I*I Innovation, Sciences et Innovation, Science and CA 3120755 C 2022/12/06
Développement économique Canada Economic Development Canada

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 3 1 20 755

12 BREVET CANADIEN

CANADIAN PATENT

13 C

(22) Date de dépébt/Filing Date: 2012/06/26

(41) Mise a la disp. pub./Open to Public Insp.: 2013/12/26
(45) Date de délivrance/lssue Date: 2022/12/06

(62) Demande originale/Original Application: 2 781 391

(51) CLInt./Int.Cl. HO4L 12/16 (2006.01),
GO6F 16/957(2019.01), GO6F 16/955(2019.01)

(72) Inventeurs/Inventors:
ONUT, IOSIF VIOREL, CA;
IONESCU, PAUL, CA,
AYOUB, KHALIL ANDREW, CA,
SMITH, WAYNE DUNCAN, CA

(73) Propriétaire/Owner:
IBM CANADA LIMITED - IBM CANADA LIMITEE, CA

(74) Agent: CHAN, BILL W.K.

(54) Titre : IDENTIFICATION DE LIENS EQUIVALENTS SUR UNE PAGE

(54) Title: IDENTIFYING EQUIVALENT LINKS ON A PAGE

=Y
o

(57) Abrégé/Abstract:

An llustrative embodiment of a computer-implemented process for identifying equivalent links on a page responsive to a
determination that the crawler has not visited all required universal resource locators, locates a next URL to be crawled to form a
current URL and processes the current URL to identify equivalent URLs. Responsive to a determination that the crawler has not
visited the current URL, determine whether necessary to crawl all identified equivalent URLS and responsive to a determination that

NETWORK

11

N

CLIENT

]

CLIENT

‘ I/-\/ﬂ
[o]

CLIENT

it is necessary to crawl all identified equivalent URLS, adding all equivalent URLs to a list of URLs to be crawled.

"
C an a da http/opic.ge.ca + Ottawa-Hull K1A 0C9 « arep:/eipo.ge.ca OPIC
OPIC - CIPO 191

ABSTRACT OF THE DISCLOSURE

An illustrative embodiment of a computer-implemented process for identifying
equivalent links on a page responsive to a determination that the crawler has not visited all
required universal resource locators, locates a next URL to be crawled to form a current URL
and processes the current URL to identify equivalent URLs. Responsive to a determination that
the crawler has not visited the current URL, determine whether necessary to crawl all identified
equivalent URLS and responsive to a determination that it is necessary to crawl all identified

equivalent URLS, adding all equivalent URLSs to a list of URLSs to be crawled.

CA9-2012-0012CA03

Date Regue/Date Received 2021-06-02

IDENTIFYING EQUIVALENT LINKS ON A PAGE

BACKGROUND
1. Technical Field:

[0001] This disclosure relates generally to data access, analysis and delivery in a data
processing system and more specifically to information and data management using search

applications and scan applications in the data processing system.
2, Description of the Related Art:

[0002] A website crawler is a tool that performs an automatic exploration of a website. The
task of exploration is beneficial for many applications including simple information indexing

tasks, as well as a more complex compliance testing.

[0003] One challenge automated tools face is capability to understand whether two or more
universal resource locator (URL) links on a page perform equivalent actions. A determination is
important because websites, for example, comprising news, blogs, on-line stores, and emails,
have a massive quantity of URL links typically providing a similar type of navigation action,
bringing a user to equivalent pages. In practice the link equivalency collapses into a single news
link, a single blog entry, a single item in the store, a single email, respectively. A common term

for these links is equivalent links.

[0004] Exploring all possible equivalent links of a website is a time consuming task that is not
required in all cases. For example, when performing a security scan, a web crawler is more
concerned in identifying a structure of a webpage, than in the text content. Using this example,
exploring just one equivalent link would be sufficient, and the results could be generalized for

the remaining instances.

[0005] In addition to the initial identification problem, most websites on subsequent visits
change the set of equivalent links displayed to the user. Accordingly, a news letter will show the

latest news, a blog will show the latest blogs, a on-line store will probably show the items on

CA9-2012-0012CA03 1

Date Regue/Date Received 2021-06-02

sale, to name a few. The crawling of such websites is thus further complicated because the
container page containing all the equivalent links is typically never the same, therefore a crawler

is not be able to know the web page was a previously visited web page.

[0006] Current solutions to the problem typically require a web crawler to examine the page
content returned by each link to determine whether the links are equivalent. The web crawler
uses heuristics to omit portions of the page that will commonly differ between similar pages, for
example, advertisements, but this practice leads to inaccurate results where either too much
information or too little information is omitted. Improvements to this technique require a user to
create hypertext markup language (HTML) expressions to indicate which portions of pages to

omit when comparing the pages to determine similarity.

[0007] In addition, existing techniques use the same page structure comparisons to determine
whether the structure of the webpage stays the same during subsequent visits and discard the
page after a period of time. This technique indirectly solves the problem of equivalent links,
because the web crawler works with the structure of the page, rather than the attribute values of
the page. Other solutions require expert knowledge in configuring the crawler to ignore certain
portions of the URL.

SUMMARY

[0008] According to one embodiment, a computer-implemented process for identifying
equivalent links on a page, determines whether a crawler visited all required universal resource
locators and responsive to a determination that the crawler has not visited all required universal
resource locators, locates a next URL to be crawled to form a current URL. The computer
implemented process processes the current URL to identify equivalent URLs, determines
whether the crawler visited the current URL, and responsive to a determination that the crawler
has not visited the current URL, determines whether necessary to crawl identified equivalent
URLS. Responsive to a determination that it is necessary to crawlidentified equivalent URLS,
the computer implemented process adds all equivalent URLs of the identified equivalent URLSs

to a list of URLs to be crawled.

