
III
USOORE35881E

United States Patent (19) 11 E Patent Number: Re. 35,881
Barrett et al. (45) Reissued Date of Patent: Aug. 25, 1998

54 METHOD AND SYSTEM FORTRAVERSING 4.584.644 4/1986 Larner 395/733
LNKED LST RECORD BASED UPON 4,606.002 8/1986 Waisman et al. 395/603
WRITE-ONCE PREDETERMINE) BT 4,630,234 12/1986 Holly . 395/603

4,704,678 11/1987 May .. 395/67.6
VALUE OF SECONDARY POINTERS 4,953,080 8/1990 Dysart et al. ... 395/614

4,953,122 8/1990 Williams 395/404
4,989,132 l/1991 Mellender et al. 395/705

... 395/622
75) Inventors: Philip L. Barrett, Redmond; Scott D.

Quinn, Issaquah; Ralph A. Lipe, 5,025,367 6/1991 Gurd et al.
Woodinville, all of Wash. 5,060,147 10/1991 Mattheyses 395/898

e 5.115,504 5/1992 Belove et al. 395/6
(73) Assignee: Microsoft Corporation, Redmond, 5,392.427 2/1995 Barrett et al. 395/62

Wash.
OTHER PUBLICATIONS

21 Appl. No.: 531460 Kruse, "Data Structures & Program Design", by Prentice
-Hall 1984, pp. 40-83.

22 Filed: Sep. 21, 1995 Cooper et al., “OH! Pascal". 1982; pp. 475-523.
Related U.S. Patent Documents Primary Examiner-Krisna Lim

Reissue of: Attorney, Agent, or Firm-Seed and Berry LLP
64 Patent No.: 5,247,658

Issued: Sep. 21, 1993 57 ABSTRACT

fi. No.: t 1989 A method and apparatus for storing files on a computer file
w y storage device. The files are organized into an hierarchical

(51 int-Cl. G06F 15/40 directory structure. The directory structure comprises direc
52 U.S. Cl. 707/1; 707/3; 707/205 tory entries and file entries. The file entries and directory

des 8v with www wood who is A4 888 to di 395/600, 700, each contain a primary and a secondary pointer. The sec
395/601, 603, 621; 707/1, 3, 205 ondary pointer is initially set to a predefined value. When an

entry is to be updated, the secondary pointer is overridden
58 Field of Search

(56) References Cited with a value that points to the superseding entry. This
directory structure is especially suitable to be used in a

U.S. PATENT DOCUMENTS Write-once computer memory,

4,408,273 10/1983 Plow 395/618
4,507,752 3/1985 McKenna et al. 395/612 31 Claims, 26 Drawing Sheets

FEFeinfo

Re. 35,881

LOO!!!

U.S. Patent

Re. 35,881 Sheet 3 of 26 Aug. 25, 1998 U.S. Patent

KOOCH" | HELLET

Re. 35,881 Sheet 4 of 26 Aug. 25, 1998 U.S. Patent

VZ ?un6|-

No.s:

Re. 35,881 Sheet 5 of 26 Aug. 25, 1998 U.S. Patent

GZ eunfil

U.S. Patent Aug. 25, 1998 Sheet 6 of 26 Re. 35,881

FEProm Address space

Unallocated

3- first unallocated

allocated

Figure 3

U.S. Patent Aug. 25, 1998 Sheet 7 of 26 Re. 35,881

Add Directory

Locate directory
set P fo address

Figure 4
Allocate new 42
FEDirentry

set C to address

Set 403

C->name C->tire
C->date
C>attribute

Sef 44
P->Status

to indicate a directory

P->primary ptr
410 FNyll

next ptr S.
P->primary ptr

P->primary ptr
= C

next pitre
next ptr->sibling

next ptre sibling
FNULL

2

next ptr->Sibling
s C

35,881 Re. U.S. Patent

:************** •

U.S. Patent Aug. 25, 1998 Sheet 10 of 26 Re. 35,881

BO Locate
parent directory
set P to address

Figure 8
Allocate new 802
FEFileEntry

set C to address

Sef
C - name
C - tine
C - dafe
C - attribute

805

P->primary ptr
FNULL

?
810

next ptre
P->primary ptr P->primary ptr

= C

next ptr=
next pfr->sibling

next ptr->sibling
FNULL

2

next ptr->sibling
= C

U.S. Patent Aug. 25, 1998 Sheet 11 of 26 Re. 35,881

Add Data
To New File

extent starts
first unallocated

901

902 first unallocated
=number of bytes

to Write

Write data at 903
extent start

Locate 904
FEFileEntry

Set F to address

F->extent location= 905
extent start

F->extent length= i
number of bytes

to write

DONE

Figure 9

U.S. Patent Aug. 25, 1998 Sheet 12 of 26 Re. 35,881

Extend File

Allocate new l'
FEFilefinfo

Set Fifo address

Set f002
F->attribute
F->date
F->fine

1003
extent starts

first unallocated

1004 first unallocated
p= number of bytes

to Write

1005
Write data at
extent start

OO6 Locate
FEFileEntry

Set FE to address

1007
next ptras FE

Figure 10A

U.S. Patent Aug. 25, 1998 Sheet 13 of 26 Re. 35,881

() Figure 10B

f008A

prev pitt
next ptr

f008B

Set next ptr->status
to indicate superseded

date/tine

109 101 f to 10

next pir->
secondary ptr

FNULL
7

Y next ptre
next ptr->primary ptr

next pitrs
next ptr->secondary ptr.

O12

Y 1013

prev par->primary pitr
Fl

Re. 35,881 Sheet 14 of 26 Aug. 25, 1998 U.S. Patent

+--------------…….….…..,

U.S. Patent Aug. 25, 1998 Sheet 15 of 26 Re. 35,881

Update File

Allocate 12O1
FEFileInfoS

Set F1, R2, and R3
addresses f208

R2->primary ptre
R3

Sef
R->fire
R1->date 1209
R1->attribute
R2->Status and
R3->status to superseded

R3->extent location=
R->extent location offset-p-data length

1210
R3->extent length=
R->extent length
offset-eata eragth

extent start=
first unallocated

121 it

R3->primary ptr
R->primary ptr first unallocated

+= data length

1212

R1->extent location=
R->extent location Write dafa to

extent start

1213

R7->extent length=
Offsef R2->extent location

=extent start

1214

R1->primary ptre
R2

R2->extent length
=data length

1215

R->secondary ptra
R1

Figure12

U.S. Patent Aug. 25, 1998 Sheet 16 of 26 Re. 35,881

Figure 13

Re. 35,881 Sheet 17 of 26 Aug. 25, 1998 U.S. Patent

? einfil

Re. 35,881 U.S. Patent

Re. 35,881 Sheet 19 of 26 Aug. 25, 1998 U.S. Patent

9! ?Infil

|E.

Re. 35,881 Sheet 20 of 26 Aug. 25, 1998 U.S. Patent

S.

Š.

