Office de la Propriete Canadian CA 2276191 C 2003/07/29

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 276 191
g'rn(c)iL%?r?(iesgaenada ﬁrgijgt?;%/aﬁ;da (12) BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de dépot PCT/PCT Filing Date: 1997/12/30 (51) CL.Int.%/Int.C1.° HO4L 12/46, GO6F 17/20, GO6F 12/10,
(87) Date publication PCT/PCT Publication Date: 1998/07/09 HO4L 29/00
ol _ (72) Inventeurs/Inventors:
(45) Date de delivrance/lssue Date: 2003/0/7/29 SPINNEY. BARRY A. US:
(85) Entree phase nationale/National Entry: 1999/06/25 POOLE, NIGEL T., US
(86) N° demande PCT/PCT Application No.: US 1997/024218| (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.: 1998/029986 ENTERASYS NETWORKS, INC., US
(30) Priorité/Priority: 1996/12/30 (08/775,091) US (74) Agent: OGILVY RENAULT

(54) Titre : PROCEDE ET DISPOSITIF DE TRADUCTION BASES SUR LE HACHAGE ET DOTES D'UNE RESOLUTION
DE COLLISION A NIVEAUX MULTIPLES

(54) Title: HASH-BASED TRANSLATION METHOD AND APPARATUS WITH MULTIPLE LEVEL COLLISION
RESOLUTION

1 ADDRESS

B 8D PID

LOOKUP
9| [BD o0 00 00 PT TYPES

A AD |00 00 00 00 DSAP

FIRST HASH TABLE
402
¥ o] .

410
REGISTER ¥ ,
404

HASHER HASHED ARG

422

424

426

/~4oe
. MULTIPLIER *

438 —
HASH REMAINDER TABLE FORWARDING TABLE

(57) Abrége/Abstract:

A translation Is performed by using a programmable hashing technique on an input number to generate a hashed number (408).
A subset (410) of the hashed number bits are used to index a first hash table (420). In first hash table locations (426) where a
hash collision does not occur, the first hash table entry (426) contains an index (for IDX) into an output (433) table which
contains the desired translated output number (436). In first hash table locations where a hash collision occurs (424), the first
hash table entry (494) contains a pointer (NTI) to a first resolution table area in a second hash table. The first resolution table
area contains entries which are indexed by additional bits selected from the hashed number in accordance with a mask field In
the first hash table location. If collisions occur In the resolution table a new resolution table Iis created and the process Is
repeated. The resolution process thus proceeds In stages until all input numbers have been translated.

SRR VNEEEN
R 5. sas ALy
O
A

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02276191 1999-06-25

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
Intermational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 .

HO04L 12/46, 29/06, GO6F 17/30, 12/10 Al

(21) International Application Number:
(22) International Filing Date:

(30) Priority Data:

08/775,091 30 December 1996 (30.12.96)

(71) Applicant:
Industrial Way, Rochester, NH 03867 (US).

(72) Inventors: SPINNEY, Barry, A.; 22 Anthony Road, Wayland,
MA 01778 (US). POOLE, Nigel, T.; 17 Homeward Lane,

Natick, MA 01760 (US).

(74) Agent: HENDRICKS, Therese, A.; Wolf, Greenfield & Sacks,

P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).

PCT/US97/24218

30 December 1997 (30.12.97)

(11) International Publication Number:

(43) International Publication Date:

US

CABLETRON SYSTEMS, INC. [US/US}, 35

WO 98/29986

9 July 1998 (09.07.98)

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
1C, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S], SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, T}, TM), European patent
(AT, BE, CH, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

| Published

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Titlee HASH-BASED TRANSLATION METHOD AND APPARATUS WITH MULTIPLE LEVEL COLLISION RESOLUTION

(57) Abstract

A translation is performed by using a programmable
hashing technique on an input number to generate a hashed
number (408). A subset (410) of the hashed number bits are
used to index a first hash table (420). In first hash table
locations (426) where a hash collision does not occur, the
first hash table entry (426) contains an index (for IDX) into
an output (438) table which contains the desired translated
output number (436). In first hash table locations where a hash
collision occurs (424), the first hash table entry (494) contains
a pointer (NTTI) to a first resolution table area in a second hash
table. The first resolution table area contains entries which are
indexed by additional bits selected from the hashed number in
accordance with a mask field in the first hash table location. If
collisions occur in the resolution table a new resolution table is
created and the process is repeated. The resolution process thus
proceeds in stages until all input numbers have been translated.

(]] aopress

PID
LOOKUP
PY TrES
400 410
K D
o ¢
HASHER HASHED ARG KL L
06 o] FoRiox ¥
D
412 414 418

‘ - =

434
432

428 430

438

HASH REMAINDER TABLE FORWARDING TABLE

10

15

20

25

30

CA 02276191 1999-06-25

WO 98/29986 , PCT/US97/24218

HASH-BASED TRANSLATION METHOD AND APPARATUS
WITH MULTIPLE LEVEL COLLISION RESOLUTION

FIELD OF THE INVENTION
This invention relates, in general, to transiation methods and apparatus using

table lookup and specifically to collision resolution in hash-based lookup tables.

CK U E INVENTION

Translation between data formats is a common problem in data processing
systems. Often the operation of the data processing system is heavily dependent on
the speed and efficiency of the translation process. For example, one common
example is the translation of stored binary data into a form suitable for transmission
over a data network.

A data network typically consists of several nodes, at which switches are located,
connected together by data transport media. A common method of transmitting data
over such a network is to exchange messages between the switches, which messages
comprise discrete "packets” of data. These packets can be transported over the media
with one of a variety of transport techniques. In applications utilizing packetized data,
data to be transported is first broken up into discrete pieces or packets which are then
transmitted through the switches and reassembled at a destination. In accordance with
current packet protocol, each packet generally consists of a header and an information
field. The header contains the information used to transport the cell from one node to
the next. The packet data is contained in the information field.

