in (f) for entry into the
pair chart of (g);

(1) means for determining an antecedent
pair of sequences for each pair of sequences found to be
compatible in (h), from an antecedent table, and for each

15 input character of the state-machine;

(j) means for determining a pair
implication set of sequences for each antecedent pair of
sequences determined in (i) for entry into the pair chart
of (g);

20 means for processing the pair of
compatible sets determined in (h) and the pair
implication sets of (j) to obtain a closed cover;

means for assigning a distinct memory cell
of the multiple memory cells of the main diagonal of (b)

25 to each compatible set constituting the closed cover so
that the memory cells collectively store information
corresponding to the cellular array states; and

means for providing a control memory for
controlling the transfer of information between memory

30 cells.

23. Apparatus for operating a computing
element to compile a set of state-machine states in an
incompletely specified state-machine having an input

35 alphabet and internal states and at least one output
function, said state-machine having present internal

states and next internal states, and having the

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

142

characteristic that at least some of the next internal
state entries are unspecified, said input alphabet having:’
a plurality of input characters, said at least one output
function having the characteristic that at least some of
the output value entries are unspecified, into a set of
cellular array states comprising:

(a) means for locating cells in a
rectilinear cellular array with multiple locations in a
plurality of columns and rows, including providing
locations along a main diagonal; |

(b) means for locating in the cellular
array, multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the
memory cells, and at least one column of cells for
providing output values of the cellular array;

(c) means for generating a plurality of
sequences of said input characters;

(d) means for applying said sequences of
(c) to a state-machine;

(e) means for selecting a set of binary
values and unspecified assignments on internal states for
substitution for each output function of the state-
machine so that multiple output values and unspecified
values of the cellular array in the at least one output
column conforms to a predetermined set of output value
functions; -

(f) means for substituting the sets of
binary values and unspecified assignments of (e) for
internal states and testing said sequences for equal
effect on said internal states with said substituted
sets;

(g) means for constructing a pair chart
for recording compatibility or incompatibility for each
pair of sequences from those sequences found to have
non-equal effect on the internal states of the state-

machine in (f), and for recording pair implications for

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

143

each pair of sequences found to be compatible;

(h) means for determining compatibility
or incompatibility for each pair of sequences from those
sequences found to have non-equal effect on the internal
states of the state-machine in (f) for entry into the
pair chart of (g);

(i) means for determining an antecedent
pair of sequences for each pair of sequences found to be
compatible in (h), from an antecedent table, and for each
input character of the state-machine;

‘ (j) means for determining a pair
implication set of sequences for each antecedent pair of
sequences determined in (i) for entry into the pair chart
of (g);

(k) means for deriving maximal compatible
sets of sequences from the pair chart of (g) completed to
exhibit compatibility or incompatibility of each pair of
sequences as determined at (h);

(1) means for deriving an implication set
of sequences for each maximal compatible set of sequences
determined at (k) and for each input character of the
state-machine from the pair chart of (g) completed to
exhibit the pair implications determined at (j);

means, for processing the maximal
compatible sets of input sequences derived in (k) and the
implication sets of sequences derived in (1) to form a
closed cover;

means for assigning a distinct memory cell
of the multiple memory cells of the main diagonal of (b)
to each maximal compatible set that constitutes the
closed cover so that the memory cells collectively store
information corresponding to the cellular array states;
and

: means for providing a control memory for
controlling the transfer of information between memory
cells.