U.S. Patent Aug. 25, 1998 Sheet 21 of 26 Re. 35,881

Del Directory

1801 Locate
directory file

Set D to address

1802 Sef
D->status to
indicate delefed

Figure 18

U.S. Patent Aug. 25, 1998

change file name

Locate file
Set P to address

190f

P->secondary pt
FNutt.

Allocate new
FEFileEntry

Set C to address

1905

1906
C->sibling=
P->sibling

1907

C->extent location
P->extent location

1908

C->extent length=
P->extent length

SO
C->primary ptre
P->primary otr

f
P->secondary pitr
seC

Sheet 22 of 26

Figure 19

P->secondary pitr

Re. 35,881

U.S. Patent Aug. 25, 1998 Sheet 23 of 26 Re. 35,881

Figure 20

k-FEFleinfo - a PTR - Prairy Prissar C

BDA
R s Exter. ...'

FEFleinfo

U.S. Patent Aug. 25, 1998 Sheet 24 of 26 Re. 35,881

change attribute data

2fOf
Locate file

Set P to address

arts

... ame ape

P->secondary ptr a- P->secondary pfr

FNyll

2O4 Ce
P->primary ptr

2105 2O6 2O7

W Set
C->Status to Cs C->secondary ptr

FNULL c-secondary ptr indicate superseded

219 2110

W Sef
C->Status to Cs C->primary ptr C->primary ptr

FNULL

() Figure 21A

indicate superseded

U.S. Patent Aug. 25, 1998 Sheet 25 of 26 Re. 35,881

Allocate new
FEInfoEntry

Set R fo address

Set
R->attributes
R->date
R->tine

c-pringy ptr

Figure 21B

U.S. Patent Aug. 25, 1998 Sheet 26 of 26 Re. 35,881

Figure 22

Re. 35.88
1.

METHOD AND SYSTEM FOR TRAVERSING
LINKED LIST RECORD BASEDUPON
WRITE-ONCE PREDETERMINED BT
WALUE OF SECONDARY POINTERS

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifi
cation; matter printed in italics indicates the additions
made by reissue.

DESCRIPTION

Technical Field

This invention relates generally to a computer system for
managing files and more specifically, to a method and
system for managing files stored on a Flash-erasable,
programmable, read-only memory (FEProm).

Background Art
A computer system generally supports the storage of

information on both volatile and nonvolatile storage devices.
The difference between a volatile and nonvolatile storage
device is that when power is disconnected from a volatile
storage device the information is lost. Conversely, when
power is disconnected from a nonvolatile storage device the
information is not lost. Thus, the storing of information on
a nonvolatile storage device allows a user to enter informa
tion at one time and retrieve the information at a later time,
even though the computer system may have been powered
down. A user could also disconnect a nonvolatile storage
device from a computer and connect the storage device to a
different computer to allow the different computer to access
the information.

The information stored on nonvolatile storage devices is
generally organized into files. A file is a collection of related
information. Over the course of time, a computer system can
store hundreds and thousands of files on a storage device,
depending upon the capacity of the device. In addition to
storing the information, the computer system will typically
read, modify, and delete the information in the files. It is
important that the computer system organize the files on the
storage device so that the storing, reading, modifying, and
deleting can be accomplished efficiently.

File systems, which are generally part of a computer
operating system, were developed to aid in the management
of the files on storage devices. One such file system was
developed by Microsoft Corporation for its Disk Operating
System (MS-DOS). This file system uses a hierarchical
approach to storing files. FIG. 1A shows a pictorial repre
sentation of the directory structure for a storage device.
Directories contain a logical group of files. Directories
organize files in a manner that is analogous to the way that
folders in a drawer organize the papers in the drawer. The
blocks labeled DOS, WORD. DAVID, and MARY represent
directories, and the blocks labeled AUTOEXEC.BAT.
COMMAND.COM, FORMAT.EXE. LETTER2.DOC,
LETTERDOC. and two files named LETTER1.DOC rep
resent files. The directory structure allows a user to organize
files by placing related files in their own directories. In this
example, the directory WORD may contain all the files
generated by the word-processing program WORD. Within
directory WORD are two subdirectories DAVID and MARY.
which aid in further organizing the WORD files into those
developed by David and those developed by Mary.

Conventional file systems take advantage of the multiple
write capability of the nonvolatile store devices. The

10

15

25

30

35

45

50

55

65

2
multiple-write capability allows any bit of information on
the storage device to be changed from a one to zero and from
a zero to one a virtually unlimited number of times. This
capability allows a file to be written to the storage device and
then selectively modified by changing some bits of the file.
The disadvantage of the conventional storage devices

with multiple-write capability, such as a disk, is their slow
speed relative to the speed of the internal computer memory.
Conversely, the advantage of these storage devices over
computer memory include their nonvolatility, low cost, and
high capacity

Astorage device known as a Flash-EProm (FEProm) has
the speed of internal computer memory combined with the
nonvolatility of a computer disk. This device is an EProm
type (Erasable, Programmable. Read-Only Memory) device.
The contents of the FEProm can be erased by applying a
certain voltage to an input rather by shining ultraviolet light
on the device like the typical EProm. The erasing sets each
bit in the device to the same value. Like other EProms, the
FEProm is a nonvolatile memory. The FEProms are com
parable in speed to the internal memory of a computer.
Initially, and after erased, each bit of the FEProm is set to a
1. A characteristic of the FEProm as with other EProms is
that a bit value of 1 can be changed to a 0, but a bit value
of 0 cannot be changed to a 1. Thus, data can be written to
the EProm to effect the changing of a bit from a 1 to a 0.
However, once a bit is changed to a 0, it cannot be changed
back to a 1. that is, unless the entire FEProm is erased to all
ones. Effectively, each bit of the FEProm can only be written
once but read many times between subsequent erasures.
Moreover, each bit of a FEProm can only be erased and set
to 0 a limited number of times. The limited number of times
defines the effective life of a FEProm.

Because conventional file systems assume that the storage
device has the multiple-write capability, these file systems
are not appropriate for the FEProm, which effectively has
only a single-write capability. It would be desirable to have
a file system that supports a storage device based on the
FEProm. Such a file system would have the speed of
computer memory and the nonvolatility of computer disks.

Conventional storage devices, such as computer disks, are
blockaddressable, rather than byte addressable. Abyte is the
unit of addressability of the internal memory of the
computer. that is, the computer can write or read one byte
(typically, eight bits) at a time, but not less. When the
computer writes to or reads from a disk it must do so in
groups of bytes called a block. Block sizes can vary, but
typically are a power of two (128, 256, 512, etc.). For
example, if only one byte on a diskis to be changed, then the
entire number of bytes in the blocksize must be written. This
may involve the reading of the entire block from disk into
the computer memory, changing the one byte (the internal
memory is byte addressable), and writing the entire block to
the disk.