In such networks, the data source and destination are often identified by unigue
numerical addresses and in accordance with many popular protocols, to insure that the
nefwork can be reasonably large, the address information in the header field of such
system is also often large - on the order of 5-6 bytes or 40-48 bits. A 48-bit address
field can identify 2%° or about 300 ftrillion unique addresses. However, most networks
have on the order of a few thousand different terminals so that only a small fraction of

the potential address pool is actually needed.

10

15

20

25

30

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218
-2

The disparity in the potential number of addresses and the number of actual
addresses causes inefficient use of resources. For example, if provisions were made to
store each unique address, a large memory would be necessary, but only a few
memory locations would be used to store the actual addresses. Therefore, for efficient
use of resources at each local node, smaller address fields, conventionally calied
forwarding addresses, are used and a translation is made between the larger address
field used in the packet headers and the smaller address field used within each local
node.

A conventional translation method for translating addresses in packet switching
systems uses a database in which the local, smaller addresses are stored. The larger
addresses In the data packet headers are used to search the local database and
retrieve the forwarding addresses. There are several well-known techniques for
performing this search. One method is to use a binary tree search. Another method is
to use a content addressable memory. Still other methods rely on hashing techniques
to generate an index into the database. These address translation methods are
described in U.S. Patent Nos. 4,587,610; 4,993,937; 5,027,350 and 5,136,580

An important design objective in packet switching networks is controliing the flow
of packets so that packets will not arrive at communication links or switches at a faster
rate than they can be processed and forwarded to the next destination. If the packets
cannot be processed rapidly, packet buffers may become full and packet loss will occur
severely reducing the efficiency of the network. As a result, binary tree searches
present difficulties in such networks. For example, a forwarding address database
which holds about sixieen thousand forwarding addresses (a 16K memory) requires a
14-bit address. In the worst case, with a binary searching technique, such a memory
could require 14 reads in order to locate a particular address in the memory. This
number of reads is prohibitive from a performance standpoint using commonly available
semiconductor memories.

Content addressable memories require only one read to compare a packet
address with all stored addresses. However, content addressable memories are
complex and expensive and, thus, suitable only for systems in which the forwarding

database is small.

10

15

20

25

30

CA 02276191 2002-09-16
2 3.

Another alternative is to use a hashing technique to convert the large number

of packet header addresses into a smaller number of local forwarding addresses.

Conventional hashing techniques use a mathematical transtormation to map each of
the packet addresses into one of a set of index addresses which are used to index
into the forwarding address database. Since a large number of addresses are being
reduced into a much smaller number of addresses, some of the packet addresses
will inevitably map into the same index address causing a "hash collision”. Some
technique must be used to resolve these hash collisions so that a unique index

address can be generated from each packet address.

One problem with these hashing techniques is that the efficiency of the
method has been heavily dependent on the hashing transformation used in the
procedure. Many hashing transformations suffer from poor memory usage, low
speed and large worst-case delays, thereby making them unsuitable for use in the
packet switching address translation systems. |h addition, many hashing techniques

utilize special circuitry to resolve collisions and are thus expensive and complicatead.

Still other prior art techniques use a combination of the above-described
techniques to perform the required translation. For example, U.S. Patent No.
5,414,704, uses a programmable hashing technique to generate the forwarding
address table indices and a binary search technique to handle hash collisions. In
accordance with the disclosed method, the data packet addresses are transformed
by a hash transformation into indices for a hash table. The hash table includes as
each table entry, a pointer to a set of forwarding table indices arranged in a small
binary tree. Hash collisions, which cause two or more data packet addresses to
transform to the same hash table entry, are handled by performing a binary tree
lookup to obtain a unique forwarding address table index. Since the binary tree is
small (typically three levels or seven total entries) the number of reads required to
traverse the tree is also small thereby significantly reducing the lookup time. A
content-addressable memory (CAM) is provided to handle the cases in which more

than seven data packet addresses hash to the same hash table entry.

While aforementioned combination arrangement offers a compromise In

performance and cost, there are many address combinations in which the CAM must

10

15

20

29

30

CA 02276191 1999-06-25
WO 98/29986 PCT/US97/24218
-4 .
be relatively large because a significant number of data packets addresses transform to
the same hash table entry. The cost of the system is therefore increased.
Accordingly, there is a need for a translation method and apparatus which

efficiently uses system resources, performs well and has a lower cost than presently-

available translation or lookup systems.

SUMMARY OF THE INVENTION

In accordance with the principles of the invention, a transiation is performed by

using a programmable hashing technique on an input number to generate a hashed

number. A subset of the hashed number bits are used to index a first hash table. In
first hash table locations where a hash collision does not occur, the first hash table
entry contains an index into an output table which contains the desired translated
output number.

in first hash table locations where a hash collision occurs, the first hash table
entry contains a pointer to a first resolution table area in a second hash table. The first
resolution table area contains entries which are indexed by additional bits selected from
the hashed number in accordance with a mask field in the first hash table location. In
the first resolution area, in each entry where a collision does not occur, the first
resolution table entry contains an index into the output table which contains the desired
translated output number. In each first resolution table entry where a collision does
occur, the entry contains a pointer to a second resolution area in a third hash table.
The second resolution table area contains entries which are indexed by still more bits
selected from the hashed number in accordance with a mask field in the first resolution
table location. The entries in the second resolution table may be indices into the output
table or additional pointers to still further resolution tables, if hash collisions occur in the
second resolution table. In this manner, new levels of resolution tables can be added
using additional bits selected from the hashed number until all entries are resolved.
There is no need to resort to additional circuitry or techniques to resolve hash collisions.