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

144

24. Apparatus for operating a computing
element to compile a set of state-machine states in an
incompletely specified state-machine having an input
alphabet and internal states and at least one output
function, said state-machine having present internal
states and next internal states, and having the
characteristic that at least some of the next internal
state entries are unspecified, said input alphabet having
a plurality of input characters, said at least one output
function having the characteristic that at least some of
the output value entries are unspecified, into a set of
cellular array states comprising:

(a) means for locating cells in a
rectilinear cellular array with multiple locations in a
plurality of columns and rows, including providing
locations along a main diagonal;

(b) means for locating in the cellular
array, multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the
memory cells, and at least one column of cells for
providing output values of the cellular array;

(c) means for generating a plurality of
sequences of said input characters;

(d) means for applying said sequences of
(c) to a state-machine;

(e) means for selecting a set of binary
values and unspecified assignments on internal states for
substitution for each output function of the state-
machine so that multiple output values and unspecified
values of the cellular array in the at least one output
column conforms to a predetermined set of output value
functions;

(f) means for substituting the sets of
binary values and unspecified assignments of (e) for
internal states and testing said sequences for equal
effect on said internal states with said substituted

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

145

sets;

(g) means for constructing a pair chart
for recording compatibility or incompatibility for each
pair of sequences from those sequences found to have
non-equal effect on the internal states of the state-
machine in (f), and for recording pair implications for
each pair of sequences found to be compatible;

(h) means for determining compatibility
or incompatibility for each pair of sequences from those
sequences found to have non-equal effect on the internal
states of the state-machine in (f) for entry into the
pair chart of (g);

(1) means for determining an antecedent
pair of sequences for each pair of sequences found to be
compatible in (h), from an antecedent table, and for each
input character of the state-machine;

(j) means for determining a pair
implication set of sequences for each antecedent pair of
sequences determined in (i) for entry into the pair chart
of (g);

(k) means for deriving maximal compatible
sets of sequences from the pair chart of (g) completed to
exhibit compatibility or incompatibility of each pair of
sequences as determined at (h);

(m) means for deriving prime compatible
sets of sequences including, for each prime compatible
set of sequences and input character of the state-machine
input alphabet, an implication set of sequences, from the
maximal compatible sets of sequences determined at (k)
and from the pair chart of (g) completed to exhibit the
pair impiications determined at (j);

(n) wmeans for deriving a set of candidate
cover trees containing a cover path having a least number
of noder where.n each node of the set of candidate trees
corresgp 3 to a prime compatible set of sequences
determir at (m);

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

146

(o) means for assigning a distinct memory
cell of the multiple memory cells of the main diagonal of
(b) to each node of the minimal cover path determined at
(n) and assigning a unique output column of (b) to each
output function of the state-machine; and

(p) means for providing a control memory
for controlling the transfer of information between

memory cells.

25. Apparatus for operating a computing
element to compile a set of state-machine states in a
completely specified state-machine having an input
alphabet and internal states and at least two output
functions, said state-machine having present internal
states and next internal states, said input alphabet
having a plurality of input characters, into a set of
cellular array states comprising:

(a) means for locating cells in a
rectilinear cellular array with multiple locations in a
plurality of columns and rows, including providing
locations along a main diagonal;

(b) means for locating in the cellular
array, multiple memory cells in locations along the main
diagonal, function cells in locations removed from the
main diagonal for transferring information between the
memory cells, and at least two columns of cells for
providing an output values of the cellular array;

(c) means for generating a plurality of
sequences of said input characters;

(d) means for applying said sequences of
(c) to a state-machine and testing said sequences for
equal effect, on the internal states when said sequences
are applied to said state-machine;

(e) means for selecting a set of binary
values for substitution for each output function of the
state-machine so that multiple output values of the

cellular array in the at least two output columns conform

WO 93/25975

10

15

20

25

30

35

147

to a predetermined set of output value functions;

(f) means for substituting the sets of
binary values for internal states and testing said
sequences for equal effect on said internal states with
said substituted sets;

means for assigning a distinct memory cell
of the multiple memory cells of the main diagonal of (b)
to each sequence of characters found not to have equal
effect in (f) so that the memory cells collectively store
information corresponding to collector array states; and

means for providing a control memory for

controlling the transfer of information.