Conventional file systems store data in a way that leaves
unused portions of blocks. The file systems store data from
only one file in any given block at a time. The file systems
do not, for example, store data from one file in the first 50
bytes of a block and data from another file the last 78 bytes
of a 128-byte block. If, however, the length of a file is not
an even multiple of the block size, space at the end of a block
is unused. In the example above, the last 78 bytes of the
block would be unused. When a disk uses a large block size
such as 4096, up to 4095 bytes of data can be unused.
Although this used space may be a negligible amount on a
disk drive that has multi-write capability and that can store

Re. 35.881
3

millions of bytes, it may be a significant amount on a storage
device without multi-write capability and without the capac
ity to store millions of bytes of data.
The FEProm, in contrast to typical storage devices, is byte

addressable, rather than block addressable. It would be
desirable to have a file system that would support the byte
addressability of a FEProm.

DISCLOSURE OF THE INVENTION

It is an object of the present invention to provide a method
of updating data stored on a file storage device.

It is another object of the present invention to provide a
method of storing a file on a file storage device.

It is another object of the present invention to provide a
method of updating directory and file entries of a hierarchi
cal directory structure on a file storage device.

It is another object of the present invention to provide a
method of updating a file on a file storage device, the file
having a linked list of information entries and the informa
tion entries having associated extents.

It is another object of the present invention to provide a
method of updating a portion of a file extent stored on a file
storage device.
These and other objects, which will become apparent as

the invention is more fully described below, are obtained by
an improved method and system for storing and updating
files stored on a Flash-erasable, programmable, read-only
memory. In a preferred embodiment, the system uses a
secondary pointer to indicate that data stored in a file system
data structure has been superseded. The secondary pointer
points to a record that contains the superseding data.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. A shows a sample hierarchical or tree-structured

organization of directories and files.
FIG. 1B shows a linked-list structure that represents the

same directory structure of FIG. A.
FIG. 1C shows an alternate linked-list structure that

represents the same directory structure of FIG. 1A.
FIG. 2A shows a linked-list structure for the file named

“AND.DA'.
FIG.2B shows an alternate linked-list structure for the file

named "VAND.DAT".
FIG. 3 shows the address space of the FEProm in a

preferred embodiment of the present invention.
FIG. 4 shows a flow diagram of the Add. Directory

routine in a in a preferred embodiment of the present
invention.

FIGS. 5 and 6 show before and after pictorials of the
directory structure with a newly added directory in a pre
ferred embodiment of the present invention.

FIGS. 7A and 7B show a before and after pictorial
representation of the allocation of an FEDirntry in a
preferred embodiment of the present invention.

FIG. 8 shows a flow diagram of the Add File routine in a
preferred embodiment of the present invention.

FIG. 9 shows a flow diagram of the Add Data To
New File routine in a preferred embodiment of the present
invention.

FIGS. 10A and 10B show a flow diagram of the Extend
File routine in a preferred embodiment of the present
invention.

FIG. 11 shows a sample directory and file layout using a
preferred embodiment of the present invention.

O

5

25

35

45

55

65

4
FIG. 12 shows a flow diagram of the Update File routine

in a preferred embodiment of the present invention.
FIGS. 13 and 14 show a sample portion of a file before

and after it is updated in a preferred embodiment of the
present invention.

FIGS. 15, 16 and 17 show sample portions of a file after
the file is updated in a preferred embodiment of the present
invention.

FIG. 18 shows a flow diagram of the Del Directory
routine in a preferred embodiment of the present invention.

FIG. 19 shows a flow diagram of the Change File
Name routine in a preferred embodiment of the present
invention.

FIG. 20 shows the before and after representation of the
directory structure for a file that has had its name changed.

FIGS. 21A and 21B show a flow diagram of the Change
Attribute Data routine in a preferred embodiment of the
present invention.
FIG.22 shows the before and after representation of the

directory structure for a file that has had its attribute date
changed.

DETALED DESCRIPTION OF THE
INVENTON

TABLE

DEALED DESCRIPTION OF ENVENTON

typedef boot record {
word standard identifier,
dword unique identifier;
word FS version write;
word min. FS version to read;
byte pointer size;
FEptr root directory
char wollabel11
char boot info...;
standard identifier value which indicates that the

media supports this file system
unique identifier combined with wolabel is a

unique identifier for the
particular FEProm
version number in high byte and
revision number in low byte of
file system that is required to
write to this volume
version number in high byte and
revision number in low byte of
the earliest version of file
system that directory structure
is compatible with

FS version write

min FS version to read

pointer size number of bits used in pointers
root directory pointer to root directory
volabel eleven character label
boot info data relating to booting the

operating system
typedef status type {
unsigned bit 0:1;
unsigned bit 1:1;
unsigned bit 2:1;
unsigned bit 3:1;
unsigned bit 4:1;
unsigned bit 5:1;
unsigned bit 6 7:2;}
typedef FEDirntry {
FEPtr sibling;
char name3,
char ext3,
status type status
FEPtr primary ptr;
FEPtr secondaryptr;
byte attributes;
short time;

5

TABLE 1-continued

Re. 35.881

DETALED DESCRIPTION OF THE INVENTION

short
typedef FEFileEntry {
FEPr
char
char

attributes

date

date;;

sibling,
name3;
ext3;

attributes;
time;
date;
extent location;
extent length;

status,
primary ptr;
secondary ptr;
extent location;
extent length;
attributes;
time;
date;
pointer to next directory entry in
sibling chain
directoryfile name
file extension

meaning
1: record exists in the directory
sucture
O; record has been deleted from the
directory structure
1: record contains current attributes,
date, and time data
O; record contains data that has been

: primary ptris FNULL
: primary ptr is not FNULL
: secondary ptris FNULL

O: secondary ptr is not FNULL
reserved
FEDirntry: points to the first
FEDirentry or FEFileEntry on the
next lower level in the directory
hierarchy; only valid if
secondary ptr equals FNULL
FEFileEntry: points to the linked
list of FEFileInfo entries associated
with the file; only valid if
secondary pir equals FNULL
FEFileInfo: points to the next
FEFileInfo entry for the file; only
valid if secondary ptr equals
FNULL
FEDirntry: points to the next
FEDirEntry entry for the directory;
the last entry in the linked Eist
contains the current information for
the directory; only valid if not
FNULL
FEFileEntry: points to the next
FEFileEntry entry for the file; the
last entry in the linked list contains
the current information for the file;
only valid if not FNULL
FEFileInfo: points to the next
FEFileInfo entry for the file; only
valid if not FNULL
file attributes such as read-only,
read/write, etc.
time of creation or modification
date of creation or modification

10

15

20

25

35

55

65

6

TABLE 1-continued

OETALED DESCRIPTION OF THE INVENTON

points to start of extent
length of extent in bytes

extent location
extent length

The present invention provides a directory-based hierar
chical file system for a FEProm device. A hierarchical file
system provides a way to store files in logical groupings. A
preferred embodiment uses a lined-list data structure to
implement both the directory hierarchy and the internal file
storage.