In accordance with one embodiment of the invention, each hashed number is
stored in a hash remainder table at an address indexed by the same index which is
generated to index the output table. When the index has been generated, it is used to

retrieve the stored hash number which is compared to the original hash number. A

L T T e S SEr STy Jr P W SRS Sy Pyuv Ly quppenpy A 7 1PN PSS ERaLY Fadimn it iy 4+ et WAt b 4t T hmdeeern e _ VAN L v ek v . T

10

15

20

25

30

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218
-5

match indicates that the retrieval mechanism has retrieved a valid index and the

forwarding information is retrieved from the output table and returned. If no match is

obtained, default forwarding information is returned.

BRIEF DESCRIPTION OF THE DRAWINGS
The above and further advantages of the invention may be better understood by

referring to the following description in conjunction with the accompanying drawings

and which:
Figure 1 is a block schematic diagram of a data packet switching network on

which the inventive method and apparatus may run.
Figure 2 is a more detailed block schematic diagram of a data packet switch

which diagram illustrates the flow of data packets through the switch.
Figures 3A and 3B are schematic diagrams illustrating the data format in the

three lookup hash tables in the case of no collision and in the case of a collision,
respectively.
Figure 4 I1s a schematic diagram illustrating a translation process conducted in
accordance with the principles of the present invention when no hash collision occurs.
Figure 5 is a schematic diagram illustrating translation processing in accordance

with the principles of the present invention when a hash collision occurs.

=RRED EMBODIMENT

DETAILED DESCRIPTION OF A PRE

Figure 1 illustrates, in very generalized form, a data packet local area network
involving four stations 100-108, respectively, in which a translation method and
apparatus constructed in accordance with the principles of the present invention can
run. It should be understood that, although the invention is described in connection
with a data packet switch and address translation, the inventive method and apparatus
can aiso be used to perform other translations. In such a network, each station 100-
108 contains software which breaks the data into packets and affixes an appropriate
header indicating how each packet should be routed through the network. Each station

also contains software which receives data packets and reassembles the packets into

the completed data stream.

10

15

20

25

30

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218
-6 -

Stations 100 and 102 are connected to a data packet switch 110 and stations
106 and 108 are connected to switch 114. Switches 110 and 114 route packets
between the stations 100-108 and control access to the network. For example, station
100 may send packets over media line 116 to media input port 118 of switch 110.
Switch 110 may route data packets to a destination station, for example station 106
based on the information in each packet header. To do this packets are first switched
by switch 110 onto output line 112 to switch 114. Switch 114 then routes the packets to
station 106. Although only one output line 112 is shown, switch 110 may have several
output lines.

Each data packet switch, for example switch 100, acts as a packet relay. The
input side of the switch contains a first in-first out (FIFO) buffer queue connected to the
media input port 118. Packets arrive from the incoming communication link 116 and
are entered into one end of the buffer. The switching process involves examining each
packet, in turn, at the other end of the buffer and determining from the routing codes in
the packet header which output line should be used. The packet is then added to a
FIFO buffer queue for that output line which holds packets waiting to be transmitted on
the associated outgoing communication link 112.

It is important that the switChing process operate efficiently because data
packets can arrive at closely spaced intervals. Switch congestion occurs when either
the input or output FIFO buffers fill to a predetermined level. If the congestion becomes
severe enough the buffers may become completely full, in which case there is no space
for incoming packets to be stored and the packets are lost. With many transmission
protocols, the successful transmission of a data through the network requires
successtul delivery of all the packets formed from the original data and the loss of any
one packet may requires the entire piece of data to be retransmitted. When a station
repeatedly tries to resend the same data, the network becomes increasingly loaded as
more network congestion occurs and, accordingly, the possibility that more packets will
be lost increases. As a result, many packet-switched networks can operate efficiently
only when there is no packet loss.

Figure 2 illustrates, in more detail, the construction of a switch, such as switch
100 or 114. The heart of the switch is a data moving engine (DME) which includes a

receive FIFO 200, a data packet memory 206, and associated memory control 212, and

. § A A S N MR LA e - M S e Y Cetnd el s I o SRR M e L e S b e

10

15

20

25

30

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218

-7 -
an output FIFO 218. Reception of data packets is controlled by lookup engine 202
operating in conjunction with memory control 212 and tables 204. Output of data
packets is controlled by transmit poller and encapsulator 216. The DME is designed to
move data packets between the input and output ports, 201, 220 and a local packet
memory 206 and provide lookup functions on received packets for filtering and bridge
forwarding.

More specifically, the movement of data between the input port 201, the output
port 220 and the packet memory 206 occurs autonomously. Received packets are
demultiplexed (if necessary) and put onto queues stored in the packet memory 206.
These queues take the form of linked lists in the data packet memory 206. Packets
waiting on queues designated as transmit queues are transmitted to the output port as
the interfaces become available. To this end, the head of each output queue linked list
is associated with an output port. Packets may also be received on non-transmit
queues; these packets will require further processing by a data processor (not shown)
and may include spanning tree packets, packets to be routed, packets requiring format
translation. The processor places these latter packets on the transmit queues once
they are processed, or else removes them for further local processing.

The receive FIFO 200 provides data buffering between the packet memory 206
and the input ports. One physical FIFO is provided which is logically partitioned into
multiple FIFOs of which one FIFO is associated with each input port. The transmit
FIFO 220 provides data buffering between the packet memory 206 and the output
ports. As with the receive FIFO 200, only one physical FIFO is provided which is
logically partitioned into multiple FIFOs of which one FIFO is associated with each
output port.