26. Apparatus as claimed in claim 24, wherein
(c) includes:

(gq) means for generating a null sequence
and making said null sequence the prior active sequence;

(r) means for distinguishing said prior
active sequence for each unique state-machine output
function and making such distinguished prior active
sequence active;

‘ (s) means for selecting an input
character from said input alphabet and appending said
input character to a prior active sequence to make a new
sequence;

(t) means for distinguishing said new
sequence for each state-machine output function which
distinguishes said prior active sequence;

(u) means for making each said
distinguished new sequence active as long as said
distinguished new sequence does not have equal effect,
with a substituted set of binary values determined by the
distinguishing output function, on the set of machine
states of the state-machine, including unspecified
entries, as a previously generated distinguished prior
active sequence; and making said new sequence active if
at least one said distinguished new sequence is made

PCT/US93/05222

WO 93/25975 PCT/US93/05222

10

15

20

25

30

35

148

active;

(v) means for assigning a distinguished
antecedent sequence to each such distinguished prior
active sequence, this distinguished antecedent sequence
consisting of said new sequence distinguished by the
identical output function as the distinguished prior
active sequence if the distinguished new sequence is
declared active, or, if the distinguished new sequence is
not declared active, making the distinguished prior
active sequence which has equal effect the antecedent
sequence is the distinguished prior sequence which has
equal effect;

(w) means for repeating (s) through (v)
until said input alphabet is exhausted;

(x) means for making the prior active
sequence to which input characters had been appended in
(s) through (w) inactive, making each active
distinguished new sequence an active distinguished prior
sequence, and making each active new sequence an active
prior sequence; and

(y) means for repeating (s) through (x)

until all active sequences have been made inactive.

27. Apparatus as claimed in claim 24 wherein
(d) is applied in reverse order of input characters to
said state-machine.

28. Apparatus as claimed in claim 26 wherein
(d) is applied in a reverse order of input characters to
said state-machine.

29. Apparatus as claimed in claim 24 wherein
sequences of input characters are applied in character
reverse order so that a pair of sequences have equal
effect when both sequences comprising the pair result in
a state-machine having identical final state-machine
states in (f), including identical locations of

WO 93/25975 PCT/US93/05222

10

15

149

unspecified entries.

30. Apparatus as claimed in any one of claims
22 to 24 wherein the pair chart of (g) is constructed to
include a unique entry point indexed by each pair of
sequences found to have non-equal effect on the internal
states of the state-machine at (f).

31. A method as claimed in anyone of claims 2

to 4 wherein steps (n) through (p) includes:

determining the least number of cells of the
cellular array of the main diagonal which are assigned
compatible sets of input sequences having the
characteristics of closure and cover.

WO 93/25975

PCT/US93/05222
1/29
120- 148+ ;
! CREATE DERIVE PRIME
. COMPILATION COMPATIBLE SETS
| TABLE AND ASSOCIATED
52 i IMPLICATION SETS
N Y - ;
INITIALIZE ALL 150~ i
OUTPUT MAPPING DERIVE MINIMAL
| TABLES AND COVER PATH
| ANTECEDENT ~F1G. 3-
! TABLE - .
; 152~ 1
124 |
| : ! NONE 'DETERMINE CELLULAR
: SELECT AN EXIST ~ ARRAY SIZZ FOR
—= UNTRIED ACTIVE STATE—MACHINE
| | INPUT SEQUENCE APPLICATION
NONE | or ; . , —
exisT| 7265 4 138~ . 154~
L SELECT A ' CONSTRUCT 1 ACH MEMORY
| CHARACTER FROM | |INITIAL PAIR f@?ﬁf\ﬁ{ﬂ A EmME
[INPUT ALPHABET i CHAR? : Fé:OMPAJEBLE NS|ET|
L g0 | . " FROM THE MINIMAL
JERELS— 120 COVER PATH
| | CREATE NEW . DETERMINE — ;
| . INPUT SEQUENCE | | COMPATIBLE 156 ;
NONE| 3o | L_PAIRS [CONSTRUCT CONTROL
EXIST| ———] 142< . MEMORY ARRAY
| | CREATE NEW ; _ - ,
o ENTRIES 5;%?%%?9?57 158~ i
132 i U PAIRS - COMPLETE ENTRIES
. | SELECT UNTRIED 4o IN CONTROL
.| OUTPUT MAPPING | —— MEMOR'
. COLUMN HEADER 'DERIVE PAIR 160-. '
| DERIVED FROM 1} |IMPLICATIONS LOAD CELLULAR
P ARRAY CONTROL
SEQUENCE SELECTED| 7.6 | 5 NV ORY OR
— AR HUTE T DERIVE . PROGRAM CONTROL
‘ FUNCTION © MAXIMAL 2 MEMORY PLA
i ; . COMPATIBLE 162- !
34, ! Re” M\SETlLHW L
~FIG. 2- A
oAt e G ° CELLULAR ARRAY
h N
COLUMN MEMORY VALUES
136
COMPARE NEW
ENTRIES WITH
. OLD AND ASSIGN
I ANTECEDENT B
" o