FIG. 1A shows a typical hierarchical directory structure.
The MS-DOS operating system, which is available from
Microsoft Corporation of Redmond, Wash., implements a
file system with a hierarchical directory structure. As shown
in FIG. 1A, the ROOT directory contains two subdirectories
(DOS and WORD) and two files (AUTOEXEC.BAT and
COMMAND.COM) at the next lower level. The directory
DOS contains one file (FORMAT.EXE). The directory
WORD contains two subdirectories (DAVID and MARY) at
the next lower level. The directory DAVID contains one file
LETTER1.DOC. The directory MARY contains three files
LETTER1.DOC, LETTER2-DOC, and LETTER3.D.O.C.

FIG. 1B shows a possible linked list that in a preferred
embodiment implements the directory structure of FIG. 1A.
The ROOT directory record (the terms record and entry are
used interchangeably in this specification) has a pointer
which points to a linked list of subdirectory records and file
records at the next lower level. The subdirectory record DOS
has a pointer to the file record at the next lower level, and
the subdirectory record WORD has a pointer to a linked list
of subdirectory records at the next lower level. The subdi
rectory record DAVID has a pointer to the file at the next
lower level, and the subdirectory record MARY has a pointer
to a linked list of file records at the next lower level. The
template 10 shows the record layout used throughout the
drawings.

FIG. 1B represents just one possible linked list arrange
ment that represents FIG. 1A. The arrangement would be
different if files had been added but then deleted or if the
name of a directory was changed. FIG. 1C shows another
possible arrangement. FIG. 1C represents the same directory
hierarchy as FIG. 1A, but the directory BILL existed at one
time but has been deleted.

Because a FEProm device can be written only once, in a
preferred embodiment of the present invention, directory
record BILL, as shown in FIG. 1C, is not physically
removed from the linked list. A directory or file record is
deleted from the linked list by logically clearing the exist/
delete bit of the status byte of the directory or file entry. If
the directory or file was stored on a computer disk, then
directory record BILL could be physically removed by
rewriting the pointer in directory record DAVID to point to
directory record MARY.
A preferred embodiment also uses a linked-list data

structure to link the extents that compose a file. Each file has
a file record associated with it that contains, among other
data, the name of the file and that is linked into the directory
hierarchy as described above. An extent is a contiguous area
of memory that contains data for the file. Each file comprises
one or more extents which contain the file data. Each extent
has an extent record associated with it. The extent record
contains, among other data, the start address of the extent

Re. 35,881
7

and the length of the extent. FIG. 2A shows the extents of the
file "Wa\D.DAT". The file record (R0) also serves as the
extent for the first extent in a file and contains a pointer to
the first extent (EO). The extent records (R1,R2, and R3) are
linked and contain a pointer to the corresponding extents
(E1. E2 and E3). The file is the logical concatenation of
extents E0 E1, E2, and E3.

FIG. 2A represents just one possible linked list arrange
ment for file "WVD.DAT". FIG. 2B shows another arrange
ment that represents the same file. The extent E4 was added
to the file but then deleted. In a preferred embodiment, the
file record R4 is not physically removed from the linked list
of extents that compose the file. Rather, the record R4 is
logically removed by setting the exist/delete bit of the status
byte to indicate the record is deleted.

In a preferred embodiment of the present invention, the
file system adds directory records, file records, extent
records, and extents by allocating space starting from
address zero in the FEProm. The file system treats the
FEProm as a stack-like device. Data is pushed onto the stack
to effect allocation, but data is never popped from the stack.
FIG. 3 shows the allocated and unallocated portion of a
FEProm. The variable first unallocated points to the lowest
address in the unallocated portion. Each byte of the unallo
cated portion contains FNULLs, since it has not yet been
written to by the file system. An FNULL is a byte that
contains all 1s. When a FEPromis erased each byte contains
an FNULL.

In a preferred embodiment, the first unallocated pointer
is not stored on the FEProm. When a FEProm is first
connected to the computer (i.e., put on-line), the file system
searches the FEProm from the highest address location to
the lowest address for the first occurrence of a non-FNULL
byte. The next higher address is the start of the unallocated
area (first unallocated). The file system should ensure that
the data stored at the end of the allocated portion does not
contain a FNULL. This can be accomplished by adding a
non-FNULL byte to the end of any record or extent that ends
in an FNULL.

Table 1 contains several data structures used in a preferred
embodiment of the present invention. The structures are
shown in C programming language format along with a
description of the structure variables. The first data structure
stored on the FEPromis the boot record. The boot record
contains some general information relating to the identifi
cation of the FEProm the version number of file system that
can access the FEProm, the pointer size variable, and the
root directory variable. The pointer size indicates the byte
size of the pointers stored in the FEProm. For example, a
pointer size with value of 3 indicates that each pointer is
three bytes. The root directory is a pointer to the root
directory stored on the FEProm.
The second and third structures are the FEDirentry and

FEFileEntry structures. One of these structures is allocated
for each directory and file. The structures are identical
except that the FEFileEntry has extent location and extent
length variables. The variable sibling points to the next
sibling in the linked list of FEDirentry and FEFileEntry
structures at the same level in the directory hierarchy. The
variables primary ptr and secondary pitr are fully
described below.

Described below is a preferred method of a file system for
a FEProm. The file system allows for directories to be added
and deleted, and files to be created, extended, and modified.
FIG. 4 shows a flow diagram for the routine that adds a
directory to a storage device. The input parameters to this

10

15

25

30

35

45

55

65

8
routine are the complete pathname of the new directory and
attribute data for the new directory. The term attribute data
as used below refers to the attribute, date, and time values.
This routine will set the variable P to point to the parent
directory and the variable C to point to the child directory.
For example, the path name "NPAC" means that a directory
"C" is to be created that is a subdirectory of "P" which is a
subdirectory of the root directory. FIG. shows when "C"
would be the first subdirectory of "P" and FIG. 6 shows
when "C" would not be the first subdirectory of "P".
Referring to FIGS. 5 and 6, the solid lines show the directory
structure before "C" is added and the broken lines show the
directory structure after "C" is added.

In block 401 of FIG. 4, the system locates directory "P"
by following the path from the root directory and setting
variable P to the address of "P" directory. In block 402, the
system allocates a new directory entry of the record type
FEDirentry for directory “C.” The system sets the variable
C to the variable first unallocated and allocates the space
by incrementing the variable first unallocated by the size of
an FEDirBntry record. FIGS. 7A and 7B show the address
space before allocation and after allocation of the FEDiren
try record, respectively. In block 403, the system sets the
variables name, time, date, and attribute in the newly allo
cated record. In block 404, the system sets the status bit to
indicate that the newly allocated entry is a directory entry,
rather than a file entry.

In blocks 405 through 410, the system links the new
directory entry into the old directory structure. In blocks 406
through 409, the system handles the situation where the new
directory is not the first subdirectory of "P." In block 410, the
system handles the situation where the new directory is the
first subdirectory of "P." In block 405, if P->primary ptr
equals FNULL, then the "P" directory has no subdirectory
and the system continues at block 410, else the "P" directory
has or has had a subdirectory (discussed below), and the
system continues at block 406. In block 410, the system sets
P->primary ptr equal to the variable C, the address of the
newly allocated directory entry to effect the liking to the new
directory and then the routine is done.