After a packet has been received in the input port, the Lookup Engine 202
receives the header information from the input port, hashes it and uses the result to
access the Hash Tables 204 stored in memory, as will be described in detail below.
The result of the Hash and Lookup processes is a “forwarding value”. The forwarding
value is used by the memory control 212 to determine whether to queue or filter the
packet and the appropriate queue or (filter counter) to use. The lookup engine 202 also

generates “packet control words” 210 which are written into the packet memory 206

10

15

20

25

30

CA 02276191 1999-06-25
WO 98/29986 PCT/US97/24218
-8 .-
ahead of the packet data 208 for each packet (a single data packet is illustrated in
memory 206 for clarity.)

Transmission or forwarding of the stored data packets is controlied by transmit
poller 214. Transmit poller 214 is a process which polls certain queues in order to find
data packets that can be transmitted. When such a data packet is found. it is
dequeued and provided to the encapsulator 216. Encapsulator 216 uses the packet
control words stored with the data to determine whether and how the outgoing packet
must be encapsulated. For example, the packet may need some header bytes
appended.

The inventive lookup process is performed by lookup engine 202 which is a
process which runs in the processor of the associated switch. The lookup argument
provided to the lookup engine by the input port may be a 48-bit MAC address. or other
Information, such as a 5-byte Protocol Identifier (PID), a 2-byte Protocol Type (PT) or a
one-byte Destination Service Access Point (DSAP). The lookup engine 202 pads each
lookup argument with a type code and, if necessary, zero-value bytes to make all
lookup arguments 48-bits wide. The 48-bit width is merely illustrative and any other
lookup argument width can also be used in accordance with the principles of the
invention.

More particularly, the lookup engine classifies each input value into one of four
types. Padding is applied as necessary to make the argument 48 bits wide, and a 4-bit
Type code is tagged to the argument. The following Table 1 illustrates type codes and

padding values used for the various lookup argument types in accordance with one

ilustrative embodiment:

TABLE 1
Lookup Type Type Code Padding Prefix
MAC address 1 (none)
PID 8 8D
PT 9 9D 00 00 00
DSAP A AD 00 00 00 00

. o srram b Sl ALM eI] AU I ar RS 44 P 1 FP (LY A o 7 St ket Ol ¢ e leeten el .

CA 02276191 1999-06-25

-9 .

The padding values are added to the left of the argument string so that the least
significant bit of the padded result (bit 0) corresponds to bit O of the rightmost byte in the lookup
argument and the most significant bit of the result (bit 47) corresponds to the most significant bit

of the leftmost byte of the (padded) result. In accordance with a preterred embodiment. the

in

specific padding prefixes are chosen to minimize the chance of collisions with assigned [EEE
multicast addresses. In addition, as described below, the lookup type is stored for % later
comparison with the information retrieved by the hash lookup process. Therefore, there is no
possibility that addresses can be confused with protocols. The lookup argument 1s then hashed to
provide a hashed argument, which is used to access tables 204 to pertorm the inventive lookup
10 process.

Tables 204 are sized and built at gystem initialization or later during operation whenever
the network is reconfigured by adding stations or switches. They consist ot three hash tables,
and a hash remainder table. At system initialization time, the number and distribution of initial

system addresses are known sot hat the hash and remainder tables can be constructed. Also at

15 this time, a unique forwarding value is selected for each address in the address set which
forwarding value will be used to route the packet through the switch. these forwarding values
are stored in a forwarding table which is indexed by a forwarding index. Later when stations or

ports are added or deleted. the corresponding addresses are added or deleted and tables 204 are

recomputed.

20 As previously mentioned, the goal is to provide a reduction in the number of potential
addresses represented by a 48-bit data packet address field to a much smaller number of
addresses, typically represented by a 12 to 16 bit address field. In accordance with a preferred
embodiment, the reduced address size, and, accordingly, the size of the hash tables can be
selected programmatically. Theoretically, it would be possible to reduce the size of the 48-bit

25 address by simply using a subset of the bits, for example, the least significant 12-16 bits.

B ?However, practi'}c&aHy, the addresses often contain sequences in certain unpredictable bit positions

L 4

2" that make address compression by simple bit field extraction unrehable.
Therefore, the lookup tables are built with a programmable randomizing function, called

~ a hash function, designed to generate a small number (less than 64K) of indices corresponding to

30 a set of (up to 64K) lookup arguments. Ideally, the mapping from

AN'CNDED SHEET

10

15

20

25

30

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218

- 10 -
arguments to indices is one-to-one, but a small number of many-to-one mappings can
be tolerated. The hash function converts the 48-bit input argument into a new 48-bit
output argument, called the hashed argument, using a process based on polynomial
multiplication and division. Specifically, the bits of the input argument (either 1 or 0) are
considered to represent the coefficients of an order-47 polynomial in x: if this is called
A(X), then:

AX) = a, X +a,, X+ ... +a, xX*+a,.x+a,

where the coefficients a, - a,; are the bit values of the 48-bit input argument. In
accordance with the hash function, this input polynomial is multiplied by a
programmable hash multiplier which is stored in memory. The hash multiplier M(x) is
represented by the polynomial:

M(X) = my X +my X¥+ ...+ m, X*+m,

The multiplication of the polynomials is done using modulo-2 addition; this yields an
order-94 polynomial with coefficients that are aiso 0 or 1. This product is finally divided

by a generator polynomial G(x), of fixed value given by:

The division is again carried out using modulo-2 addition. The division yields a quotient
Q(x), which is a polynomial of order 46, and a remainder R(x) which is a polynomial of

order 47. The operands are related by the equation:

A(X) * M(x) = Q(x) + R(x) * G(x)

The generator polynomial is chosen such that for any given multiplier polynomial
(except 0), there is one-to-one mapping between the set of all values of A(x) and the
corresponding set of all values R(x). The quotient Q(x) can therefore be discarded, as
any value A(x) iIs derivable from its corresponding R(x). By choosing a suitable value

for M(x), any given bounded set of lookup arguments (a subset of all values of A(x)) can

10

19

20

25

30

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218

-11 -
be mapped onto a set of hashed arguments (a subset of all values of R(x)) with high
likelihood of uniqueness in the low order 16 bits (maybe as few as 12 bits) of R(x).
Statistical trials have shown that a random value M(x) is often sufficient, with retries
beyond two attempts being very unlikely.