! SEQUENCE

WO 93/25975
2/29
114 1145 114 114 ,
T T ://706
112 i : .—108
i g | 108
v 7 7 7
/ / /
110 110 110 110 o
To4 124 154
124, 124, 124 124 R
N N O 116 3 1]
5722’ : : 118 ‘752§
] T 718 ;
118 | | |
: 1 i
‘< A/ . / / / /
/ / / / _ _ _
120 120 120 120 150 150 7130
11 — 776
) [*
i : ,
| |
. — 116
| | MEMORY
B |
l ! ! |
! X T T
| ~126 i,

104

PCT/US93/05222

WO 93/25975 PCT/US93/05222

3/29

CHOOSE RIGHT MOST
TWO COLUMN HEADERS-
MARK AS TRIED

)

2o

N
\

TRIED ™~ NO

INPUT SEQUENCES >
COMPATIBLE
2 228-

3
226 YES ~ CREATE TWO
\ . TRIAL MAXIMAL
CREATE ONE TRIAL ' COMPATIBLE SETS

MAXIMAL COMPATIBLE SET |
|

232~

230 UNA}RREED o TRIAL MAXIMAL
INPUT SEQUENCES> COMPATIBLE SETS

REMAINING BECOME MAXIMAL
»

COMPATIBLE SETS

YES !

234\ I
SELECT RIGHT MOST - END
UNTRIED INPUT SEQUENCE- \. J/
MARK AS TRIED
236\

CREATE NEW TRIAL
MAXIMAL COMPATIBLE SETS

238~]

COMBINE TRIAL MAXIMAL
COMPATIBLE SETS

240\
DELETE PROPER SUBSETS

WO 93/25975 PCT/US93/05222
4/29
FORM COVERING
TABLE 322
CHOOSE AN INPUT
SEQUENCE CONTAINED | 5o,
IN THE FEWEST |}°F
NUMBER OF PRIME
COMPATIBLE SETS
FORM ROOT NODES OF | o,
CANDIDATE MINIMAL }9<
COVER TREES
I 1
CHOOSE A PATH |
HAVING THE FEWEST |
NUMBER OF NODES |
3ég ! 332
i 4
330 DOES
THE_PATH “BATH FOR.
SATISFY EACH METHOD
CLOSURE OF CLOSURE
>
vES 238
334 CHOOSE AN "ADD A BRANCH
IS UNCOVERED INPUT| AND NODE FOR
THE PATH SEQUENCE ~ EACH PRIME
A COVER CONTAINED IN | _COMPATIBLE SET
? THE FEWEST ~ COVERING THE
NUMBER OF SELECTED
PRIME INPUT
COMPATIBLE SETS SEQUENCE
336
fle. =