In block 406, the system sets the variable next ptr equal
to P->primary ptr. The variable next ptr contains the
next directory in the chain of sibling subdirectories. In block
407, if next ptr->sibling equals FNULL, then the end of
the chain of siblings has been reached and the system
continues at block 409, else the system continues at block
408. In block 408, the system sets next ptr equal to next
ptr->sibling, which advances next ptr to point to the next
directory in the chain, and continues at block 407 to deter
mine if the end of the chain has been reached. In block 409,
the system sets next ptrasibling equal to C, the address of
the newly allocated directory record and then the routine is
done.

FIG. 8 shows a flow diagram of the routine that adds a
record into the file system for a new file. Since FEFileEntry
records are simply leaf nodes of the hierarchical tree
structured file system, the routine that adds the FEFileEntry
records is very similar to the routine for FEDirBntry records,
which is Add Directory, shown in FIG. 4. The significant
difference is that the status bit that indicates the record is a
directory is not cleared as in block 404 of FIG. 4. Thus, the
status bit indicates the record is a file record.

FIG. 9 shows a flow diagram of the routine that adds data
to a newly created file. The routine is passed the complete
pathname, the data to write. and the number of bytes to
write. The routine allocates space in the FEProm, writes the

Re. 35,881
9

data, and then updates the FEFileEntry record for the file. In
block 901 and 902, the system allocates the space in the
FEProm for the extent. In block 901, the system sets the
pointer extent start equal to first unallocated. In block
902, the system increments first unal located by the number
of bytes to write. In block 903, the system writes the data to
the FEProm at the location pointed to by extent start. In
block 904, the system locates the FEFileEntry record for the
file by tracing down the pathname and sets F to point to that
record. In block 905, the system sets F->extent location
equal to extent start. In block 906, the system sets
F->extent length equal to the number of bytes to write
and then the routine is done.

FIGS. 10A and 10B show a flow diagram of the routine
to add data onto the end of a file. This routine is passed the
complete pathname, the data to write, and the number of
bytes to write. FIG. 11 shows a sample layout of the
directory structure that contains the file "WL.dat" that is to be
extended. The solid lines show the structure before the file
is extended and the broken lines show the structure after the
file is extended. Initially, the file "L.DAT" has a FEFileEntry
record and a FEFile:Info record associated with it. Each of
these records has a data extent, D1 or D2. The broken lines
represent a FEFileInfo record with the data to be added to
the file in extent D3.

Referring to FIGS. 10A and 10B in block 1001, the
system allocates a new FEFileInfo record in the FEProm and
sets the pointer FI to contain the address of that record. In
block 1002, the system sets F->date, F->time, and
FI->attribute. In blocks 1003 and 1004, the system allo
cates space in the FEProm for the data that is to extend the
file. In block 1003, the system sets the variable extent start
equal to first unallocated. In block 1004, the system incre
ments first unallocated by the number of bytes to write. In
block 1005, the system writes the data to the FEProm
starting at the location pointed to by extent start. In block
1006, the system locates the FEFileEntry record for the file
to be extended and sets FE to point to that record. In a
preferred embodiment, the system would locate the FEFi
leEntry record before allocating the new extent and
FEFileInfo record to ensure that the file exists before any
allocation is done.

In blocks 1007 through 1012, the system locates the last
FEFileInfo record for the file to be extended. The system
follows the primarypt or the secondary ptr of the FEFi
leEntry record and the FEFileInfo records. A non-FNULL
value in the secondary ptr field indicates that the record
pointed to by the primary ptr has been superseded by the
data in the record pointed to by the secondary ptr. In block
1007. the system sets pointer next ptr equal to FE, which is
the address of the FEFileEntry record. In block 1008A, the
system sets the pointer prev ptr equal to next ptr. When
the last FEFileInfo record in the file is located, the pointer
prev ptr will contain the address of that record. In block
1008B, the system sets the next to>indicate that the
attributes, date, and time are superseded. This will ensure
that the newly allocated FEFileInfo record will be the only
record for the file with current attribute, date, and time data.
In block 1009, if next->secondary ptr equals FNULL,
then the data in the record pointed to by the primary ptr has
not been superseded and the system continues at block 1010,
else the system continues at block 1011. In block 1010, the
system sets next ptr equal to next ptr->primary ptr to
get the address of the next record in the linked list and
continues at block 1012. In block 1011, the system sets next
equal to next ptr->secondary ptr to get the address of the
next record in the linked list and continues at block 1912. In

O

15

25

30

35

45

SO

55

65

10
block 1012, if next ptr equals FNULL, then the end of the
list has been reached and the system continues at block
1013, else the system continues at 1008A to process the next
record in the list. In block 1013, the system sets prev ptr
>primary ptr equal to FI to effect the extending of the file
and the routine is done.

FIG. 12 shows a flow diagram for the routine that updates
the data in a file. The parameters for this routine are R, the
address of the FEFileEntry or FEFileInfo block that is to
have its associated extent modified; extent offset, the offset
into the extent for the new data; new data, the new data;
data length, the length of the new data. Since the FEProm
is effectively a write once device, at least until everything is
erased, an area where data is stored cannot be rewritten
when an update to a file occurs. In a preferred embodiment,
the updated data is written to a different area of the FEProm,
as described below.

FIG. 13 shows a typical portion of the linked list of the
FEFileInfo records for a file. The Update File routine will
replace the data represented by the shaded area. FIG. 14
shows the structure of the linked list after the modified data
has been written to the FEProm. Three FEFileInfo records,
R1, R2, and R3, have been inserted into the linked list The
entire extent is not rewritten, rather only the portion that
actually changed is rewritten. The routine divides the extent
into three sections, D1, D2, and D3. Sections D1 and D3
contain data that is not changed by the update, and section
D2 contains the data that will change. Each section will have
a corresponding FEFileInfo record. The FEFileInfo records
R1, R2, and R3 are linked through their primary ptr. Also.
the extent location field in R1 and R3 point to their
corresponding extent sections and the extent lengthfields are
set. However, a new extent has been allocated for the
changed data corresponding to the new D2 section, which is
pointed to by record R2. The secondaryptr of record R
points to FEFileInfoR1 to indicate that the priminary ptr of
R is suspended. The primary of FEFileInfo record R3 is set
to the value contained in the primary ptr of FEFileInfo
record R to complete the link.

In block 1201, the system allocates three FEFileInfo
records and sets the pointers R1, R2, and R3 to contain the
addresses. R1 is allocated with and R2 and R3 are allocated
without the attribute data. In block 1202, the system sets
R1->time, R1->date, and R1-> attributes and
R2->status and R3->status to superseded. In block 1203
and 1204, the system allocates a record of data length for
the new data. In block 1203, the system sets the variable
extent start equal to first unallocated. In block 1204, the
system increments first unallocated by data length. In
block 1205, the system writes new data to the FEProm
starting at the address extent start.