Since the multiplier polynomial M(x) can be programmatically selected, it can be
changed and the hash table rebuilt during operation of the system if it is found that a
large number of hash collisions is occurring with a particular set of addresses. This
avoids problems which are often encountered with fixed hash functions and certain
address sets. In order to improve performance, the multiplier polynomial should be
selected to minimize the number of collisions and the hash table size should be
selected so that it is in sparsely populated (for example, the hash table size may be on
the order of four times larger than the number of address entries).

A first hash table is then constructed by first selecting the number of bits in the
reduced address field which determines the size of the first hash table and the width of
the first hash table words (each word has a width equal to the number of bits in the
hash index plus one for a collision flag.) The first hash table is next initialized with a
zero in each entry. Each address is then hashed in accordance with the hash function
described above to generate a hashed argument. The hashed argument is then used
as an index into the first hash table.

If the indexed location is empty, the zero entry is replaced by a data entry shown
in Figure 3A. This entry has the most significant bit 300 assigned as a “collision flag”
which is set to "0". The remaining bits are assigned to the unique forwarding index
which is selected as previously described. In this case the complete hashed argument
and the type code are also entered in the hash remainder table at a location indexed by
the unique forwarding index.

Alternatively, if a forwarding index is already present in the indexed location, the
entry illustrated in Figure 3B is made at the indexed location. In this entry, the collision
flag 304 is set to “1" and the stored forwarding value is replaced by a collision entry.
The collision entry comprises a bit mask field 306 and a next table index 308. The
collision entry will instruct the lookup engine 202 to use more bits from the hashed
argument, in conjunction with resolution areas in the additional hash tables 2 or 3 to

resolve the collision.

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218

- 12 -
The bit mask field is a 4-bit mask number which specifies one of sixteen

functions which will be used to create a new 14-bit resolution table index from the 12-bit

next table field and specified extra bits of the hashed argument when the lookup |

function is performed. This new resolution table index will be used to access a

resolution table in either the second or third hash table to resolve the collision. The

definition of the sixteen possible functions is shown in Table 2 below:

15

20

25

30

TABLE 2
Mask Hash BitMask Shift Amount Resolution Table index
No. Table
0000 2 00000011 2 NextTablelndex & “XX"
0001 2 00000101 3 NextTablelndex & “XX"
0010 2 00000110 3 NextTablelndex & “XX"
0011 2 00001001 4 NextTablelndex & “XX"
0100 2 00001010 4 NextTableindex & “XX"
0101 2 00001100 4 NextTablelndex & “XX"
0110 2 00010001 5 NextTablelndex & “XX"
0111 2 00010010 5 NextTableindex & “XX"
1000 2 00010100 5 NextTablelindex & “XX"
1001 2 00011000 5 NextTablelndex & “XX"
1010 3 00001111 4 NextTabielndex (11..2) & “XXXX"
1011 3 00000110 5 NextTableindex (11..2) & “XXXX"
1100 3 00111100 6 NextTablelndex (11..2) & “XXXX"
1101 3 01111000 7 NextTabielndex (11..2) & “XXXX"
1110 3 11110000 8 NextTablelndex (11..2) & “XXXX"
1111 3 11111111 8 NextTablelndex (11..6) &
EXXXXXXXX"

In this tabie, the values in the column titled “Hash Table” indicates whether the

resolution table used to resolve the collision is part of the second hash table or part of

SO Tt B TN RSP PTION TLELRACY ¢ AL LA NS TG o AT ie L St & Ly cd i s e U asndbs deaineimrilvm dee =l de MAS s el A8

" A el SOREY el |k ek M A WY s AN g PG Lirvwrt= = L AT The - £2 4 = = HECEE YN o 3 4 Wl ABAC At A s J (I G [ey vy

10

15

20

25

30

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218

-13 -
the third hash table. The values in the column titled “Bit Mask” is an abstract mask that
indicates which bits are to be selected from the low-order 8 bits of the shiffed hashed
argument. The “Shift Amount” column indicates how many bit positions to shift to the
right the hashed argument after the bit mask is applied and bits to be used in the
present resolution stage are selected. The shifting operation causes new bits of the
hashed argument to be used during each stage of the resolution process. Finally, the
column entitled “Resolution Table Index” indicates how to form the index into the
resolution table by concatenating (indicated by the “&” symbol) the Next Table index
bits from the collision entry with the bits selected from the shifted hash argument
(indicated by “X"s.)

In order to select the bit mask number, the set of addresses is examined to
determine which of the bits in the upper 16 bits is most likely to change and a mask
number is selected for which the corresponding bit mask selects those bits. This mask
number is inserted In the mask number field of the collision entry. Then, a resolution
table is created in the second or third hash tables in accordance with Table 2 above
depending on the mask number selected. Resolution tables in the second hash table
always have four entries and resolution tables in the third hash table always have either
sixteen or 256 entries. The uppef 12 bits of the resolution table base address are put
into the Next Table Index Field of the collision entry. The mask is applied to the upper
bits of the hashed address to determine the entry position in the newly created
resolution table and entry as iliustrated in Figure 3A is inserted into the table indicating
the forwarding address.