PCT/US93/05222

\d

{

WO 93/25975
416 5/29
408 ’
L
]
408
™~ _—
’]
// \\ v
0,
1, ()
10, X 0;
QZ ! !X 77
01, A XD |y
/ . X X 0s
G S o

=
ﬁ*j
by
-

0,10
o K1,
Q1 0}
X1'a| ol10, FJIG 7

07 Qg / 701 O2 NS :)

Or | QO |70, 1, + 02} Q

>
-
§N]

WO 93/25975 PCT/US93/05222

6/29
| 0 1 0
7 i
I
|
| u
| i
BOUNDARY VALUE ENCODING ! !
UNDER INPUT ESTATE 0 Z1 L7

0 1) 0 1

T

]

- |

[1 l
; =

BOUNDARY VALUES ENCODING ; 2
UNDER INPUT STATE 1 1 2
FIG. §
@ _
]
0] 1]

INITIAL MEMORY CELL VALUES
T Ifh}? ’

¢

171G, HA

WO 93/25975 PCT/US93/05222

7/29

BOUNDARY
DATA BUS LINE VALUES

ABOVE MEMORY CELL P
E 3:1
' — MULTIPLEXER

, ,

}
|
il
—]
L

LATCH
FEEDBACK L
LNE O L]

U/

— {
/

CONTROLLING
N LOGIC

— L

DATA BUS LINE LATCH

BELOW MEMORY CELL
FiG. 10

-

DECODER

DATA BUS AND GATE—-\
/ LINE '

DATA SELECT '————(

AND GATE
\

.

{ \

\ \
{
\\

B U S C) ~— \.’—/:; /
ACCESS (= \
LOGIC |

[V
T
4

‘\\F
(-0
L

PCT/US93/05222

WO 93/25975

8/29

pivs

O

e
L)

FaN)

]
i
o
Ly

c b TOIA

| d3L1S NOILISNVYL 3J1VIS

1.
b
A7

J{EE}J

]
I T

iy

|
|
— /b
T (i
»-___r*-]r—‘-—- E14 3
l‘.__l || l, 4
iy !

=
&

. $
:)
ALl
v {

A

{CFI
&N

o

gl

46

o

i

g
JH

DL
NG

- rgj'_]’
{\E _,{J\[:

A

' !
8! i

YR
4

o,

4

I
ol

RGRGRGRG]

$}

Ty

r 3
1
IR

1]

{¢Si¢$i¢

iy iy
iﬁﬁﬁﬁﬁgl
-

*éj

s

= O

o5

v

QO

-
=
i
4 N
.

PCT/US93/05222
9/29

WO 93/25975

&b OO0

¢ d31S NOILISNVYL 3JLVILS

I\
9
U
LY
[
\
v

g
,..--L,
-

I
C
-
; I
A
LY
|

Firnd

JH
p

bt e

bt
P
A
=
e
i
,

o
0
J
s
b

T B

A';—‘—; be

R AN
Ly
&

:
L I |
A H i 1 H i
L [‘
3 \
fﬂc‘iﬁ Kt
I e
. T ;
'] 1
' t '
i
i)

S

1

/

t

R
PR
'

1 ;
— tp—— | — e
1 . . IR ’

~ i~
T
~

ey

T
|
péas
{
g
|

BT
L

’JH Jr-'.,u PR
L

T
¢
o

o

T
{Cﬂ%

¥

|
11

%

g

Tt %ﬁ%
Ic
&%

{
RS
1B

Ol U
Al

=
G

@@% MW@%NQZQ

PCT/US93/05222

WO 93/25975

10/29

AR

¢ d31S NOILISNVYL 31VIS

11
¥
1
=
&
Ly
il
¥
¥

i
|
| ——
'y
——
Hoy
i
7
\
~
-]
4

L —
HoH
et
R
I
1

5
@%%?%%%ﬁ% R

==y

|

o

o

Q:D}ﬁilj aﬁ%ﬂigﬁﬁgﬁjﬁ%t

PCT/US93/05222

WO 93/25975

11/29

L Oid

SONILNOY SNOINVLIINNIS

e

PP

/ S]

