wo 20197025864 A2 | I0E 000 RO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual P t J
(%) Tor Orgmisstion > 0 O AN 000 OO A

International Bureau = (10) International Publication Number
== WO 2019/025864 A2

(43) International Publication Date
07 February 2019 (07.02.2019) WIPO | PCT

(51) International Patent Classification: (72) Inventors; and
Not classitied (71) Applicants: SITY, Elad [IL/IL]; Belinson 8, Kfar Saba

(21) International Application Number: (IL). HILLEL, Eliad [IL/IL]; Moran 10, Kfar Saba (IL).

PCT/IB2018/000995 (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

30 July 2018 (30.07.2018) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

(22) International Filing Date:

(26) Publication Language: English KR, KW.KZ LA, LC,LK,LR, LS, LU, LY, MA, MD, ME,

(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
62/538,722 30 July 2017 (30.07.2017) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
62/538,724 30 July 2017 (30.07.2017) Us SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
62/548,990 23 August 2017 (23.08.2017) Us TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,

(54) Title: A MEMORY-BASED DISTRIBUTED PROCESSOR ARCHITECTURE

300
305
___ T~
e I
! 310a | 310c
I
1 1
: Memory || Memory f330b Memory |i Memory \j/‘ggof
330a \!: | Instance Instance 3305\ Instance || Instance 1
I
1 (
1 " = ; ; !
3204 \I| | Logicand || Logic and 390b 3206 Logic and || Logic and 320f
| Control Control f /\‘ Control Control /l/\
I I
I
3402 : Bank Controller 340{\, Bank Controller :
| |
R U —
“ I | { Host
I | | i
i)
310b 310d
! ~ T~ g
: Memory || Memory /\330d Memory (| Memory \ 330n 350
1
330¢ : Instance || Instance 33Og/\1 Instance || Instance :
i
1 - = 1
320\!i | Logicand || Logic and /‘320d 320g)\~ Logic and || Logic and 320h
| Control Control Control Control |
) !
I I
340b \(Bank Controller 340&-\ Bank Controller :
1 I
1 |

(57) Abstract: The present disclosure includes distributed processors and methods for compiling code for executed by the distributed
processors. In one implementation, a distributed processor may include a substrate; a memory array disposed on the substrate; and a
processing array disposed on the substrate. The memory array may include a plurality of discrete memory banks, and the processing
array may include a plurality of processor subunits, each one of the processor subunits being associated with a corresponding, dedicated
one of the plurality of discrete memory banks. The distributed processor may further include a first plurality of buses, each connecting
one of the plurality of processor subunits to its corresponding, dedicated memory bank, and a second plurality of buses, each connecting
one of the plurality of processor subunits to another of the plurality of processor subunits.

[Continued on next page]

WO 2019/025864 A2 || 10PN I

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IF, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

A MEMORY-BASED DISTRIBUTED PROCESSOR ARCHITECTURE

Cross References to Related Applications

[001] This application claims the benefit of priority of United States Provisional Patent
Application No. 62/538,722, filed on July 30, 2017, United States Provisional Patent Application No.
62/538,724, filed on July 30, 2017, and United States Provisional Patent Application No. 62/548,990,
filed on August 23, 2017. All of the foregoing applications are incorporated herein by reference in their
entireties.

BACKGROUND

Technical Field

[002] The present disclosure relates generally to apparatuses for facilitating memory-intensive
operations. In particular, the present disclosure relates to hardware chips that include processing elements
coupled to dedicated memory banks.

Background Information

[003] As processor speeds and memory sizes both continue to increase, a significant limitation
on effective processing speeds is the von Neumann bottleneck. The von Neumann bottleneck results from
throughput limitations resulting from conventional computer architecture. In particular, data transfer from
memory to the processor is often bottlenecked compared to actual computations undertaken by the
processor. Accordingly, the number of clock cycles to read and write from memory increases
significantly with memory-intensive processes. These clock cycles result in lower effective processing
speeds because reading and writing from memory consumes clock cycles that cannot be used for
performing operations on data. Moreover, the computational bandwidth of the processor is generally
larger than the bandwidth of the buses that the processor uses to access the memory.

[004] These bottlenecks are particularly pronounced for memory-intensive processes, such as
neural network and other machine learning algorithms; database construction, indexing searching, and
querying; and other tasks that include more reading and writing operation than data processing operations.