CA9-2012-0012CA03 2

Date Regue/Date Received 2021-06-02

[0009] According to another embodiment, a computer program product for identifying
equivalent links on a page, comprises a computer recordable-type storage media containing
computer executable program code stored thereon. The computer executable program code
comprises computer executable program code for determining whether a crawler visited all
required universal resource locators, computer executable program code responsive to a
determination that the crawler has not visited all required universal resource locators, for locating
a next URL to be crawled to form a current URL, computer executable program code for
processing the current URL to identify equivalent URLs, computer executable program code for
determining whether the crawler visited the current URL, computer executable program code
responsive to a determination that the crawler has not visited the current URL, for determining
whether necessary to crawl identified equivalent URLS and computer executable program code
responsive to a determination that it is necessary to crawl identified equivalent URLS, for adding

all equivalent URLs of the identified equivalent URLSs to a list of URLs to be crawled.

[0010] According to another embodiment, an apparatus for identifying equivalent links on a
page, comprises a communications fabric, a memory connected to the communications fabric,
wherein the memory contains computer executable program code, a communications unit
connected to the communications fabric, an input/output unit connected to the communications
fabric, a display connected to the communications fabric and a processor unit connected to the
communications fabric. The processor unit executes the computer executable program code to
direct the apparatus to determine whether a crawler visited all required universal resource
locators and responsive to a determination that the crawler has not visited all required universal
resource locators, locate a next URL to be crawled to form a current URL. The processor unit
further executes the computer executable program code to direct the apparatus to process the
current URL to identify equivalent URLs, determine whether the crawler visited the current
URL, and responsive to a determination that the crawler has not visited the current URL,
determine whether necessary to crawl identified equivalent URLS. Responsive to a
determination that it is necessary to crawl identified equivalent URLS, the processor unit further
executes the computer executable program code to direct the apparatus to add all equivalent

URLs of the identified equivalent URLSs to a list of URLSs to be crawled.

CA9-2012-0012CA03 3

Date Regue/Date Received 2021-06-02

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0011] For a more complete understanding of this disclosure, reference is now made to the
following brief description, taken in conjunction with the accompanying drawings and detailed

description, wherein like reference numerals represent like parts.

[0012] Figure 1 is a block diagram of an exemplary network data processing system operable

for various embodiments of the disclosure;

[0013] Figure 2 is a block diagram of an exemplary data processing system operable for

various embodiments of the disclosure;

[0014] Figure 3 is a block diagram of a link equivalency system operable for various

embodiments of the disclosure;

[0015] Figure 4 is a textual representation of a set of URLs processed using the link

equivalency system 300 of Figure 3 operable for various embodiments of the disclosure;

[0016] Figure 5 is a textual representation of a set of URLs processed using the link
equivalency system 300 of Figure 3 operable for various embodiments of the disclosure is

presented,

[0017] Figure 6 is a flowchart of a link equivalency process operable for various embodiments

of the disclosure;

[0018] Figure 7 is a flowchart of an extraction of equivalent groups process operable for

various embodiments of the disclosure; and

[0019] Figure 8 is a flowchart of an enhanced crawling process operable for various

embodiments of the disclosure.

CA9-2012-0012CA03 4

Date Regue/Date Received 2021-06-02

DETAILED DESCRIPTION

[0020] Although an illustrative implementation of one or more embodiments is provided
below, the disclosed systems and/or methods may be implemented using any number of
techniques. This disclosure should in no way be limited to the illustrative implementations,
drawings, and techniques illustrated below, including the exemplary designs and
implementations illustrated and described herein, but may be modified within the scope of the

appended claims along with their full scope of equivalents.

[0021] As will be appreciated by one skilled in the art, aspects of the present disclosure may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a

A1)

“circuit,” “module,” or “system.” Furthermore, aspects of the present invention may take the
form of a computer program product embodied in one or more computer readable medium(s)

having computer readable program code embodied thereon.

[0022] Any combination of one or more computer-readable medium(s) may be utilized. The
computer-readable medium may be a computer-readable signal medium or a computer-readable
storage medium. A computer-readable storage medium may be, for example, but not limited to,
an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus,
or device, or any suitable combination of the foregoing. More specific examples (a non-
exhaustive list) of the computer-readable storage medium would include the following: an
electrical connection having one or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, or a magnetic storage device or any suitable
combination of the foregoing. In the context of this document, a computer-readable storage
medium may be any tangible medium that can contain, or store a program for use by or in

connection with an instruction execution system, apparatus, or device.

CA9-2012-0012CA03 5

Date Regue/Date Received 2021-06-02

[0023] A computer-readable signal medium may include a propagated data signal with the
computer-readable program code embodied therein, for example, either in baseband or as part of
a carrier wave. Such a propagated signal may take a variety of forms, including but not limited
to electro-magnetic, optical or any suitable combination thereof. A computer readable signal
medium may be any computer readable medium that is not a computer readable storage medium
and that can communicate, propagate, or transport a program for use by or in connection with an

instruction execution system, apparatus, or device.

[0024] Program code embodied on a computer-readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wire line, optical fiber cable, RF, etc.

or any suitable combination of the foregoing.

[0025] Computer program code for carrying out operations for aspects of the present disclosure
may be written in any combination of one or more programming languages, including an object
oriented programming language such as Java®, Smalltalk, C++, or the like and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. Java and all Java-based trademarks and logos are trademarks of Oracle,
and/or its affiliates, in the United States, other countries or both. The program code may execute
entirely on the user's computer, partly on the user's computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote computer may be connected to the user’s
computer through any type of network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an external computer (for example, through

the Internet using an Internet Service Provider).

[0026] Aspects of the present disclosure are described below with reference to flowchart
illustrations and/or block diagrams of methods, apparatus, (systems), and computer program
products according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart

illustrations and/or block diagrams, can be implemented by computer program instructions.