A A
i,
J

<‘~

&

——
—
W,
| T

WO 93/25975

BEGIN IDLE

BEGIN IDLE: PRI O

IDLO SGT-TGT
IDLO: GT1 WT
IDL1 SGT-TGT
IDL1: GTO WT

IDLO: GT1 WT:MBB

NRM1 SGT-TGT
NRM1: GTO WT
NRMO SGT-TGT
NRMO: GT1 WT

IDL1:GTO WT:MBB
BEGIN IDLE: PRI 1

io==MBRO-MBR1-MBB

1, = MBRO -MBB

14 = MBRO -MBR1- MBB

:

PCT/US93/05222
12/29
I1TER
MM
B B
P L3 o
11 - 1 - 2 - 130 o
2] - - - 3 - —l0 o0
3|13 3 3 3 7 411 0
4] - - 10 3 8 51 0
515 5 12 6 5 5|0 1
6l - - 10 3 — —-|o 1
71 - - 10 3 8 -|{1 0
gl8 8 9 6 8 8|0 1
9] - - 10 3 - —|0 1
10110 10 10 10 11 4|1 0
111 - - 10 3 8 5|1 0
121 - - 10 3 - —|o 1
135l - - = 3 - s5]lo0 o0
1, = MBRO - MBR - MBB
i3=:MBRO-MBB
i5=:MBRo-MBR1-M B
R PAVE
G, 76

PCT/US93/05222

WO 93/25975

i iy ip i3 iy is

- N
MO NI
— — 00O M~
— N MW
OO~ O «—
OO —0O —0O
0O T O T T |
| | O T T |
L0 0O O+ 0O 0
| | O+ O O
| o0 | |
| | oT | |
OO0 OT O v

11

ig 1y iy i3 iy s igig igls igis igls igig iois ifig iiis

—a-—-b-5>b

1

Q
a

a

o]

cccccc Cc C

C

d ddffddd d

——ccdd

- = CC

Ol —oO |

I —O |

O | OO

I — O |

OO —00

| —O O

| ~ QO v~ v

O | —O |

OO0O~—0O~«—0O

| —oO |

oOlto~— 1| |

I 1O~ | |

| = | —— |

| OO | OO

I 1 O |l OO

1T o~ | |

1 O— 1 |

O— O — — |
I 1o~ |
OO0OO—0O0
I lo—0O0O
oOlo~— 1 |

I to— 1 |

SCOO~«—0O

WO 93/25975 PCT/US93/05222

14/29

COLUMN IMPLICATIONS

i, i,
/—\ //_\\
AN \
//—‘—/;—\\ /f——"'“—“\ —
Ip 1, ol bl lolpiy Lol
cC C C C (o4 (of
d f - c c
- C C C - -
- C (o] C - -
11 T 1 1
0 0 - - 1
— 1 1 - -
— 1 - -
00 0o 0. 0 0
11 - 0 - 0
-0 0 0 - -
-0 0 0 - _
b oa 4 O
fiG. 1o

WO 93/25975 PCT/US93/05222

15/29

PAIR CHART

i,(0),1,(0)") 2(0).

15(0),155(0) | | X |2(1)
15(0),193(0) 14(0)
¥4E8§404Eg§ x| X lig(h)
SO0t XX i(0)

X1 IXT X (1)

X 1 X [ix(0)