[005] Additionally, the rapid growth in volume and granularity of available digital data has
created opportunities to develop machine learning algorithms and has enabled new technologies.
However, it has also brought cumbersome challenges to the world of data bases and parallel computing.
For example, the rise of social media and the Internet of Things (IoT) creates digital data at a record rate.
This new data can be used to create algorithms for a variety of purposes, ranging from new advertising
techniques to more precise control methods of industrial processes. However, the new data has been
difficult to store, process, analyze and handle.

[006] New data resources can be massive, sometimes in the order of peta- to zettabytes.
Moreover, the growth rate of these data resources may exceed data processing capabilities. Therefore,
data scientists have turned to parallel data processing techniques, to tackle these challenges. In an effort to
increase computation power and handle the massive amount of data, scientists have attempted to create
systems and methods capable of parallel intensive computing. But these existing systems and methods

have not kept up with the data processing requirements, often because the techniques employed are

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

limited by their demand of additional resources for data management, integration of segregated data, and
analysis of the sectioned data.

[007] To facilitate the manipulation of large data sets, engineers and scientists now seek to
improve the hardware used to analyze data. For example, new semiconductor processors or chips (such as
those described herein) may be designed specifically for data intensive tasks by incorporating memory
and processing functions in a single substrate fabricated in technologies more fitting for memory
operations rather than arithmetic computation. With integrated circuits specifically designed for data-
intensive tasks, it is possible to meet the new data processing requirements. Nonetheless, this new
approach to tackle data processing of large data sets requires solving new issues in chip design and
fabrication. For instance, if the new chips designed for data intensive tasks are manufactured with
fabrication techniques and architectures used for common chips, they would have a poor performance
and/or unacceptable yields. In addition, if the new chips are designed to operate with current data
handling methods, they will have poor performance because current methods can limit the chip’s ability
to handle parallel operations.

[008] The present disclosure describes solutions for mitigating or overcoming one or more of
the problems set forth above, among other problems in the prior art.

SUMMARY

[009] Embodiments consistent with the present disclosure provide apparatuses including
hardware processing chips. The disclosed embodiments may use dedicated memory banks paired with
processing elements to provide more efficient effective processing speeds than conventional processors.
For example, consistent with the disclosed embodiments, the disclosed chips may include dedicated buses
between each processing element and its corresponding memory banks. In addition, the disclosed chips
may be free of arbiters and/or other hardware that controls timing of data transfers between the processing
elements. Other disclosed non-transitory computer-readable media may store instructions for compiling
higher-level instructions to lower-level instructions executed by hardware chips disclosed herein.

[010] Some embodiments of the present disclosure include a distributed processor, comprising:
a substrate; a memory array disposed on the substrate, the memory array including a plurality of discrete
memory banks; a processing array disposed on the substrate, the processing array including a plurality of
processor subunits, each one of the processor subunits being associated with a corresponding, dedicated
one of the plurality of discrete memory banks; a first plurality of buses, each connecting one of the
plurality of processor subunits to its corresponding, dedicated memory bank; and a second plurality of
buses, each connecting one of the plurality of processor subunits to another of the plurality of processor
subunits.

[011] Other embodiments consistent with the present disclosure include a memory chip,
comprising: a substrate; a memory array disposed on the substrate, the memory array including a plurality
of discrete memory banks; a processing array disposed on the substrate, the processing array including a

plurality of address generators, each one of the address generators being associated with a corresponding,

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

dedicated one of the plurality of discrete memory banks; and a plurality of buses, each connecting one of
the plurality of address generators to its corresponding, dedicated memory bank.

[012] Another embodiment consistent with the present disclosure may include a distributed
processor, comprising: a substrate; a memory array disposed on the substrate, the memory array including
a plurality of discrete memory banks, wherein each of the discrete memory banks has a capacity greater
than one megabyte; and a processing array disposed on the substrate, the processing array including a
plurality of processor subunits, each one of the processor subunits being associated with a corresponding,
dedicated one of the plurality of discrete memory banks.

[013] Still other embodiments consistent with the present disclosure may include a distributed
processor, comprising: a substrate; a memory array disposed on the substrate, the memory array including
a plurality of discrete memory banks; and a processing array disposed on the substrate, the processing
array including a plurality of processor subunits, each one of the processor subunits being associated with
a corresponding, dedicated one of the plurality of discrete memory banks; and a plurality of buses, each
one of the plurality of buses connecting one of the plurality of processor subunits to at least another one
of the plurality of processor subunits, wherein the plurality of buses are free of timing hardware logic
components such that data transfers between processor subunits and across corresponding ones of the
plurality of buses are uncontrolled by timing hardware logic components.