[0027] These computer program instructions may be provided to a processor of a general

purpose computer, special purpose computer, or other programmable data processing apparatus

CA9-2012-0012CA03 6

Date Regue/Date Received 2021-06-02

to produce a machine, such that the instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create means for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[0028] These computer program instructions may also be stored in a computer readable
medium that can direct a computer or other programmable data processing apparatus to function
in a particular manner, such that the instructions stored in the computer readable medium
produce an article of manufacture including instructions which implement the function/act

specified in the flowchart and/or block diagram block or blocks.

[0029] The computer program instructions may also be loaded onto a computer or other
programmable data processing apparatus to cause a series of operational steps to be performed
on the computer or other programmable apparatus to produce a computer-implemented process
such that the instructions which execute on the computer or other programmable apparatus
provide processes for implementing the functions/acts specified in the flowchart and/or block

diagram block or blocks.

[0030] With reference now to the figures and in particular with reference to Figures 1-2,
exemplary diagrams of data processing environments are provided in which illustrative
embodiments may be implemented. It should be appreciated that Figures 1-2 are only
exemplary and are not intended to assert or imply any limitation with regard to the environments
in which different embodiments may be implemented. Many modifications to the depicted

environments may be made.

[0031] Figure 1 depicts a pictorial representation of a network of data processing systems in
which illustrative embodiments may be implemented. Network data processing system 100 is a
network of computers in which the illustrative embodiments may be implemented. Network data
processing system 100 contains network 102, which is the medium used to provide
communications links between various devices and computers connected together within
network data processing system 100. Network 102 may include connections, such as wire,

wireless communication links, or fiber optic cables.

CA9-2012-0012CA03 7

Date Regue/Date Received 2021-06-02

[0032] In the depicted example, server 104 and server 106 connect to network 102 along with
storage unit 108. In addition, clients 110, 112, and 114 connect to network 102. Clients 110,
112, and 114 may be, for example, personal computers or network computers. In the depicted
example, server 104 provides data, such as boot files, operating system images, and applications
to clients 110, 112, and 114. Clients 110, 112, and 114 are clients to server 104 in this example.
Network data processing system 100 may include additional servers, clients, and other devices

not shown.

[0033] In the depicted example, network data processing system 100 is the Internet with network
102 representing a worldwide collection of networks and gateways that use the Transmission
Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate with one another.
At the heart of the Internet is a backbone of high-speed data communication lines between major
nodes or host computers, consisting of thousands of commercial, governmental, educational and
other computer systems that route data and messages. Of course, network data processing
system 100 also may be implemented as a number of different types of networks, such as for
example, an intranet, a local area network (LAN), or a wide area network (WAN). Figure 1 is
intended as an example, and not as an architectural limitation for the different illustrative

embodiments.

[0034] With reference to Figure 2 a block diagram of an exemplary data processing system
operable for various embodiments of the disclosure is presented. In this illustrative example,
data processing system 200 includes communications fabric 202, which provides
communications between processor unit 204, memory 206, persistent storage 208,

communications unit 210, input/output (I/O) unit 212, and display 214.

[0035] Processor unit 204 serves to execute instructions for software that may be loaded into
memory 206. Processor unit 204 may be a set of one or more processors or may be a multi-
processor core, depending on the particular implementation. Further, processor unit 204 may be
implemented using one or more heterogeneous processor systems in which a main processor is
present with secondary processors on a single chip. As another illustrative example, processor unit

204 may be a symmetric multi-processor system containing multiple processors of the same type.

CA9-2012-00 1 2CA03 8

Date Regue/Date Received 2021-06-02

CA 02781391 2012-06-26

[0036] Memory 206 and persistent storage 208 are examples of storage devices 216. A storage
device is any piece of hardware that is capable of storing information, such as, for example
without limitation, data, program code in functional form, and/or other suitable information
either on a temporary basis and/or a permanent basis. Memory 206, in these examples, may be,
for example, a random access memory or any other suitable volatile or non-volatile storage
device. Persistent storage 208 may take various forms depending on the particular
implementation. For example, persistent storage 208 may contain one or more components or
devices. For example, persistent storage 208 may be a hard drive, a flash memory, a rewritable
optical disk, a rewritable magnetic tape, or some combination of the above. The media used by
persistent storage 208 also may be removable. For example, a removable hard drive may be used

for persistent storage 208.

[0037] Communications unit 210, in these examples, provides for communications with other
data processing systems or devices. In these examples, communications unit 210 is a network
interface card. Communications unit 210 may provide communications through the use of either

or both physical and wireless communications links.

[0038] Input/output unit 212 allows for input and output of data with other devices that may be
connected to data processing system 200. For example, input/output unit 212 may provide a
connection for user input through a keyboard, a mouse, and/or some other suitable input device.
Further, input/output unit 212 may send output to a printer. Display 214 provides a mechanism

to display information to a user.

[0039] Instructions for the operating system, applications and/or programs may be located in
storage devices 216, which are in communication with processor unit 204 through
communications fabric 202. In these illustrative examples the instructions are in a functional
form on persistent storage 208. These instructions may be loaded into memory 206 for execution
by processor unit 204. The processes of the different embodiments may be performed by
processor unit 204 using computer-implemented instructions, which may be located in a

memory, such as memory 206.

[0040] These instructions are referred to as program code, computer usable program code, or

computer readable program code that may be read and executed by a processor in processor unit

CA9-2012-0012CA03 9

Date Regue/Date Received 2021-06-02

204. The program code in the different embodiments may be embodied on different physical or

tangible computer readable storage media, such as memory 206 or persistent storage 208.