Operation continues In this fashion. If a collision is detected in the second
resolution table, then the forwarding address entry illustrated in Figure 3A is replaced
by a collision entry as shown in Figure 3B and a new resolution table is created. The
operation continues in this manner until all addresses have been processed.

Figure 4 illustrates the basic translation process which occurs when no collisions
are detected. As previously mentioned there are four basic types of address
information on which to perform a lookup operation. In the Figure, the address
information is assumed to be 48 bits wide. This address information is loaded into
register 400. A four bit type code is loaded into register 402 for a comparison as will be

described in detail below.

(]

10

25

L 4

i §

e Y

CA 02276191 1999-06-25

- 14 -

The address information in register 400 and a multiplier M(x), discussed above and |,
stored 1n register 406, are provided to a hasher process which generates a hashed argument in
accordance with the technique as described above. The hashed argument is stored in register
408.

The lower 12 to 16 bits of the hashed argument in register 408 are used as a hash index to
access the first hash table 420 as indicated by arrow 410. If the value zero (as initialized by the
user and indicated, for example, by entry 422) is stored at the location identified by the hash
index, then a forwarding index for the hashed argument 1s not stored 1n any of the hash tables
Conversely, if the first hash table entry is non-zero (for example, entries 424 and 426), then it is
possible (though not definite) that a forwarding index 1s stored in one of the hash tables.

More specifically, it the hash index identifies a non-zero entry from the first hash table
which indicates no collision (the collision flag is ‘0, as indicated by entry 426), then a possible
forwarding index can be retrieved from the first hash table as illustrated by arrow 413. Since
many addresses may alias to the same hash index, the forwarding index is used to access the hash
remainder table, as indicated by arrow 434, and retrieve the type code 428 and hashed value ot
the address 430 previously stored at the location accessed by the retrieved forwarding index. The
retrieved type code is compared in comparator 412 to the type code stored in register 402. The
retrieved hashed argument is compared to the hashed argument stored 1n register 408 by
comparator 416. the outputs of comparators 412 and 416 are provided to a decision process 414.
[f the hash remainder table entries 428 and 430 and the type code in register 402 and the hashed
argument in register 408 are equal, the decision process 414 uses the retrieved forwarding index
on line 434 to access a forwarding table 438 to retrieve a forwarding value. the forwarding value
is used, as previously discussed, to route the data packet through the packet switch. -
Alternatively, if the comparators 412 and 416 do not both indicate a match, an alias has been
found and a default index is returned.

[f the hagﬁ index identifies a collision entry in the first hash table as illustrated by entry
424 in which the collision flag is “1”, then further processing must be performed to resolve a

collision caused when two or more different addresses generate the same hash index.

AN NCED SHEET

(.}

CA 02276191 1999-06-25

¢ o

- 15 -

Figure 5 illustrates collision processing performed in accordance with the principles of
the present invention. As shown in Figure 5, resolution tables in the second and third hash tables
are used to resolve collisions until forwarding indexes are retrieved for all addresses. The
resolution process proceeds in stages. At each stage 1n the collision resolution process additional

5 bits from the hashed argument are used in combination with an index stored in the collision entry
to access a resolution table. This process is repeated until a resolution is obtainea.™

More specifically, a hash index formed of the 12-16 least significant bits of the hashed
argument 500 (stored in register 408 in Figure 4) is applied to the first hash table 504 as
previously discussed. In the illustrative example shown in Figure 5, four addresses collide, or

10 generate hashed arguments which index the same entry, in the first hash table 504. Accordingly,

when the first hash table was generated as discussed above, a collision entry 506 has been made

in the entry indexed by the hash index.

The collision entry 506 in the first hash table 504 contains a next table index (NTI) which

points to a first resolution table 510 located in the second hash table address space. A mask field

15 (indicated by ‘M’) in the collision entry 506 describes how to create an offset into the first
resolution table 510 by using two bits from the next 2, 3, 4 or 5 higher order bits (31..16) of the
hashed argument 500. As previously mentioned, the bit mask indicated which of the next 2-5
should be selected. The bits selected by the bit mask as indicated by arrow 509 are concatenated
with the NTI as indicated by concatenator 508 to provide an index into the resolution table 510.

20 After the index is generated the hashed argument in register 500 is shifted so that new bits of the
hashed argument will be used in further stages of the resolution process.

As previously mentioned, all second hash table resolution tables have four entries, whose
formats are identical to the first hash table entry formats illustrated in Figures 3A and 3B. Using
the two bits selected by the bit mask M in the collision entry 506, in the illustrative example,

25 three addresses still collide in the first resolution table 510. In particular, the three addresses

3fidex to entry 5 {4.*One address indexes to entry 512 and is accordingly, collision free.

- - w

-

2" Therefore entry 512 contains a forwarding index. the translation process will check for a match
in the hash remainder table using this forwarding index (if the address is accessed) as discussed
above with respect to Figure 4.

30

- +rnDED SHEET

SV i1

10

15

20

25

30

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218
- 16 -

The three colliding addresses require another resolution table 518 to be created.
In the illustrative example, another resolution table located in the second hash table
address space is used. Because there is a collision in the first resolution table. the
table entry will have a collision entry 514 of the format illustrated in Figure 3B entered at
the time the table is created. The bit mask in entry 514 specifies a further two bits from
the next higher order 2 to § bits in the hashed argument that are to be used to index
this second resolution table.

The selected bits as indicated by arrow 515, are concatenated by concatenator
516 with the next table index in entry 514 to access the second resolution table 518.