[014] Other embodiments may include a distributed processor on a memory chip, comprising: a
substrate; a memory array disposed on the substrate, the memory array including a plurality of discrete
memory banks; and a processing array disposed on the substrate, the processing array including a
plurality of processor subunits, each one of the processor subunits being associated with a corresponding,
dedicated one of the plurality of discrete memory banks; and a plurality of buses, each one of the plurality
of buses connecting one of the plurality of processor subunits to a corresponding, dedicated one of the
plurality of discrete memory banks, wherein the plurality of buses are free of timing hardware logic
components such that data transfers between a processor subunit and a corresponding, dedicated one of
the plurality of discrete memory banks and across a corresponding one of the plurality of buses are
uncontrolled by timing hardware logic components.

[015] Other embodiments may include a distributed processor, comprising: a substrate; a
memory array disposed on the substrate, the memory array including a plurality of discrete memory
banks; and a processing array disposed on the substrate, the processing array including a plurality of
processor subunits, each one of the processor subunits being associated with a corresponding, dedicated
one of the plurality of discrete memory banks; and a plurality of buses, each one of the plurality of buses
connecting one of the plurality of processor subunits to at least another one of the plurality of processor
subunits, wherein the plurality of processor subunits are configured to execute software that controls
timing of data transfers across the plurality of buses to avoid colliding data transfers on at least one of the
plurality of buses.

[016] Other embodiments may include a distributed processor on a memory chip, comprising: a

substrate; a plurality of processor subunits disposed on the substrate, each processor subunit being

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

configured to execute a series of instructions independent from other processor subunits, each series of
instructions defining a series of tasks to be performed by a single processor subunit; a corresponding
plurality of memory banks disposed on the substrate, each one of the plurality processor subunits being
connected to at least one dedicated memory bank not shared by any others of the plurality of processor
subunits; and a plurality of buses, each of the plurality of buses connecting one of the plurality of
processor subunits to at least one other of the plurality of processor subunits, wherein data transfers across
at least one of the plurality of buses are predefined by the series of instructions included in a processor
subunit connected to the at least one of the plurality of buses.

[017] Other embodiments may include a distributed processor on a memory chip, comprising: a
plurality of processor subunits disposed on the memory chip; a plurality of memory banks disposed on the
memory chip, wherein each one of the plurality of memory banks is configured to store data independent
from data stored in other ones of the plurality of memory banks, and wherein each one of the plurality of
processor subunits is connected to at least one dedicated memory bank from among the plurality of
memory banks; and a plurality of buses, wherein each one of the plurality of buses connects one of the
plurality of processor subunits to one or more corresponding, dedicated memory banks from among the
plurality of memory banks, wherein data transfers across a particular one of the plurality of buses are
controlled by a corresponding processor subunit connected to the particular one of the plurality of buses.

[018] Other embodiments may include a distributed processor on a memory chip, comprising: a
plurality of processor subunits disposed on the memory chip; a plurality of memory banks disposed on the
memory chip, wherein each one of the plurality of processor subunits is connected to at least one
dedicated memory bank from among the plurality of memory banks, and wherein each memory bank of
the plurality of memory banks is configured to store data independent from data stored in other ones of
the plurality of memory banks, and wherein at least some of the data stored in one particular memory
bank from among the plurality of memory banks comprises a duplicate of data stored in at least another
one of the plurality of memory banks; and a plurality of buses, wherein each one of the plurality of buses
connects one of the plurality of processor subunits to one or more corresponding, dedicated memory
banks from among the plurality of memory banks, wherein data transfers across a particular one of the
plurality of buses are controlled by a corresponding processor subunit connected to the particular one of
the plurality of buses.

[019] Other embodiments may include a distributed processor on a memory chip, comprising: a
plurality of processor subunits disposed on the memory chip; a plurality of memory banks disposed on the
memory chip, wherein each one of the plurality of processor subunits is connected to at least one
dedicated memory bank from among the plurality of memory banks, and wherein each memory bank of
the plurality of memory banks is configured to store data independent from data stored in other ones of
the plurality of memory banks, and wherein at least some of the data stored in one particular memory
bank from among the plurality of memory banks comprises a duplicate of data stored in at least another
one of the plurality of memory banks; and a plurality of buses, wherein each one of the plurality of buses

connects one of the plurality of processor subunits to one or more corresponding, dedicated memory

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

banks from among the plurality of memory banks, wherein data transfers across a particular one of the
plurality of buses are controlled by a corresponding processor subunit connected to the particular one of
the plurality of buses.