[0041] Program code 218 is located in a functional form on computer readable storage media
220 that is selectively removable and may be loaded onto or transferred to data processing
system 200 for execution by processor unit 204. Program code 218 and computer readable
storage media 220 form computer program product 222 in these examples. In one example,
computer readable storage media 220 may be in a tangible form, such as, for example, an optical
or magnetic disc that is inserted or placed into a drive or other device that is part of persistent
storage 208 for transfer onto a storage device, such as a hard drive that is part of persistent
storage 208. In a tangible form, computer readable storage media 220 also may take the form of
a persistent storage, such as a hard drive, a thumb drive, or a flash memory that is connected to
data processing system 200. The tangible form of computer readable storage media 220 is also
referred to as computer recordable storage media. In some instances, computer readable storage

media 220 may not be removable.

[0042] Alternatively, program code 218 may be transferred to data processing system 200 from
computer readable storage media 220 through a communications link to communications unit
210 and/or through a connection to input/output unit 212. The communications link and/or the
connection may be physical or wireless in the illustrative examples. The computer readable
media also may take the form of non-tangible media, such as communications links or wireless

transmissions containing the program code.

[0043] In some illustrative embodiments, program code 218 may be downloaded over a network
to persistent storage 208 from another device or data processing system for use within data
processing system 200. For instance, program code stored in a computer readable storage
medium in a server data processing system may be downloaded over a network from the server
to data processing system 200. The data processing system providing program code 218 may be
a server computer, a client computer, or some other device capable of storing and transmitting

program code 218.

[0044] Using data processing system 200 of Figure 2 as an example, a computer-implemented

process for identifying equivalent links on a page is presented. Processor unit 204 determines

CA9-2012-0012CA03 10

Date Regue/Date Received 2021-06-02

CA 02781391 2012-06-26

whether a crawler visited all required universal resource locators and responsive to a
determination that the crawler has not visited all required universal resource locators, processor
unit 204 locates a next URL to be crawled to form a current URL. Processor unit 204 processes
the current URL to identify equivalent URLs and determines whether the crawler visited the
current URL. Responsive to a determination that the crawler has not visited the current URL,
processor unit 204 determines whether necessary to crawl identified equivalent URLS and
responsive to a determination that it is necessary to crawl identified equivalent URLS, processor
unit 204 adds all equivalent URLs of the identified equivalent URLs to a list of URLs to be

crawled.

[0045] Using an embodiment of the disclosed process typically enables a crawler to identify
links containing equivalent URLs automatically, providing information enabling operations
including to direct a scanning operation or limit the scanning purpose; enable the crawler to
recognize a container page has been visited before, since the only information that has changed
was equivalent to initial information; and avoid exploring equivalent URLs when data provided

is not meaningful for the current task.

[0046] Web application security scanning typically focuses on testing the functionality of the
page rather than content. This means not determining whether two pages that are structurally the
same have different content. Identifying link equivalence typically prevents the crawler from
having to identify, in later operations, equivalent links lead to pages that are structurally the same
and have the same functionality. Embodiments of the disclosed process accordingly enable the

crawler to detect link equivalency prior to crawling the links.

[0047] For example, typical security scanning software attempts to identify similar functioning
web pages and when found the remaining pages are typically skipped to avoid duplicate
processing. Embodiments of the disclosure provide an approach to avoid such additional
processing. Embodiments may also be used to identify higher priority links that should be
visited. Another embodiment provides a capability for a developer to test for security compliance
without having to wait for an exhaustive scan, however the end user is warned that this is an

approximation and not an exhaustive check.

CA9-2012-0012CA03 11

Date Regue/Date Received 2021-06-02

[0048] With reference to Figure 3 a block diagram of a link equivalency system operable for
various embodiments of the disclosure is presented. Link equivalency system 300 is an example

of a link equivalency system, in accordance with the described process.

[0049] Link equivalency system 300 contains components comprising enhanced crawler 302,
rules data structure 304, comparator 306, intermediate results data structure 308 and reporter
310. Link equivalency system 300 leverages support of an underlying data processing system,
for example network data processing 100 of Figure 1 or data processing 200 of Figure 2.
Components of link equivalency system 300 may be implemented in alternative configurations
comprising a number of discrete components as in Figure 3 or a combination of components
wherein the elements may be combined into logical or physical functional units with other

components of the underlying data processing system or in a standalone form.

[0050] Enhanced crawler 302 provides a capability of a conventional crawler with additional
functions to exploit controlling logic contained within rules 304 to direct the process behavior.
Rules 304 are contained within a rules data structure accessible to components of link
equivalency system 300, in particular enhanced crawler 302. In the example embodiment, rules
304 contains predetermined conditional statements including equivalent URLs will follow a
similar URL pattern, an HTML statement containing a URL has a same number of HTML
attributes, all attribute values for the HTML element containing the URL are the same, and
subsequent visits to pages will likely have different equivalent URLs. Examples are further
described in the forthcoming Figure 4 and Figure 5. The rules are cumulative, so that an

identified equivalent link must satisfy all applied conditions.

[0051] Comparator 306 provides a capability to analyze two document object model
representations of a page associated with a given URL. The analysis determines whether
predetermined conditions are met and when the conditions are met, identifying the URLs

meeting those conditions.

[0052] Intermediate results data structure 308 provides a capability to store results during the
processing operations. For example, a set of links identified in a first portion of the process is
stored for subsequent use in identifying groups of links which satisfy a same set of multiple

conditions and a final set of which used by reporter 310.

CA9-2012-0012CA03 12

Date Regue/Date Received 2021-06-02

[0053] Reporter 310 provides a capability of outputting a result, in one example, containing

remaining sets of URLs or in another example, a pointer to a location of the results.

[0054] With reference to Figure 4 a set of URLs processed using the link equivalency system
300 of Figure 3 operable for various embodiments of the disclosure is presented. The set of
URLs is provided as an example relating to application of the predetermined conditions defined
in rules 304 of Figure 3. The examples reflect use of a news web site such as Digg" , (available

at www.digg.com, from Digg, Inc).