>

WO 93/25975 PCT/US93/05222

16/29
3 7 15 17 38 42 44 47 50 52 57
NULL
NULL
57 15 23
57 17 25 27
19 11 57 38
21 40 38 57
4 6 12 14 20 22 39 41 43 45 46 57 0
NULL O
NULL O
57 16 4
47 57 18 35 4
57 20 31 6
57 22 33 37 6
4 12 20 22 39 41 45 47 54 57
NULL
NULL
57 16
35 18 57 47
20 57 31
22 57 33 37
15 17 20 22 23 25 31 33 34 38 45 46 48 53 57
NULL
NULL
NULL
52 17 57 47 25 27
NULL
38 22 57 42 33 37
15 17 20 22 23 25 27 31 33 37 38 42 45 47 48 52 56 57
NULL
NULL
NULL
NULL
NULL
NULL
16 18 19 21 24 26 28 30 32 36 39 43 44 46 49 51 55 57
NULL
NULL
NULL
NULL
NULL
NULL
357 9 15 17 34 38 44 46 53 57 1
NULL 1
NULL 1
57 15 23 6
57 17 25 27 6
57 19 38 11 5

57 21 40 29 38 42 5

WO 93/25975

PCT/US93/05222

17,/29
4 8 16 18 35 39 45 47 54 57
NULL
NULL
57 16 24
57 18 26 28
20 12 57 39

22 41 39 57 43

16 18 19 21 24 26 30 32 35 39 44 47 49 54 57 4

NULL 4
NULL 4
NULL 7
51 18 57 46 26 28 7
NULL 7
39 21 57 43 32 36 7

35 11 13 19 21 38 40 44 46 53 57 3

NULL 3
NULL 3

57 17

46 57 17 34
57 19 30

57 21 32 36

4 6 8 10 16 18 39 43 45 46 51 57 2

NULL 2

NULL 2

57 16 24 7

57 18 26 28 7

57 30 39 12 0
57 22 41 14 39 43 0

311 19 21 29 38 40 42 44 47 50 57 5

NULL 5
NULL)

57 15

34 17 57 46
19 57 30

21 57 32 36

2 4 6 39 43 45 46 57

NULL O
NULL 0
8 57 16

10 57 18
12 57 20
14 57 22

N =

N

- OWZ

OOMNN

1 3 5 38 44 46 53 57

NULL 1
NULL 1
7 57 15
9 57 17
11 57 19
13 57 21

O OWX

)

i
(\o)
.

PCT/US93/05222

WO 93/25975

18/29

!
)
g
N

e
'

Ly T

..{f$ R,

— I —smoo

NI

J .oﬁ S3LVLIS LNdNI

]

1 1
1

v R
-
i

J R

o
H

T, e

BAE

7

0

/
N
" "

I

g

. Hh

S

ﬁ%yﬁgﬁ%ﬁ

i

L

2

1

%%}»@Q

It
"
1

| %J R

il

SRS
iy

™~

Qm?%?%g%ﬁ

Y

V)

9

U w3

Ol Qnﬁzwg%

8
r
<
.
/
;) o\
CD -

0

PCT/US93/05222

WO 93/25975

19/29

=m0~

X EVIN|

€1 ¢ ¢1 S3LVIS LNdNI

A

4<A\.$

et Al
L

{4

‘:U..;L,
Ly

_\j,-i%
i

+
e

{.<.

o £
TS 1A
ol “h
L . = m..\.J
- ﬁ,,vv_ N Aﬁvﬂ it
A e
AT
T3]
[T]

4(‘-’* 4

£t

SRS

T J':.

1 N

1
1

1B

1l

{z 1
wE

PCT/US93/05222

WO 93/25975

20/29

=moO -~

.,

Ec O1d

St ‘Y1 S3LVIS LINdNI

‘L—gj
&

L4

B S
I

A

—t —
o
-
%
|
=

In
.l
NPk
£

&
i

&
v

£
=
B

NgTN

; :
A
i
e

fGE

(.06

i
T
-

1
1
%

H

1|
LY
{{ *{’

2
o
H.UA*

s

It
4““,-1

SR
i

It
5
4
1
{

g

Lt
13}, CD}, in

=
Hh,

B
iy

1 :
RS
- 3
!