[020] Other embodiments may include a non-transitory computer-readable medium storing
instructions for compiling a series of instructions for execution on a memory chip comprising a plurality
of processor subunits and a plurality of memory banks, wherein each processor subunit from among the
plurality of processor subunits is connected to at least one corresponding, dedicated memory bank from
among the plurality of memory banks, the instructions causing at least one processor to: divide the series
of instructions into a plurality of groups of sub-series instructions, the division comprising: assigning
tasks associated with the series of instructions to different ones of the processor subunits, wherein the
processor subunits are spatially distributed among the plurality of memory banks disposed on the memory
chip; generating tasks to transfer data between pairs of the processor subunits of the memory chip, each
pair of processor subunits being connected by a bus, and grouping the assigned and generated tasks into
the plurality of groups of sub-series instructions, wherein each of the plurality of groups of sub-series
instructions corresponds to a different one of the plurality of processor sub-units; generate machine code
corresponding to each of the plurality of groups of subs-series instructions; and assign the generated
machine code corresponding to each of the plurality of groups of subs-series instructions to a
corresponding one of the plurality of processor subunits in accordance with the division.

[021] Other embodiments may include a memory chip, comprising: a plurality of memory
banks, each memory bank having a bank row decoder, a bank column decoder, and a plurality of memory
sub-banks, each memory sub-bank having a sub-bank row decoder and a sub-bank column decoder for
allowing reads and writes to locations on the memory sub-bank, each memory sub-bank comprising: a
plurality of memory mats, each memory mat having a plurality of memory cells, wherein the sub-bank
row decoders and the sub-bank column decoders are connected to the bank row decoder and the bank
column decoder.

[022] Other embodiments may include a memory chip, comprising: a plurality of memory
banks, each memory bank having a bank controller and a plurality of memory sub-banks, each memory
sub-bank having a sub-bank row decoder and a sub-bank column decoder for allowing reads and writes to
locations on the memory sub-bank, each memory sub-bank comprising: a plurality of memory mats, each
memory mat having a plurality of memory cells, wherein the sub-bank row decoders and the sub-bank
column decoders process read and write requests from the bank controller.

[023] Other embodiments may include a memory chip, comprising: a plurality of memory
banks, each memory bank having a having a bank controller for processing reads and writes to locations
on the memory bank, each memory bank comprising: a plurality of memory mats, each memory mat
having a plurality of memory cells and having a mat row decoder and a mat column decoder, wherein the
mat row decoders and the mat column decoders process read and write requests from the sub-bank

controller.

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[024] Other embodiments may include a memory chip, comprising: a plurality of memory
banks, each memory bank having a bank controller, a row decoder, and a column decoder for allowing
reads and writes to locations on the memory bank; and a plurality of buses connecting each controller of
the plurality of bank controllers to at least one other controller of the plurality of bank controllers.

[025] One aspect of the present disclosure is directed to a memory device including a substrate;
a plurality of memory banks on the substrate; a plurality of primary logic blocks on the substrate, each of
the plurality of primary logic blocks being connected to at least one of the plurality of memory banks; a
plurality of redundant blocks on the substrate, each of the plurality of redundant blocks being connected
to at least one of the memory banks, each of the plurality of redundant blocks replicating at least one of
the plurality of primary logic blocks; and a plurality of configuration switches on the substrate, each one
of the plurality of the configuration switches being connected to at least one of the plurality of primary
logic blocks or to at least one of the plurality of redundant blocks. In the memory device, upon detection
of a fault associated with one of the plurality of primary logic blocks: a first configuration switch of the
plurality of configuration switches may be configured to disable the one of the plurality of primary logic
blocks, and a second configuration switch of the plurality of configuration switches may be configured to
enable one of the plurality of redundant blocks that replicates the one of the plurality of primary logic
blocks.

[026] Another aspect of the present disclosure is directed to a distributed processor on a
memory chip including a substrate; an address manager on the substrate; a plurality of primary logic
blocks on the substrate, each of the plurality of primary logic blocks being connected to at least one of the
plurality of memory banks; a plurality of redundant blocks on the substrate, each of the plurality of
redundant blocks being connected to at least one of the plurality of memory banks, each of the plurality of
redundant blocks replicating at least one of the plurality of primary logic blocks; and a bus on the
substrate connected to each of the plurality of primary logic blocks, each of the plurality of redundant
blocks, and the address manager. In the processor may assign running ID numbers to blocks in the
plurality of primary logic blocks that pass a testing protocol; assign illegal ID numbers to blocks in the
plurality of primary logic blocks that do not pass the testing protocol; and assign running ID numbers to
blocks in the plurality of redundant blocks that pass the testing protocol.