[0055] In example code snippet 400, a first predetermined condition asserts equivalent URLs
will follow a similar URL pattern, as shown in portion 402 of statements 408, 410 and 412. A
second predetermined condition asserts the HTML element that contains the URL has the same

number of HTML attributes as shown in portion 404 of statements 408, 410 and 412.

[0056] A third predetermined condition asserts all the attribute values for the HTML element
that contains the URL are the same, as shown in portion 406 of statements 408, 410 and 412.
There are typically a few attributes that will be an exception to this rule such as HTML tags
including id, alt, and title. Therefore, the exceptional tags should be excluded from a

comparison.

[0057] A fourth predetermined condition asserts subsequent visits to the same pages will likely

have different equivalent URLs.

[0058] With reference to Figure 5 a set of URLs processed using the link equivalency system
300 of Figure 3 operable for various embodiments of the disclosure is presented. The set of
URLs is provided as an example relating to application of the predetermined conditions defined

in rules 304 of Figure 3. The examples reflect use of a social networking site, for example

Twitter (available at www.twitter.com from Twitter, Inc.).

[0059] A page published on the Twitter site typically comprises a layout in which a left red box
presents a selection of who is available, represented by set of statements 514 and a right red box

indicating top tweets, represented by set of statements 528.

CA9-2012-0012CA03 13

Date Regue/Date Received 2021-06-02

[0060] With reference to set of statements 514 comprising statements 508, 510, and 512, a first
predetermined condition asserts equivalent URLs will follow a similar URL pattern, as shown in
portion 502. A second predetermined condition asserts the HTML element that contains the URL
has the same number of HTML attributes as shown in portion 504 of statements 508, 510 and
512.

[0061] A third predetermined condition asserts all the attribute values for the HTML element
that contains the URL are the same, as shown in portion 506 of statements 508, 510 and 512. As
previously stated, there are typically a few attributes that will be an exception to this rule such as
HTML tags including id, alt, and fitle. Therefore, the exceptional tags should be excluded from a

comparison.

[0062] A fourth predetermined condition asserts subsequent visits to the same pages will likely

have different equivalent URLs.

[0063] With reference to set of statements 528 comprising statements 522, 524, and 526, a first
predetermined condition asserts equivalent URLs will follow a similar URL pattern, as shown in
portion 516. A second predetermined condition asserts the HTML element that contains the URL
has the same number of HTML attributes as shown in portion 518 of statements 522, 524 and
526.

[0064] A third predetermined condition asserts all the attribute values for the HTML element
that contains the URL are the same, as shown in portion 520 of statements 522, 524 and 526. As
previously stated, there are typically a few attributes that will be an exception to this rule such as

HTML tags including id, alt, and title, which are accordingly excluded from a comparison.

[0065] A fourth predetermined condition asserts subsequent visits to the same pages will likely
have different equivalent URLSs.

[0066] With reference to Figure 6 a flowchart of a link equivalency process operable for
various embodiments of the disclosure is presented. Process 600 is an example of using the link

equivalency system 300 of Figure 3.

CA9-2012-0012CA03 14

Date Regue/Date Received 2021-06-02

[0067] Process 600 begins (step 602) and receives a given URL from which a document object
model (DOM) representation of a page associated with the given URL is constructed to form a
first DOM (step 604). Process 600 constructs a DOM page using a reload of the given URL to
form a second DOM (step 606). Reloading the page indicated by the given URL typically results

in changes to information presented.

[0068] Process 600 compares the first DOM with the second DOM to identify all links (the
URLs) on a respective page complying with a predetermined condition (step 608). In the

example, the predetermined condition was previously defined as one, which asserts subsequent
visits to the same pages, will likely have different equivalent URLs, as defined in rules 304 of

Figure 3.

[0069] Process 600 determines whether any link satisfies the predetermined condition of step
608 (step 610). Responsive to a determination no link satisfies the predetermined condition of
step 608, process 600 terminates (step 620). Responsive to a determination links satisfy the
predetermined condition of step 608, process 600 extracts all links on the page satisfying the

predetermined condition of step 608 to form extracted first links (step 612).

[0070] Process 600 extract all links on the page, from the extracted first links, which further
satisfy additional predetermined conditions, using the first DOM (with the second DOM when
available) to form a conditional subset of links (step 614). The additional predetermined
conditions are those previously defined as the first predetermined condition, second
predetermined condition and third predetermined condition asserted in defined in rules 304 of

Figure 3.

[0071] Process 600 extracts equivalent groups of links from the conditional subset of links to
form extracted groups (step 616). Process 600 reports the extracted groups (step 618) and
terminates thereafter (step 620). Reporting may be provided to a requester a listing presented to
the requester or as an identifier resolving to a location of a data structure containing the results as

a representation of the extracted groups.

[0072] The URLs on any page that comply with observations A, B, C and optionally with

Observation D are equivalent, and therefore will perform equivalent operations. An embodiment

CA9-2012-0012CA03 15

Date Regue/Date Received 2021-06-02

of the disclosed process extracts all the links in the current page, and filters the extracted links
using compliancy with the four predefined conditions. The embodiment of the disclosed process
creates separate equivalency groups when needed (for example, using twitter where there are 2

equivalency groups).

[0073] Embodiments of the disclosed process do not rely on user input, rather using the
predetermined conditions representative of expert knowledge observations, the disclosed process
programmatically identifies equivalent URLs. Furthermore, on the same page the disclosed
process provides a capability of identifying several groups of equivalent URLs. For example,
with reference to the twitter example statements of Figure 5, it is clear that all the links in the left
box are equivalent with each other. In a similar manner the links in the right hand side of the
twitter page are all equivalent with each other. However, the links in the right hand side box are
not equivalent with the links in the left hand side box of the twitter example. The disclosed

process provides a capability to recognize the similarities as well as the difference correctly.

[0074] With reference to Figure 7 a flowchart of an extraction of equivalent groups process
operable for various embodiments of the disclosure is presented. Process 700 is an example
process of extracting equivalent groups of links from the conditional subset of links to form

extracted groups within process 600 of Figure 6.