iy

%,

1T

dydads,
o Thy

_T§%%4¢§@§§¢§Rﬁﬁ¢§?:“

m%%%ﬁ%

(e}

9
Sl P
O3

Ol T

e

PCT/US93/05222

WO 93/25975

21/29

OID0T AdVANNOd

1= mo—

A ANV ANR ANV ANVANIANVANVANIVAN AN ANV ANV AN AV AN AV AN ANVANV AN ANV ANVANRVANVANVANIVANAAN
<l
_ —J- - _ N T - - m. A.,\/*.i S . -
(SR B S S PR SO - A —
R R T e - — o—o 4 — —4 A—_
R R e 3 —— —— @ /\—.— <
|

PCT/US93/05222

WO 93/25975

Ge OId

22/29

(LYV d0Idd)
sng ,
VIVa< ZX ¥IAIZOSNVAL
Ol 2 SYzAvL S =
]) Amp ovm_
X Wodd3 | ZX S3IHOLVI ‘ ;
N
v9GZ/2 L 2)y C/SAVL ’
- Q] |
| AQv3Id/
avaay < IAQYNVYA/ (ZHWOS)
N3d/ ISV 98¢08
d/M
< 31T081NOD
V INI V1N 437 sng . OIN
dyd3 VN/
NM_BM"AU{ AMOI J1NI
40l<J ayol| g105nd3 sav/
LdNYIINI<———— YOL1VYINIO
Ol 1353y
ANV 2070

PCT/US93/05222

WO 93/25975

23/29

9c 914

(L¥V ¥oldd)

(9NILNNOD NI1934

(3A1L0V)
AVI3Q T 3INIL

¢adv3idd3i

.

‘ 2av3yol

% ¥3ILNNOD avol)

..zult<>>

(3AILOV) VINI ¥O

G¥d3 ‘Ymol ‘Qyol k

(3A1L0V S309 N3a/
YAAIFOSNVYYL 319VN3)

_uﬁolz<w:.

I MOVINI

L

1av3idd3

e 1 V340l

3409234

(3AILOV) 3JAILOVTSNA

(LIvm)

(3AILDY) AQv3y/

[Mo¥l~sng

910SNd3

(3AlLoV) sav/

(3710A0 Sng NI938)
[98¢08

PCT/US93/05222

00000c

24/29

AdvaNNnod Tvool

= = —{XavaNnod 1vdo1D]

H H |

WO 93/25975

N
nooooooo

WO 93/25975

PCT/US93/05222

BOUNDARY LOGIC

INPUT STATE 0O

FiG. 28

PCT/US93/05222

WO 93/25975

26/29

}
1

Tty

s

6c O1d

10 31V1S LNdNI

e

1
1)
B

T e

%ﬁi@%&%ﬁ

St =

VA

1)| 1
1l i1 |

@) 1

@Eq}}?ﬁﬁzw@ :{?w}%@?m} :
b, £

RRRKRAENE
ey,

QLU
) :ﬁ~$}:%ﬁ§§%4

%12
QE.

11

s | g ¢

T
- 1T

SISO O T Aavd

7| o,
8

Ol

[

WO 93/25975 PCT/US93/05222

INPUT STATE 10

FIG. 30

BOUNDARY LOGIC
| | o | ~ o 1 & |

WO 93/25975 PCT/US93/05222

FIG. 317

INPUT STATE 11

BOUNDARY LOGIC

WO 93/25975

29/29

PCT/US93/05222

BN
& ~
[>o
’ o
S e
Q o
O o
Z —{>0
£ o
& ”
[>o
: :
[>o
< o
> 0
So
>‘ >0
= Do
< Do
- >0
Z o
- Do
O >0
s Do
>0
RRRAXARRRARARRKRARLA
—oaw| &
—OZ N %
o —>
Oax % :
=-o0—> :
2o —{> —
oo —% 2
<o——> S
OO <O—>1 —> — S
z<—% =

GLOBAL <

G, 32

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