[027] Yet another aspect of the present disclosure is directed to a method for configuring a
distributed processor on a memory chip. The method may include: testing each one of a plurality of
primary logic blocks on the substrate of the memory chip for at least one circuit functionality; identifying
at least one faulty logic block in the plurality of primary logic blocks based on the testing results, the at
least one faulty logic block being connected to at least one memory bank disposed on the substrate of the
memory chip; testing at least one redundant block on the substrate of the memory chip for the at least one
circuit functionality, the at least one redundant block replicating the at least one faulty logic block and
being connected to the at least one memory bank; disabling the at least one faulty logic block by applying
an external signal to a deactivation switch, the deactivation switch being connected with the at least one

faulty logic block and being disposed on the substrate of the memory chip; and enabling the at least one

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

redundant block by applying the external signal to an activation switch, the activation switch being
connected with the at least one redundant block and being disposed on the substrate of the memory chip.

[028] Another aspect of the present disclosure is directed to a method for configuring a
distributed processor on a memory chip. The method may include enabling a plurality of primary logic
blocks and a plurality of redundant blocks on the substrate of the memory; testing each one of the
plurality of primary logic blocks on the substrate of the memory chip for at least one circuit functionality;
identifying at least one faulty logic block in the plurality of primary logic blocks based on the testing
results, the at least one faulty logic block being connected to at least one memory bank disposed on the
substrate of the memory chip; testing at least one redundant block on the substrate of the memory chip for
the at least one circuit functionality, the at least one redundant block replicating the at least one faulty
logic block and being connected to the at least one memory bank; and disabling at least one redundant
block by applying the external signal to an activation switch, the activation switch being connected with
the at least one redundant block and being disposed on the substrate of the memory chip.

[029] One aspect of the present disclosure is directed to a processing device. The processing
device may include a substrate; a plurality of memory banks on the substrate; a memory controller on the
substrate connected to each one of the plurality of memory banks; and a plurality of processing units on
the substrate, each one of the plurality of processing units being connected to the memory controller, the
plurality of processing units including a configuration manager. In the processing device, the
configuration manager is configured to receive a first indication of a task to be performed, the task
requiring at least one computation; signal at least one selected processing unit from the plurality of
processing units based upon a capability of the selected processing unit for performing the at least one
computation; and transmitting a second indication to the at least one selected processing unit, and the
memory controller is configured to route data from at least two memory banks to the at least one selected
processing unit using at least one communication line, the at least one communication line being
connected to the at least two memory banks and the at least one selected processing unit via the memory
controller.

[030] Another aspect of the present disclosure is directed to a method performed for operating a
distributed memory device. The method may include: compiling, by a compiler, a task for the distributed
memory device, the task requiring at least one computation, the compiling may include determining a
number of words that are required simultaneously to perform the task, and providing instructions for
writing words that need to be accessed simultaneously in a plurality of memory banks disposed on the
substrate when a number a number of words that can be accessed simultaneously from one of the plurality
of memory banks is lower than the number of words that are required simultaneously; receiving, by a
configuration manager disposed on the substrate, an indication to perform the task; and in response to
receiving the indication, configuring a memory controller disposed in the substrate to: within a first line
access cycle: access at least one first word from a first memory bank from the plurality of memory banks
using a first memory line, send the at least one first word to at least one processing unit, and open a first

memory line in the second memory bank to access a second address from the second memory bank from

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

the plurality of memory banks, and within a second line access cycle: access at least one second word
from the second memory bank using the first memory line, send the at least one second word to at least
one processing unit, and access a third address from the first memory bank using a second memory line in
the first bank.

[031] Yet another aspect of the present disclosure is directed to a non-transitory computer-
readable medium that stores instructions that, when executed by at least one processor, cause the at least
one processor to determine a number of words that are required simultaneously to perform a task, the task
requiring at least one computation; write words that need to be accessed simultaneously in a plurality of
memory banks disposed on the substrate when a number a number of words that can be accessed
simultaneously from one of the plurality of memory banks is lower than the number of words that are
required simultaneously; transmit an indication to perform the task to a configuration manager disposed
on the substrate; and transmit instructions to configure a memory controller disposed on the substrate to,
within a first line access cycle: access at least one first word from a first memory bank from the plurality
of memory banks using a first memory line, send the at least one first word to at least one processing unit,
and open a first memory line in the second memory bank to access a second address from the second
memory bank from the plurality of memory banks, and within a second line access cycle: access at least
one second word from the second memory bank using the first memory line, send the at least one second
word to at least one processing unit, and access a third address from the first memory bank using a second
memory line in the first bank.