[0075] Process 700 begins (step 702) and collects each link satisfying the predetermined
condition of subsequent visits to the same pages will likely have different equivalent URLs to
form a set of links (step 704). Process 700 further splits the set of links created into groups (step
706). The splitting operation uses a pair of predetermined conditions asserting, in one instance,
an HTML element that contains the URL has the same number of HTML attributes and asserting
in another instance all the attribute values for the HTML element that contains the URL are the
same value. The links in a group of links thus formed has an equal number of attributes with

equal respective values.

[0076] Process 700 determines whether a group of links satisfies a predetermined condition
asserting equivalent URLs will follow a similar URL pattern (step 708). Responsive to a
determination that a group of links does satisfy the predetermined condition asserting equivalent

URLs will follow a similar URL pattern, process 700 proceeds to step 712.

CA9-2012-0012CA03 16

Date Regue/Date Received 2021-06-02

[0077] Responsive to a determination that a group of links does not satisfy the predetermined
condition asserting equivalent URLs will follow a similar URL pattern, process 700 removes the

group of links thus identified from the set of links (step 710).

[0078] Process 700 determines whether a group of links in the set of links contains a single
item (step 712). Responsive to a determination that a group of links in the set of links does not
contain a single item, process 700 proceeds to step 716. Responsive to a determination that a
group of links in the set of links does contain a single item, process 700 removes an identified
group of links having a single item from the set of links (step 714). Note how in the case when
the crawler does not go to the same page twice, process 700 performs a cleanup task at the end,

by removing all groups that contain only one link to reduce or eliminate false positives.

[0079] Process 700 reports each remaining group in the set of links wherein each group

comprises equivalent URLs (step 716) and terminates thereafter (step 718).

[0080] With reference to Figure 8 a flowchart of an enhanced crawling process operable for
various embodiments of the disclosure is presented. Process 800 is an example of crawling a web

site using integrated process 600 of Figure 6 and integrated process 700 of Figure 7.

[0081] Process 800 begins (step 802) and determines whether a crawler visited all required
URLs (step 804). Responsive to a determination that the crawler visited all required URLs,
process 800 terminates (step 820). Responsive to a determination that the crawler has not visited
all required URLs, process 800 locates a next URL to be crawled to form a current URL (step
806).

[0082] Process 800 processed the current URL to identify equivalent URLS (step 808). This
operation is performed using process 600 of Figure 6 including process 700 of Figure 7 as

previously described. Process 800 determines whether the crawler visited the current URL (step
810).

[0083] Responsive to a determination that the crawler has visited the current URL, process

800, proceeds to step 818. Responsive to a determination that the crawler has not visited all

CA9-2012-0012CA03 17

Date Regue/Date Received 2021-06-02

required URLs, process 800 determines whether it is necessary to crawl all identified equivalent
URLs (step 812).

[0084] Responsive to a determination that it is not necessary to crawl all identified equivalent
URLs, process 800 adds only a subset of all identified equivalent URLs to a list of URLs to be
crawled (step 814). Adding only a subset of all identified equivalent URLs to the list of URLs to
be crawled enables one or more (but not all) of the equivalent URLs to added as needed to the

list. Process 800 proceeds to step 818.

[0085] Responsive to a determination that it is necessary to crawl identified equivalent URLs,
process 800 adds all equivalent URLs of the identified equivalent URLS to a list of URLs to be
crawled (step 816). Process 800 performs crawling tasks using the current URL (step 818) and
loops back to perform step 806 as before.

[0086] Process 800 improves the operation of determining whether the crawler previously
visited the current URL to detect whether the content of two URLs is the same, by adding the
equivalent URLs information in steps 814 and 816. Therefore, when the content of the URLs is
different, but the differences all resolve to equivalent URLs, the obvious conclusion is the two

web pages are exactly the same (for example, only the equivalent data has changed).

[0087] Looking at links that are equivalent and understanding which part of the link is
changing, the disclosed process provides a capability to easily infer a parameter of a query URL
(not necessarily a regular parameter, but could be a parameter in the path, or even in the name of
the webpage, (also known as URL rewriting), that is, the unique identifier of the data that each
URL will uncover. Knowing that, a security scanner can mutate the parameters to test each
parameter for security issues. Current products require manual customization by the user of the
product. This technique enables a scan to programmatically detect a part of the URL that
changes. It is quite reasonable to assume that this parameter will end up in an SQL query, and
when not sanitized could lead to SQL Injection vulnerabilities. Another practice simply displays
the parameter back in a response of the server to expose cross-site scripting (XSS) vulnerability

when not sanitized.

CA9-2012-0012CA03 18

Date Regue/Date Received 2021-06-02

Using an example from Figure 4 of the disclosure, the portions 402 can be mutated and tested
for security. For example a user my manually configure the scan, which is a very hard task to ask
the user to do. In another example, when changing parts are more predictable (such as numbers)
different numbers may be used to continue the exploration of those numbers to yield data. For
example, when a portion comprising href="/story/r/story1 5223 " is used to generate links not in

the current page that are very likely to yield to new data, exploration may comprise a range such

as /story/r/storyl to /story/r/story99999999.

[0088] Understanding equivalent links enables an understanding that in this particular website,
those links are likely to be modified, and also created, and therefore, when scanning for
compliance (security/accessibility) a scanner could assign a higher priority to the links, which is

the opposite of ignoring the links.

[0089] As the role of security testing moves more to developers, there is a desire to have
developers test a small set of security rules with a goal of having a quick scan with a low false
positive rate. Applying an embodiment of the disclosed process to the application scanner
provides a capability for dynamic analysis products that would allow for a quicker scan because

equivalent links lead to the same DOM structure.