In this case, there are still two colliding addresses in the second resolution table
518 and one entry 520 is collision free. The collision free entry 520 is processes as
described above in connection with the first resolution table. The entry 522 to which the
two remaining addresses index is arranged to point to a third resolution table 526. This
third resolution table 526 is located in the third hash table address space and contains
either sixteen entries or 256 entries, which are indexed by 4 or 8 bits selected from a
field of 4 to 8 higher order bits in the hashed argument. As with the previous resolution
stages, the bit mask M in the collision entry 522 specifies which bits on the next least
significant bits of the hashed argljment are to be used to access the third resolution
table 526. The selected bits as indicated by arrow 525 are concatenated by
concatenator 524 and used to index the third resolution table 526.

In the illustrative example, the remaining two addresses are resolved in the third
resolution table 526 as indicated by entries 530 and 532. Accordingly, each of these
entries contains a forwarding index which is processed as previously described.

The amount of resolution processing which must be performed in accordance
with the principles of the invention depends on the initial address set, the hashing
method used and the size of the first hash table. Consequently, the values for the hash
multiplier and the first hash table size should be selected so that collisions in the first
hash table are minimized. It is also preferred to make the size of the hash table
significantly larger (for example, four times larger) than the number of expected entries
In order to spread the entries over the address space and minimize the possibility of

collisions.

(3

CA 02276191 1999-06-25

- 17 -
While the invention has been shown and described above with respect to various
preferred embodiments, it will apparent that the foregoing and other changes of the form and

detail may be made therein by one skilled in the art without departing from the scope of the

invention. These and other obvious modifications are intended to be covered by the following

claims.

(L
}
& o
t & g
{

AMEMDED SHEET

(.1

5

10

13
2.
20 3.
25 4.
3

A
5.

30

CA 02276191 1999-06-25

-18.

CLAIMS

An apparatus for resolving a hash collision that occurs in a hash table having a plurality
of locations, the hash collision occuring when two different input numbers generate a
same hashed value that is used to access a first location in the hash table, the apparatus
characterized by:

a first resolution table containing a plurality of locations; g

a circuit to insert a collision entry into the first location in the hash table and into
each hash table location where a hash collision occurs, the collision entry containing a bit
mask number identifying a masking function to select a portion of the hashed value and a
pointer to the first resolution table; and

an index generator to generate a first index, responsive to the collision entry and
to the portion of the hashed value selected by the masking function, to access a resolution

entry at a location in the first resolution table, the location being pointed to by the

generated first index.

The apparatus according to claim 1, wherein the index generator combines the pointer

contained in the collision entry with the portion of the hashed value to access the

resolution entry.

The apparatus according to claim 1, wherein a part of the hashed value 1s used to access
the first location in the hash table, and wherein the portion of the hashed value used by

the index generator 1s different from the part of the hashed value used to access the first

location 1n the hash table.

The apparatus of claim 1, wherein each of the plurality of locations of the hash table

containing 4 non-zero entry contains a flag set to one of a first logic value when the entry

is a collision entry and set to a second logic value when the entry 1s a non-collision entry.

The apparatus of claim 1, wherein the resolution entry is a non-collision entry including a

forwarding index to the output table which further contains a second output number.

2

(.}

10

20

25

30

1 0.

1.

13.

CA 02276191 1999-06-25

- 19 -

The apparatus of claim 1, wherein the resolution entry is a collision entry including a bit
mask number i1dentifying a masking function number identifying a masking function and

a pointer to a second resolution table with a plurality of locations.

The apparatus of claim 1, further comprising a hasher to receive a plurality of input
numbers, and operative to generate a hashed argument for each input number of the
plurality of input numbers, the hashed argument used to access a location in the hash

table.

The apparatus of claim 1, wherein each of the plurality of locations of the hash table that
contain a non-zero non-collision entry include a forwarding index to an output table that

contains a first output number.

The apparatus ot claim 8, wherein the apparatus classifies an input number as one of four
types, the apparatus further comprising a hash remainder table including a plurality of
entries, a first entry containing a hashed value and a type of the input number. the

apparatus operative to verity the forwarding index using the first entry of the hash table.

which 1s pointed to by the forwarding index.

The apparatus of claim 1, wherein the masking function specifies bits to be selected from

the hashed value.

The apparatus of claim I, wherein the masking function specifies a number ot bit
positions to shift the hashed value after the portion of the hashed value has been selected.
The appa;i;afus of claim 1, wherein the masking function specifies how to combine the

first index from the collision entry with the portion of the hashed value.

A method of resolving a hash collision that occurs in a hash table having a plurality ot
entries, the hash collision occurring when two different input numbers generate a same

hashed value that is used to access a first location in the hash table, the method :,

characterized by:

5

10
14.
5.

15
16.

20
17.

25

3.

718,

30
19.

CA 02276191 1999-06-25

» 5 & ¢
o o ® &
S
[]

e & & o

- 20 -

creating a resolution table containing a plurality of entries:

inserting a collision entry into the first location in the hash table and into each
hash table location where a hash collision occurs, the collision entry containing a bit
mask number identifying a masking function to select a portion of the hashed value and a
pointer to the resolution table;

generating an index responsive to the collision entry and the poﬁioﬁ%f the hashed
value selected by the masking function; and

accessing a resolution entry at a location in the resolution table pointed to by the

generated index.

The method according to claim 13, wherein generating an index further comprises:

combining the collision entry pointer with the portion of the hashed value.

The method according to claim 13, further comprising:

using a part of the hashed value to access the first location in the hash table which

1s different from the portion of the hashed value used to access the resolution entry.

The method of claim 13, further comprising inserting into each of the plurality of
locations of the hash table containing a non-zero entry a flag set to one of a first logic

value when the entry is a collision entry and a second logic value when the entry 1s a non-

collision entry.

The method of claim 13, wherein the resolution entry 1s a non-collision entry, the method
further comprising inserting into the resolution entry a forwarding index to an output

table that contains an output number.