[032] Consistent with other disclosed embodiments, non-transitory computer-readable storage
media may store program instructions, which are executed by at least one processing device and perform
any of the methods described herein.

[033] The foregoing general description and the following detailed description are exemplary
and explanatory only and are not restrictive of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[034] The accompanying drawings, which are incorporated in and constitute a part of this
disclosure, illustrate various disclosed embodiments. In the drawings:

[035] FIG. 1 is a diagrammatic representation of a central processing unit (CPU).

[036] FIG. 2 is a diagrammatic representation of a graphics processing unit (GPU).

[037] FIG. 3A is a diagrammatic representation of an embodiment of an exemplary hardware
chip consistent with the disclosed embodiments.

[038] FIG. 3B is a diagrammatic representation of another embodiment of an exemplary
hardware chip consistent with the disclosed embodiments.

[039] FIG. 4 is a diagrammatic representation of a generic command executed by an exemplary
hardware chip consistent with the disclosed embodiments.

[040] FIG. 5 is a diagrammatic representation of a specialized command executed by an

exemplary hardware chip consistent with the disclosed embodiments.

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[041] FIG. 6 is a diagrammatic representation of a processing group for use in an exemplary
hardware chip consistent with the disclosed embodiments.

[042] FIG. 7A is a diagrammatic representation of a rectangular array of processing groups
consistent with the disclosed embodiments.

[043] FIG. 7B is a diagrammatic representation of an elliptical array of processing groups
consistent with the disclosed embodiments.

[044] FIG. 7C is a diagrammatic representation an array of hardware chips consistent with the
disclosed embodiments.

[045] FIG. 7D is a diagrammatic representation another array of hardware chips consistent with
the disclosed embodiments.

[046] FIG. 8 is a flowchart depicting an exemplary method for compiling a series of
instructions for execution on an exemplary hardware chip consistent with the disclosed embodiments.

[047] FIG. 9 is a diagrammatic representation of a memory bank.

[048] FIG. 10 is a diagrammatic representation of a memory bank.

[049] FIG. 11 is a diagrammatic representation of an embodiment of an exemplary memory
bank with sub-bank controls consistent with the disclosed embodiments.

[050] FIG. 12 is a diagrammatic representation of another embodiment of an exemplary
memory bank with sub-bank controls consistent with the disclosed embodiments.

[051] FIG. 13 is a block diagram of an exemplary memory chip, consistent with disclosed
embodiments.

[052] FIG. 14 is a block diagram of an exemplary redundant logic block set, consistent with
disclosed embodiments.

[053] FIG. 15 is a block diagram for an exemplary logic block, consistent with disclosed
embodiments.

[054] FIG. 16 are block diagrams of exemplary logic blocks connected with a bus, consistent
with disclosed embodiments.

[055] FIG. 17 is a block diagram for exemplary logic blocks connected in series, consistent
with disclosed embodiments.

[056] FIG. 18 is a block diagram of exemplary logic blocks connected in a two-dimension
array, consistent with disclosed embodiments.

[057] FIG. 19 is a block diagram for exemplary logic blocks in a complex connection,
consistent with disclosed embodiments.

[058] FIG. 20 is an exemplary flow chart illustrating a redundant block enabling process,
consistent with disclosed embodiments.

[059] FIG. 21 is an exemplary flow chart illustrating an address assignment process, consistent
with disclosed embodiments.

[060] FIG. 22 provides block diagrams for exemplary processing devices, consistent with

disclosed embodiments.

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[061] FIG. 23 is a block diagram of an exemplary processing device, consistent with disclosed
embodiments.

[062] FIG. 24 includes exemplary memory configuration diagrams, consistent with disclosed
embodiments.

[063] FIG. 25 is an exemplary flowchart illustrating a memory configuration process,
consistent with disclosed embodiments.

[064] FIG. 26 is an exemplary flowchart illustrating a memory read process, consistent with
disclosed embodiments.

[065] FIG. 27 is an exemplary flowchart illustrating a process execution, consistent with

disclosed embodiments.
DETAILED DESCRIPTION

[066] The following detailed description refers to the accompanying drawings. Wherever
convenient, the same reference numbers are used in the drawings and the following description to refer to
the same or similar parts. While several illustrative embodiments are described herein, modifications,
adaptations and other implementations are possible. For example, substitutions, additions or
modifications may be made to the components illustrated in the drawings, and the illustrative methods
described herein may be modified by substituting, reordering, removing, or adding steps to the disclosed
methods. Accordingly, the following detailed description is not limited to the disclosed embodiments and
examples. Instead, the proper scope is defined by the appended claims.