[0090] Configuring a dynamic analysis scan to successfully cover an entire application can be
an onerous task. Embodiments of the disclosure can be used to help programmatically identify

parameters in portions of the application where the patterns are identified.

[0091] Typical web crawlers could use this technique to categorize the links from a site and

construct a more relevant site map and have a better internal representation of a site.

[0092] Taking the example of Figure 4, a search engine can categorize instances of the
/story/r/* pattern into a news category and provide a more efficient list of results for a target site

on a neéws sCrver.

[0093] Thus is presented in an illustrative embodiment a computer-implemented process for
identifying equivalent links on a page. The computer-implemented process responsive to a

determination that the crawler has not visited all required universal resource locators, locates a

CA9-2012-0012CA03 19

Date Regue/Date Received 2021-06-02

next URL to be crawled to form a current URL and processes the current URL to identify
equivalent URLs. Responsive to a determination that the crawler has not visited the current
URL, the computer-implemented process determines whether necessary to crawl identified
equivalent URLS and responsive to a determination that it is necessary to crawl identified
equivalent URLS, adding all equivalent URLs of the identified equivalent URLs to a list
of URLSs to be crawled.

[0094] The flowchart and block diagrams in the figures illustrate the architecture, functionality,
and operation of possible implementations of systems, methods, and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing a specified logical function. It
should also be noted that, in some alternative implementations, the functions noted in the block
might occur out of the order noted in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed
in the reverse order, depending upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and combinations of blocks in the
block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts, or combinations of special purpose

hardware and computer instructions.

[0095] The corresponding structures, materials, acts, and equivalents of all means or step plus
function elements in the claims below are intended to include any structure, material, or act for
performing the function in combination with other claimed elements as specifically claimed. The
description of the present invention has been presented for purposes of illustration and
description, but is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art
without departing from the scope and spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the invention and the practical application,
and to enable others of ordinary skill in the art to understand the invention for various

embodiments with various modifications as are suited to the particular use contemplated.

CAY-2012-0012CA03 20

Date Regue/Date Received 2021-06-02

[0096] The invention can take the form of an entirely hardware embodiment, an entirely
software embodiment or an embodiment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in software, which includes but is not
limited to firmware, resident software, microcode, and other software media that may be

recognized by one skilled in the art.

[0097] It is important to note that while the present invention has been described in the context
of a fully functioning data processing system, those of ordinary skill in the art will appreciate
that the processes of the present invention are capable of being distributed in the form of a
computer readable storage medium having computer executable instructions stored thereon in a
variety of forms. Examples of computer readable storage media include recordable-type media,
such as a floppy disk, a hard disk drive, a RAM, CD-ROMs, DVD-ROMs. The present invention
applies equally regardless of a particular type of signal bearing media actually used to carry out
the distribution. Examples of signal bearing media include transmission-type media, such as
digital and analog communications links, wired or wireless communications links using
transmission forms, such as, for example, radio frequency and light wave transmissions. The
computer executable instructions may take the form of coded formats that are decoded for actual

use in a particular data processing system.

[0098] A data processing system suitable for storing and/or executing computer executable
instructions comprising program code will include at least one processor coupled directly or
indirectly to memory elements through a system bus. The memory elements can include local
memory employed during actual execution of the program code, bulk storage, and cache
memories which provide temporary storage of at least some program code in order to reduce the

number of times code must be retrieved from bulk storage during execution.

[0099] Input/output or I/O devices (including but not limited to keyboards, displays, pointing

devices, etc.) can be coupled to the system either directly or through intervening 1/O controllers.

[00100] Network adapters may also be coupled to the system to enable the data processing
system to become coupled to other data processing systems or remote printers or storage devices
through intervening private or public networks. Modems, cable modems, and Ethernet cards are

just a few of the currently available types of network adapters.

CA9-2012-0012CA03 21

Date Regue/Date Received 2021-06-02

CLAIMS:
What is claimed is:
1. A computer-implemented method, comprising:

collecting each link satisfying a predetermined condition in which subsequent visits of a
page has a potential to have different equivalent universal resource locators (URLSs) to form a set

of links;

splitting the set of links into groups of links using at least one additional predetermined

condition to form a set of split links;

deleting, responsive to a determination that a group of links satisfies a further predetermined
condition in which equivalent URLs follow a similar URL pattern, an identified group of links

from the set of split links;

deleting, responsive to a determination that a group of links in the set of links contains a

single item, the group of links containing the single item from the set of split links; and

reporting each remaining group in the set of split links, wherein each remaining group

comprises equivalent URLSs.

2. The method of claim 1, wherein the at least one additional predetermined condition is that

equivalent URLs will follow a similar URL pattern.

3. The method of claim 1, wherein the at least one additional predetermined condition is that

an HTML element that contains the URL has an identical number of HTML attributes.

4. A non-transitory computer readable storage medium storing computer executable program
code which, when executed by a computer system, causes the computer system to perform the

method steps of any one of claims 1 to 3.
5. An apparatus for identifying equivalent links on a page, the apparatus comprising:
a communications fabric;

a memory connected to the communications fabric, wherein the memory stores computer

executable program code;

22
CA920120012CA1

Date Recgue/Date Received 2021-06-02

a communications unit connected to the communications fabric;
an input/output unit connected to the communications fabric;
a display connected to the communications fabric; and

a processor unit connected to the communications fabric, wherein the processor unit
executes the computer executable program code to direct the apparatus to perform the method

steps of any one of claims 1 to 3.