In blocks 1206 through 1208, the system sets the data in
FEFileInfo record R2. In block 1206, the system sets
R2->extent location equal to extent start. In block 1207,
the system sets R1->extent length equal to data length.
In block 1208, the system sets R2->primary ptr to R3.

In blocks 1209 through 1211, the system sets the data in
FEFileInfo record R3. In block 1209, the system sets
R3->extent location equal to R->extent location plus
extent offset plus data length, which is the start address of
section D3. In block 1210, the system sets R3->exten
length equal to R->extent length. minus R3->extent
location. In block 1211, the system sets R3->primry
pointer equal to R->primary ptr.

In blocks 1212 through 1214, the system sets the data in
FEFileInfo record R1. In block 1212, the system sets

Re. 35.881
11

R1->extent location equal to R->extent location. In
block 1213. the system sets R->extent length equal to
extent offset. In block 1214, the system sets (R1
>primary otr to R2.

In block 1215, the system sets R->secondary ptr equal
to R1, which indicates that the primary ptr is superseded,
and then the routine is done.

FIGS. 15 and 16 show the FEFileInfo list for a couple
special cases of file updates. The routine for processing for
these special cases is a subset of the routine needed for
processing the general case, Update File, shown in FIG. 12.
In FIG. 15, data starting at the beginning of an extent is
updated. Section D1 contains the data at the beginning of the
extent to be updated and section D2 contains the data at the
end of the extent that is not updated. Only two new
FEFileInfo records are needed. The first FEFile:Info record
R1 points to the new data and the second FEFileInfo record
R2 points to the old data. A similar situation occurs when
data that ends on an extent boundary is updated as shown in
F.G. 16.

FIG. 17 shows a linked list for FEFile:Info records when
the updated data spans extent boundaries.

FIG. 18 shows a flow diagram of a routine that deletes a
directory or file from the FEProm. This routine clears the
exist/delete bit in the FEDirentry. In block 1801, the system
locates the directory or file to be deleted and sets the pointer
D to contain the address of the directory or file. In block
1802, the system sets D->status to indicate that the direc
tory or file is deleted and the routine completes.
The name of a directory or file is changed by allocating a

new FEDirentry or FEFileEntry, respectively, and then
setting the secondary ptr of the old entry to point the new
entry. FIG. 20 shows the file entry for "D.DAT" in solid lines
and the changes in broken lines when the name is changed
to "B.DAT.” The new entry points to the linked list of
FEFileInfo entries, the directory structure, and the extent
associated with the old entry.

FIG. 19 is a flow diagram of a preferred subroutine that
implements the changing of a file name. (The subroutine for
changing a directory is similar, except that there are no
associated extents.) The input parameters to this routine are
the pathname of the file and the new file name. In block
1901, the system searches through the directory structure
and locates the file whose name is to be changed and sets the
variable P to point to the FEFileEntry. In block 1902 and
1903, the system searches for the last FEFileEntry in the
linked list of entries for the file. A file will have an entry for
each name change In block 1902, if P->secondary ptr
equals FNULL, then Ppoints to the end of the linked list and
the system continues at block 1904, else Pdoes not point to
the end of the linked list and the system continues at block
1903. In block 1903, the system sets P equal to
P->secondary otr to walk through the linked list.

In block 1904, the system allocates a new FEFileEntry
and sets the variable C to point to the entry. In block 1905.
the system set C->name equal to the new file name. In
block 1906, the system sets C->sibling equal to
P->sibling to link the entry into the directory hierarchy. In
blocks 1907 and 1908, the system sets C->extent location
and C->extent length equal to P->extent location and
P->extent length, respectively, to link the new entry to the
extent. In block 1909, the system sets C->primry ptr
equal to P->primary ptr to link the new entry to the list of
extents. In block 1910, the system sets P->secondary ptr
equal to C to complete the replacement of the old entry and
the routine completes.

O

5

20

25

30

35

45

SO

55

65

12
The attribute data associated with a file are changed by

adding a new FEFileInfo entry onto the linked list of
FEFileInfo entries. All FEFileInfo entries except the last are
set to indicate that the attribute data have been superseded.
FIG. 22 shows the linked list arrangement before the
attribute data change in solid lines and after the attribute data
the change in broken lines. No extent is associated with the
FEFileInfo entry that is added as a result of an attribute data
change.

FIGS. 21A and 21B show a flow diagram of a routine that
changes the attribute data of a file. The input parameters are
the pathname and the attribute data. In block 2101, the
system searches through the directory structure to locate the
file and sets the variable P to point to the FEFileEntry. In
block 2102 and 2103, the system searches for the last
FEFileEntry in the linked list of entries for the file. Afile will
have an entry for each name change. In block 2102, if
P->secondary ptr equals FNULL, then Ppoints to the end
of the linked list and the system continues at block2104, else
P does not point to the end of the linked list and the system
continues at block 2103. In block 2103, the system sets P
equal to P->secondary ptr to walkthrough the linked list.

In block 2104, the system sets the variable C equal to
P->primary ptr, which points to the linked list of
FEFileInfo entries for the file. In blocks 2105 through 2110,
the system searches through the FEFileInfo entries for the
last entry. If a secondary ptris set, the system follows that
path, otherwise it follows the primary ptr. If both primary
ptr and secondary ptr are equal to FNULL, then the system
has located the end of the linked list In block 2105, if
C->secondary ptr equals FNULL, then the system con
tinues at block 2108, else the system continues at block
2106. In block 2106, the system sets C->status to indicate
that the attribute data are superseded. The new FEFileInfo
entry will contain the new attribute data. In block 2107, the
system sets C equal C->secondary ptr to traverse the
linked list and the system loops to 2105.

In block 2108, if C->primary ptr equals FNULL, then
C points to the last FEFileInfo record in the list and the
system continues at block2111, else the system continues at
block 2109. In block 2109, the system sets C->status to
indicate that the attribute data are superseded. The new
FEFileInfo entry will contain the new attribute data. In block
2110, the system sets C equal C->primary ptr to traverse
the linked list and the system loops to 2105.

In block2111, the system allocates a new FEFileEntry and
sets the variable R to point to the entry. In block 2112, the
systems sets the attribute data for the new file entry. In block
2113, the system sets C->primary ptr equals R to link the
new entry with the other FEFileInfo entries and the routine
completes.

In an alternate preferred embodiment, the FEFileEntry
records and the FEFile:Info records are allocated after the
space for extent is allocated. Storing in this manner has two
advantages. First, it ensures that the allocated space will
never end in an FNULL. Second several writes can be
combined into one large extent. The combining of the writes
can occur up to the point at which FEDirEntry, FEFileEntry,
or a FEFileInfo (for a different file) are to be added to the
FEProm. At that point, the combined FEFileInfo record
could be written out.

Although the present invention has been described in
terms of preferred embodiment, it is not intended that the
invention be limited to this embodiment. Modifications
within the spirit of the invention will be apparent to those
skilled in the art. The scope of the present invention is
defined by the claims that follow.