Processor Architecture

[067] As used throughout this disclosure, the term “hardware chip” refers to a semiconductor
wafer (such as silicon or the like) on which one or more circuit elements (such as transistors, capacitors,
resistors, and/or the like) are formed. The circuit elements may form processing elements or memory
elements. A “processing element” refers to one or more circuit elements that, together, perform at least
one logic function (such as an arithmetic function, a logic gate, other Boolean operations, or the like). A
processing element may be a general-purpose processing element (such as a configurable plurality of
transistors) or a special-purpose processing element (such as a particular logic gate or a plurality of circuit
elements designed to perform a particular logic function). A “memory element” refers to one or more
circuit elements that can be used to store data. A “memory element” may also be referred to as a
“memory cell.”” A memory element may be dynamic (such that electrical refreshes are required to
maintain the data store), static (such that data persists for at least some time after power loss), or non-
volatile memories.

[068] Processing elements may be joined to form processor subunits. A “processor subunit”
may thus comprise a smallest grouping of processing elements that may execute at least one task or
instructions (e.g., of a processor instruction set). For example, a subunit may comprise one or more
general-purpose processing elements configured to execute instructions together, one or more general-
purpose processing elements paired with one or more special-purpose processing elements configured to

execute instructions in a complementary fashion, or the like. The processor subunits may be arranged on a

10

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

substrate (e.g., a wafer) in an array. Although the “array” may comprise a rectangular shape, any
arrangement of the subunits in the array may be formed on the substrate.

[069] Memory elements may be joined to form memory banks. For example, a memory bank
may comprise one or more lines of memory elements linked along at least one wire (or other conductive
connection). Furthermore, the memory elements may be linked along at least one addition wire in another
direction. For example, the memory elements may be arranged along wordlines and bitlines, as explained
below. Although the memory bank may comprise lines, any arrangement of the elements in the bank may
be used to form the bank on the substrate. Moreover, one or more banks may be electrically joined to at
least one memory controller to form a memory array. Although the memory array may comprise a
rectangular arrangement of the banks, any arrangement of the banks in the array may be formed on the
substrate.

[070] As further used throughout this disclose, a “bus” refers to any communicative connection
between elements of a substrate. For example, a wire or a line (forming an electrical connection), an
optical fiber (forming an optical connection), or any other connection conducting communications
between components may be referred to as a “bus.”

[071] Conventional processors pair general-purpose logic circuits with shared memories. The
shared memories may store both instruction sets for execution by the logic circuits as well as data used
for and resulting from execution of the instruction sets. As described below, some conventional
processors use a caching system to reduce delays in performing pulls from the shared memory; however,
conventional caching systems remain shared. Conventional processors include central processing units
(CPUs), graphics processing units (GPUs), various application-specific integrated circuits (ASICs), or the
like. FIG. 1 shows an example of a CPU, and FIG. 2 shows an example of a GPU.

[072] Asshown in FIG. 1, a CPU 100 may comprise a processing unit 110 that includes one or
more processor subunits, such as processor subunit 120a and processor subunit 120b. Although not
depicted in FIG. 1, each processor subunit may comprise a plurality of processing elements. Moreover,
the processing unit 110 may include one or more levels of on-chip cache. Such cache elements are
generally formed on the same semiconductor die as processing unit 110 rather than being connected to
processor subunits 120a and 120b via one or more buses formed in the substrate containing processor
subunits 120a and 120b and the cache elements. An arrangement directly on the same die, rather than
being connected via buses, is common for both first-level (L.1) and second-level (L2) caches in
conventional processors. Alternatively, in older processors, L2 caches were shared amongst processor
subunits using back-side buses between the subunits and the L2 caches. Back-side buses are generally
larger than front-side buses, described below. Accordingly, because cache is to be shared with all
processor subunits on the die, cache 130 may be formed on the same die as processor subunits 120a and
120b or communicatively coupled to processor subunits 120a and 120b via one or more back-side buses.
In both embodiments without buses (e.g., cache is formed directly on-die}) as well as embodiments using

back-side buses, the caches are shared between processor subunits of the CPU.

11

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[073] Moreover, processing unit 110 communicates with shared memory 140a and memory
140b. For example, memories 140a and 140b may represent memory banks of shared dynamic random
access memory (DRAM). Although depicted with two banks, most conventional memory chips include
between eight and sixteen memory banks. Accordingly, processor subunits 120a and 120b may use shared
memories 140a and 140b to store data that is then operated upon by processor subunits 120a and 120b.
This arrangement, however, results in the buses between memories 140a and 140b and processing unit
110 acting as a bottleneck when the clock speeds of processing unit 110 exceed data transfer speeds of the
buses. This is generally true for conventional processors, resulting in lower effective processing speeds
than the stated processing speeds based on clock rate and number of transistors.