23
CA920120012CA1

Date Recgue/Date Received 2021-06-02

FIG. 1

CA820120012CA03
Page 10f 8

CLIENT

/\/'i

SERVER

108

Date Regue/Date Received 2021-06-02

FIG. 2

CA920120012CA03
Page 2 of 8

STORAGE DEVICES 216

| PROCESSOR PERSISTENT
UNIT MENORY STORAGE
i 204 = 208

AN
S

AR VIRV

COMMUNIGATIONS INPUT/OUTPUT DISPLAY
UNIT
210 212 214

DATA PROCESSING SYSTEM 200

___________________________ .

COMPUTER READABLE
MEDIA 220

PROGRAM
CODE
218

\

COMPUTER PROGRAM PRODUCT
222

Date Regue/Date Received 2021-06-02

FIG. 3

CA920120012CA03
Page 3 of 8

— e e — — — e —— —— — — —
I Enhanced
| crawler Rules Comparator
] 302 304 306
I
I intermediate
] result data Reporter
] structure 310
| 308

Link equivalency system 300

Date Regue/Date Received 2021-06-02

20-90-120T PoAIR2ay sjeq/endey oleq

[al]
O
<

<Bf> aulbew| uen sauoAuy uey| JabBig yonpy, Ajax17 axeny 4o }9343 JIWOU0IT<
Jouibewi ueo auoAue uey) 1abbiIg yonw—A1a) " axenb ™ jo 10949 swouo9a (1)A103s), =ja44 uelq =}able] e>

(3
-
<t

3NEM]BH<
juejq,=1ob.le] e>

.EOIE UI9yInos aAemieay/1jA101s/, =yady
80

d
O
<
g
<

o
o
<

8 jo v obed
£0vOZL00Z1L026VD

v Old

20-90-120T PoAIR2ay sjeq/endey oleq

9zs
<e/>1_pmoAuuyor<
- Juelg,=1ebie; sepmoAuuyorjwod-enimydny, ey Jasn-nm,=sse|o e
<e/>sninejnogejle< s
82% ‘A Jue|q =19bse) sninepnoqejjejwoo-1aimy:dpy,=jely Jasn-nm),=sseo e>
<g/>1soduojbuiysem< Z2G
__ Juelq =19b1e) Jsoduojbuiysemjwios-samy:dyy,=joly Jasn-nmj,=ssejo e>
91% k 025 ﬂa.&ﬂm\
<,,=le .Bdljewsou"uaaiBaor
o 10£9¢€p L6S/S9bewi 3jyoid/woo Bumy pej:dny,=01s ,'ajppiw :ublje-jeonan,=alhis ,0,=19pi10q 8p.=1ubI12Y 8p,=Uipm Bwi> 216
<w=Me BdlFeusouIH1A
< 12€£01£085Z L/sebewn ajyoid/wod Bunmy pe/:dpy,=oss ‘eippiw ubife-lesuan,=a|Als ,0,=19p.0q 8p.=1bIRY 8y.=uipm Bwi> §Tg
¥1s
0% <..=]€ .bdf"|leusou”abewi-qiny
Nommmooou:mamms_la_coa\sou.m:ygazs._uem_.Mm_uu_s :uBije-jeatpan, =vlA1s ,0,=19p! ..ww..uzm_m; Sr.=Upim Bwi> gog
N

8 Jo g abed
€0VIZ1L00ZL0Z6VD

_ G 'Ol

" Start
_ 602

v

For a given URL construct a
DOM page to form a first DOM
604

FIG. 6

CA920120012CA03
Page 6 of 8

v

Construct a DOM page using a
reload of the given URL to form
a second DOM
606

v
Compare the first DOM with the
second DOM to identify all links
on a respective page of a
predetermined condition in
which subsequent visits of the
page will likely have different
equivalent universal resource
locators
608

Determine whethel
link satisfies the
predetermined
condition
610

ny

No

(&)

A

Report the extracted
groups
618

A

Extract equivalent
groups of links from the
conditional subset of
links
616

?

Extract all links on the page,
from the extracted first links
further satisfying additional
predetermined conditions, using
the first DOM (with the second
DOM when available) to form a
conditional subset of links
614

Extract all links on the page
satisfying the predetermined

Yes ———— 3 condition to form extracted first

Date Regue/Date Received 2021-06-02

links
612

i

FIG

o

CA820120012CA03

Page

Start
702

/

Collect each link satisfying the predetermined
condition in which subsequent visits of the page
will likely have different equivalent universal
resource locators to form a set of links
704

v

70f8

Spilit the set of links into groups of links using
predetermined conditions asserting, in one
instance, an HTML element that contains the
URL has the same number of HTML attributes
and asserting in another instance all the attribute
values for the HTML element that contains the
URL are the same value, wherein the links in a
group of links have an equal number of attributes
with equal respective values
706

End
718

A

3

~

C

Report each remaining
group in the set links,
wherein each group

redetermined condition
asserting equivalent
RLs will follow a simila

URL pattern
708

Yes

No

Remove an identified group of
links from the set of links
710

No

Detérmine whet

single item
712

Date Regue/Date Received 2021-06-02

\h a Yes
foup of links in th:'é\

of links contains a

comprises equivalent
URLs
716

[y

Remove the group of links group
having a single item from the set
of links
714

i

visited all required

FIG. 8

CA920120012CA03

Page 80of 8

Yes

URLs
804

No

W

Go to a next
URL to be

crawled to form a|-—»|

current URL
806

Process the
current URL to
identify
equivalent URLs
808

Yes

A4

Perform crawling

current URL
818

tasks using the |

A

No a
i

Add only a subset of
all identified
equivalent URLs to a
list of the URLs to be
crawled
814

(2

Yes

v

Add all equivalent
URLs of the identified
equivalent URLs to a
list of the URLs to be

crawled
816

Date Regue/Date Received 2021-06-02

NETWORK

CLIENT

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - CLAIMS
	Page 25 - CLAIMS
	Page 26 - DRAWINGS
	Page 27 - DRAWINGS
	Page 28 - DRAWINGS
	Page 29 - DRAWINGS
	Page 30 - DRAWINGS
	Page 31 - DRAWINGS
	Page 32 - DRAWINGS
	Page 33 - DRAWINGS
	Page 34 - REPRESENTATIVE_DRAWING