Re. 35,881
13

We claim:
1. A method of updating data stored on a computer

memory file storage device with new data, the memory
containing records of data, each record having a primary
pointer and a secondary pointer, the records stored as a
linked list that is linked by the primary pointers, the method
comprising the steps of:

locating a record that contains data to be updated, the
record being contained in the memory comprising a
plurality of bits such that once a bit is changed from a
predefined bit value to another bit value the changed bit
cannot be individually changed back to the predefined
bit value, the data including bits that have been changed
from the predefined bit value to the other bit value. the
secondary pointer of the located record having each bit
set to the predefined bit value;

allocating a record to contain the new data, the record
being allocated in the memory, each bit of the allocated
record being set to the predefined bit value;

writing the new data to the allocated record; and
setting the secondary pointer in the located record to point

to the allocated record to indicate that the new data in
the allocated record is an update of the data in the
located record by changing at least one bit of the
secondary pointer from the predefined bit value to the
other bit value

wherein the step of locating a record includes the steps of:
(a) selecting a record at which to start a traversal of the

linked list;
(b) reading the secondary pointer for the selected record;
(c) if each bit of the read secondary pointer is set to the

predefined bit value, then selecting the record pointed
to by the primary pointer of the selected record;

(d) if each at least one bit of the read secondary pointer
is not set to the predefined bit value, then selecting the
record pointed to by the secondary pointer of the
selected record; and

(e) repeating steps (b) to (d), until the selected record
contains the data to be updated.

2. The method of claim 1 including the additional step of
setting the primary pointer in the allocated record equal to
the primary pointer of the located record.

3. The method of claim 1 or 2 wherein the file storage
device is a flash, erasable programmable read only memory.

4. The method of claim 1 wherein the file storage device
is logically a stack device, the stack having a top, and the
allocated records are allocated on the top of the stack.

5. A computer file storage system for organizing files
based on a hierarchical directory structure, the directory
structure having a plurality of directory entries, the system
comprising:

a computer having a memory for storing directory entries.
the memory comprising a plurality of bits such that
once a bit is changed from a predefined bit value to
another bit value the changed bit cannot be individually
changed back to the predefined bit value;

means for allocating a portion of the memory for storing
a directory entry, the directory entry having a primary
pointer, a secondary pointer, and a sibling pointer, the
pointers having a plurality of bits initially being set to
the predefined bit value;

means for storing directory data in the directory entry;
means for setting the sibling pointer of the directory entry

to point to another directory entry at the same level in
the directory structure to form a linked list of sibling
directory entries;

O

15

35

45

50

55

65

14
means for setting the primary pointer of the directory

entry to point to another directory entry at the next level
lower in the directory structure;

means for determining whether each bit of the secondary
pointer of the directory entry is set to the predefined bit
value to indicate that the directory data of the directory
entry has superseded; and

means for setting the secondary pointer of the directory
entry to point to a superseding directory entry, the
superseding directory entry to contain updated data for
the directory entry by changing at least one bit of the
secondary pointer from the predefined bit value to the
other bit value.

6. The computer file storage system of claim 5 further
comprising:
means for setting the primary pointer of the superseding

directory entry equal to the primary pointer of the
directory entry; and

mean for setting the sibling pointer of the Superseding
directory entry equal to the sibling pointer of the
directory entry.

7. The computer file storage system of claim 5 further
comprising:
means for allocating a portion of the memory for storing
a file entry, the file entry to contain information relating
to a file; and

means for setting the primary pointer of the directory
entry to point to the file entry.

8. The computer file storage system of claim 7 wherein the
file entry contains a primary pointer, a secondary pointer,
and a sibling pointer, the file entry pointers having a plurality
of bits initially being set to the predefined bit value, includ
1ng:

means for setting the sibling pointer of the file entry to
point to another file entry to form a linked list of file
entries; and

means for setting the secondary pointer of the file entry to
point to a superseding file entry, the superseding file
entry to contain updated data for the file entry.

9. The computer file storage system of claim 8 further
comprising:

means for setting the primary pointer of the superseding
file entry equal to the primary pointer of the file entry;
and

means for setting the sibling pointer of the Superseding
file entry equal to the sibling pointer of the file entry.

10. The computer file storage system of claim 7 further
comprising:

means for allocating a portion of the memory for storing
a file information entry, the file information entry to
contain information relating to a file extent; and

means for setting the primary pointer of the file entry to
point to the file information entry.

11. The computer file storage system of claim 10 wherein
the file information entry contains a primary pointer and
secondary pointer, the file information entry pointers having
a plurality of bits initially being set to the predefined bit
value, further comprising:

means for setting the primary pointer of the file informa
tion entry to point to another file information entry
associated with the same file to form a linked list of file
information entries for that same file; and

means for setting the secondary pointer of the file infor
mation entry to point to a superseding file information
entry, the superseding file information entry to contain
updated data for the file information entry.

Re. 35.881
15

12. The computer file storage system of claim 11 further
comprising:
means for setting the primary pointer of the superseding

file information entry equal to the primary pointer of
the file information entry.

13. The computer file storage system of claim 5, 6, 7, 8,
9. 10, 11, or 12 wherein the memory is a flash, erasable,
programmable read-only memory.

14. A computer file storage system for storing files. the
system comprising:

a computer having a memory for storing the files, the
memory comprising a plurality of bits such that once a
bit is changed from a predetermined predefined bit
value to another bit value the changed bit cannot be
individually changed back to the predefined bit value;

means for allocating a portion of the memory for storing
a file entry, the file entry to contain information relating
to a file and containing a primary pointer, a secondary
pointer, and a sibling pointer, the information and
pointers having a plurality of bits initially being set to
the predefined bit value;

means for storing information relating to the associated
file in the file entry;

means for setting the sibling pointer of the file entry to
point to another file entry to form a linked list of file
entries;

means for determining whether each bit of the secondary
pointer of the file entry is set to the predefined bit value
to indicate that the information of the file entry has not
been superseded; and

means for setting the secondary pointer of the file entry to
point to a superseding file entry, the superseding file
entry to contain updated information for the file entry
by changing at least one bit of the secondary pointer
from the predefined bit value to the other bit value.

15. The computer file storage system of claim 14 further
comprising:

means for setting the primary pointer of the superseding
file entry equal to the primary pointer of the file entry;
and

means for setting the sibling pointer of the superseding
file entry equal to the sibling pointer of the file entry.

16. The computer file storage system of claim 14 includ
ling:
means for allocating a portion of the memory for storing
a file information entry, the file information entry to
contain information relating to a file extent of a file, the
file information entry containing a primary pointer and
a secondary pointer, each of the file information entry
pointers having a plurality of bits initially being set to
the predefined bit value;

means for setting the primary pointer of the file entry to
point to the file information entry;

means for setting the primary pointer of a file information
entry to point to another file information entry associ
ated with the same file to form a linked list of file
information entries for the same file; and

means for setting the secondary pointer of the file infor
mation entry to point to a superseding file information
entry, the superseding file information entry to contain
updated information for the file information entry.