¢ <

S -
~

The method of claim 13, wherein the resolution entry is a collision entry, the method
further comprising inserting into the resolution entry a bit mask number identifying a

masking function and a pointer to another resolution table having a plurality of locations.

The, method of claim 13, further compnsing:

et 1o VAR
AMEDEL St

(3

10

20.

21.

\J
{J

\J
UJ

24.

CA 02276191 1999-06-25

.21 -

hashing at least one of a plurality of input numbers to generate a hashed
argument; and

applying the hashed argument.to access a location in the hash table.

T'he method of claim 13, further comprising inserting a forwarding entry index to an
output table that contains a first output number into each of the plurality o1 focations of

the hash table that contain a non-zero collision entry.

The method of claim 20, further comprising:

classifying an input number as one of four types;

generating a hash remainder table having a plma]ity of entries, a first entry
containing a hashed value and a type of the input number; and

verifying the forwarding index using the first entry of the hash table, which is

pointed to by the forwarding index.

The method of claim 13, wherein the masking function specifies a number of bit

positions to shift the hashed value after the portion of the hashed value has been selected.

The method of claim 13, wherein the masking function specifies how to combine the first

index from the collision entry with the portion of the hashed value.

The method of claim 13, wherein the masking function specifies bits to be selected from

the hashed value.

A translation apparatus for translating a plurality of input numbers into a plurality of

output nimbers, the apparatus comprising:
a hasher, responsive to each of the plurality of input numbers, to generate a

hashed argument corresponding to the each input number, the hashed argument having a

plurality of bits;

d
10
15 26.
20
27.
25
3

(-}

CA 02276191 1999-06-25

- 9
5 3 L B - m -

~ N - PN e i |

-21/1-

a hash table containing a plurality of entries, each entry of the plurality of entries
containing either an index to an output table which contains a first output number or a bit
mask number identifying a masking function and a pointer to a resolution table:

a first resolution table containing a plurality of entries, each entry of the plurality
of entries containing either an index into the output table which contains a second output
number or a bit mask number 1dentifying a masking function and a pointer 0 a second
resolution table;

a first index generator responsive to a first subset of the plurality of bits of the
hashed argument to access the hash table; and

a second 1index generator to access the first resolution table, responsive to an entry
in the hash table that contains a bit mask numbér and a pointer, anad responsive to a
second subset of the plurality of bits of the hashed argument, wherein no bit from the

hashed argument 1s included 1in both the first subset and second subset.

The apparatus of claim 25, wherein the apparatus classifies each of the plurality of input
numbers as one of four types, the apparatus further comprising a hash remainder table
having a plurality of entries, each entry containing a hashed value and a type of the input
number, the apparatus operative to verify an index of an entry of either the hash tabie or

the first resolution table using an entry of the hash table pointed to by the index.

The apparatus of claim 25, wherein each location of the plurality of locations in each of
the hash table and the first resolution table includes a collision flag, wherein for each
entry of the plurality of entries where a hash collision does not occur the tlag has a first

logic value, and for each entry of the plurality of entries where a hash collision occurs the

flag has a second logic value.

ol
dm. ™
P

A asiaey QHEET

"sE‘JIl-o 4 'v‘; ‘o

02276191 1999-06-25

CA

WO 98/29986

NOILV1S

NOILV1S

801

901

142,

(1 401g) ["D

HOLIMS
13IMOVd
vivd

HOLIMS
14X40Vvd
V1ivQd

chi

OLl

oLl

8lL1

¢0l

001

NOILV1S

NOILVLS

02276191 1999-06-25

CA

PCT/US97/24218

WO 98/29986

2/5

Odld LINSNVY¥HL

0c¢

9l¢

8¢

dd4110d
LINSNVYYL

80¢
V1ivd
13IMOVd
x4

SUJOM
’ 1041NOD

AJONEN 13XMOVd

el

10d1INOD AHOWAN

4

90¢

L C

¢ OIA

O4ld JAIFO I

10C

ANIONS

dNMOOT S318vVL

02276191 1999-06-25

CA

PCT/US97/24218

WO 98/29986

3/5

c0t

X3dNI F19V1 LX3N ASVIN 119 _

80¢ 90¢ 14012

Veé OIA

X3ANI ONIAIdVYMHO A n

00¢

CA 02276191 1999-06-25

WO 98/29986 PCT/US97/24218
4/5

] aopRess:
PID FIG. 4

LOOKUP

g o TYPES
AD[00000000]] DsAP

FIRST HASH TABLE
402
400 410 420

||
426

422

0| FOR IDX
412 414
418

428 430

HASH REMAINDER TABLE FORWARDING TABLE

02276191 1999-06-25

CA

PCT/US97/24218

:

WO 98/29986

5/5

119Vl HSVH
ddiHL NI 319Vl
NOILN10Sdd

X3ANI

S

X4d

>
N
O
<

¢S

0€G

A%

<

¢CS
0c6

816G

GCS
1 JA

318V1

HSYH ANODJS
NI 319VL

NOILN10S3Y

Hn

OLG

)

143°,
0LS

§ OIA

G1G

318V1
HSVYH UNOO3S
NI 318V1
NOILN 10534

A%

X=dNI

I
z.

806

906

60G

IIN | W

.

a

OdV A3HSVYH

006G

/| ¢0§

v0S

319V1 HSVH 1544

ADDRESS
8D PID
LOOKUP
gD {00 00 00 PT TYPES
AD [00 00 00 00 DSAP
FIRST HASH TABLE

—420

402 i
REGISTER

400 410 —,

422
0
404
V4 — 408 /J\ 424
MASHER HASHED ARG 1]M) NI
426
FOR IDX

438
HASH REMAINDER TABLE FORWARDING TABLE

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - abstract drawing