17. The computer file storage system of claim 16 further
comprising:

means for setting the primary pointer of the superseding
file information entry equal to the primary pointer of
the file information entry.

5

1O

15

25

35

45

50

55

65

16
18. The computer file storage system of claim 14, 15, 16.

or 17 wherein the memory is a flash, erasable, program
mable read-only memory.

19. A method of updating data stored on a computer
memory device with new data, the memory device contain
ing records of data, each record having a secondary pointer,
the method comprising the steps of:

locating a record that contains data to be updated, the
record being contained in the memory device compris
ing a plurality of bits such that once a bit is changed
from a predefined bit value to another bit value the
changed bit cannot be individually changed back to the
predefined bit value, the data including bits that have
been changed from the predefined bit value to the other
bit value, the secondary pointer of the located record
having each bit set to the predefined bit value;

allocating a record to contain the new data, the record
being allocated in the memory, each bit of the allocated
record being set to the predefined bit values;

writing the new data to the allocated record; and
setting the secondary pointer in the located record to point

to the allocated record to indicate that the new data in
the allocated record is an update of the data in the
located record by changing at least one bit of the
secondary pointer from the predefined bit value to the
other bit value

wherein the step of locating a record includes the steps of:
(a) selecting a record at which to start a traversal of the

linked list;
(b) reading the secondary pointer for the selected

record;
(c) if each bit of the read secondary pointer is set to the

predefined bit value, then selecting the record
pointed to by the primary pointer of the selected
record;

(d) if each at least one bit of the read secondary
pointer is not set to the predefined bit value, then
selecting the record pointed to by the secondary
pointer of the selected record; and

(e) repeating steps (b) to (d), until the selected record
contains the data to be updated.

20. The method of claim 19 wherein the step of setting the
secondary pointer includes setting a flag in the located
record to indicate at the secondary pointer has been changed
from the a predefined bit value.

21. The method of claim 19 or 20 wherein the computer
memory device is a flash, erasable, programmable read-only
memory.

22. The method of claim 19 wherein the step of locating
a record includes determining an address of a first unallo
cated portion in the memory.

23. The method of claim 22 wherein the device has a
plurality of locations, each location identified by an address,
the addresses being sequential, the device having a begin
ning location and an ending location, the device having an
allocated portion of contiguous locations and an unal located
portion of contiguous locations, the allocated portion being
positioned starting at the beginning address, the unallocated
portion being positioned ending at the ending address, each
bit of each location in the allocated portion being set to the
predefined bit value, and wherein the stepfor determining an
address of a first unallocated location includes the steps of:

(a) setting a search pointer equal to the address of the
ending location;

(b) retrieving data stored at the location pointed to by the
search pointer;

Re. 35.881
17

(c) comparing each bit of the retrieved data with the
predefined bit value;

(d) if each bit of the retrieved data is equal to the
predefined bit value, adjusting the search pointer to
point to the next contiguous location;

(e) repeating steps (b), (c), and (d) until at least one bit of
the retrieved data is not equal to the predefined bit
value; and

(f) if at least one bit of the retrieved data is not equal to
the predefined bit value, setting the address of the first
unallocated location equal to the address of the last
location from which each bit of the retrieved data was
equal to the predefined bit value.

24. The method of claim 23 wherein the allocated portion
of contiguous locations has a last location, including the step
of:

ensuring that at least one bit of the last location in the
allocated portion of contiguous locations contains a bit
value other than the predefined bit value.

25. The method of claim 22, 23, or 24 wherein the
memory device is a flash, erasable, programmable read-only
memory.

26. A method for determining an address of a first
unallocated location in a memory device. the device having
a plurality of locations, each location identified by an
associated address, the addresses being sequential, the
device having a beginning location and a ending location,
the device having an allocated portion of contiguous loca
tions and an unallocated portion of contiguous locations, the
allocated portion being positioned starting at the beginning
address, the unallocated portion being positioned ending at
the ending address, each bit of the unallocated portion being
set to a predefined value, the method comprising the steps
of:

(a) setting a search pointer equal to the address of the
ending location;

(b) retrieving the bits stored at the location pointed to by
the search pointer, the location comprising a plurality
of bits such that once a bit is changed from the
predefined value to another value the changed bit
cannot be individually changed back to the predefined
value;

(c) comparing the retrieved bits with the predefined value;
(d) if each of the retrieved bits is equal to the predefined

value, adjusting the search pointer to point to the next
contiguous location;

(e) repeating steps (b), (c), and (d) until at least one of the
retrieved bits is not equal to the predefined value; and

(f) if at least one of the retrieved bits is not equal to the
predefined value, setting the address of the first unal
located location equal to the address of the last location
from which each of the retrieved bits was equal to the
predefined value.

27. The method of claim 26, wherein the allocated portion
of contiguous locations has a last location, including the
additional step of:

5

O

15

25

30

35

45

50

55

18
ensuring that at least one bit of the last location in the

allocated portion of the contiguous locations contains a
value other than the predefined value.

28. The method of claim 26 or 27 wherein the memory
device is a flash, erasable, programmable read-only memory.

29. A method of updating a logically contiguous set of
data with updated data, the data comprising a plurality of
extents, each extent comprising a logically contiguous sub
set of the set of data, each extent having an associated extent
header, the extent header having a primary pointer, a sec
ondary pointer, and an extent pointer, the primary pointers
linking the extent headers in a linked list, the extent pointers
pointing to the extent associated with the header, the method
comprising the steps of:

locating an extent header associated with an extent to be
updated, the located extent header comprising a plu
rality of bits such that once a bit is changed from a
predefined bit value to another bit value the changed bit
cannot be individually changed back to the predefined
bit value, the secondary bit pointer of the located extent
header having each bit set to the predefined bit value;

allocating an extent header, the allocated extent header
comprising a plurality of bits such that once a bit is
changed from the predefined bit value to another bit
value the changed bit cannot be individually changed
back to the predefined bit value, each bit of the allo
cated extent header being set to the predefined bit
value;

setting the secondary pointer in the located extent header
to point to the allocated extent header by changing at
least one bit of the secondary pointer from the pre
defined bit value to the other bit value;

setting the primary pointer in the allocated extent header
equal to the primary pointer of the located extent
header by changing at least one bit of the primary
pointer from the predefined bit value to the other bit
value;

allocating an extent to store the updated data;
storing the updated data in the allocated extent; and
setting the extent pointer in the allocated extent header to

point to the allocated extent by changing at least one bit
of the extent pointer from the predefined bit value to the
other bit value.

30. The method of claim 29 comprising the additional
steps of:

setting the primary pointer in the allocated extent header
to point to another allocated extent header, when updat
ing only a portion of the data in the extent to be
updated; and

setting the extent pointer in the other allocated extent to
point to a portion of data in the extent to be updated,
wherein the portion of data is not to be updated.

31. The method of claim 29 or 30 wherein the memory
device is a flash, erasable, programmable read-only memory.

k