[074] As shown in FIG. 2, similar deficiencies persist in GPUs. A GPU 200 may comprise a
processing unit 210 that includes one or more processor subunits (e.g., subunits 220a, 220b, 220c, 220d,
220e, 220f, 220g, 220h, 220i, 220j, 220k, 2201, 220m, 220n, 2200, and 220p). Moreover, the processing
unit 210 may include one or more levels of on-chip cache and/or register files. Such cache elements are
generally formed on the same semiconductor die as processing unit 210. Indeed, in the example of FIG. 2,
cache 210 is formed on the same die as processing unit 210 and shared amongst all of the processor
subunits, while caches 230a, 230b, 230c¢, and 230d are formed on a subset of the processor subunits,
respectively, and dedicated thereto.

[075] Moreover, processing unit 210 communicates with shared memories 250a, 250b, 250c,
and 250d. For example, memories 250a, 250b, 250c, and 250d may represent memory banks of shared
DRAM. Accordingly, the processor subunits of processing unit 210 may use shared memories 250a,
250b, 250c, and 250d to store data that is then operated upon by the processor subunits. This arrangement,
however, results in the buses between memories 250a, 250b, 250c, and 250d and processing unit 210
acting as a bottleneck, similar to the bottleneck described above for CPUs.

Overview of Disclosed Hardware Chips

[076] FIG. 3A is a diagrammatic representation of an embodiment depicting an exemplary
hardware chip 300. Hardware chip 300 may comprise a distributed processor designed to mitigate the
bottlenecks described above for CPUs, GPUs, and other conventional processors. A distributed processor
may include a plurality of processor subunits distributed spatially on a single substrate. Moreover, as
explained above, in distributed processors of the present disclosure, corresponding memory banks are also
spatially distributed on the substrate. In some embodiments, a distributed processor may be associated
with a set of instructions, and each one of the processor subunits of the distributed processor may be
responsible for performing one or more tasks included in the set of instructions.

[077] As depicted in FIG. 3A, hardware chip 300 may comprise a plurality of processor
subunits, e.g., logic and control subunits 320a, 320b, 320c, 320d, 320e, 320f, 320g, and 320h. As further
depicted in FIG. 3A, each processor subunit may have a dedicated memory instance. For example, logic
and control subunit 320a is operably connected to dedicated memory instance 330a, logic and control
subunit 320b is operably connected to dedicated memory instance 330b, logic and control subunit 320c is

operably connected to dedicated memory instance 330c, logic and control subunit 320d is operably

12

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

connected to dedicated memory instance 330d, logic and control subunit 320e is operably connected to
dedicated memory instance 330e, logic and control subunit 320f is operably connected to dedicated
memory instance 330f, logic and control subunit 320g is operably connected to dedicated memory
instance 330g, and logic and control subunit 320h is operably connected to dedicated memory instance
330h.

[078] Although FIG. 3A depicts each memory instance as a single memory bank, hardware
chip 300 may include two or more memory banks as a dedicated memory instance for a processor subunit
on hardware chip 300. Furthermore, although FIG. 3A depicts each processor subunit as comprising both
a logic component and a control for the dedicated memory bank(s), hardware chip 300 may use controls
for the memory banks that are separate, at least in part, from the logic components. Moreover, as
depicted in FIG. 3A, two or more processor subunits and their corresponding memory banks may be
grouped, e.g., into processing groups 310a, 310b, 310c, and 310d. A “processing group” may represent a
spatial distinction on a substrate on which hardware chip 300 is formed. Accordingly, a processing group
may include further controls for the memory banks in the group, e.g., controls 340a, 340b, 340c, and
340d. Additionally or alternatively, a “processing group” may represent a logical grouping for the
purposes of compiling code for execution on hardware chip 300. Accordingly, a compiler for hardware
chip 300 (further described below) may divide an overall set of instructions between the processing
groups on hardware chip 300.

[079] Furthermore, host 350 may provide instructions, data, and other input to hardware chip
300 and read output from the same. Accordingly, a set of instructions may be executed entirely on a
single die, e.g., the die hosting hardware chip 300. Indeed, the only communications off-die may include
the loading of instructions to hardware chip 300, any input sent to hardware chip 300, and any output read
from hardware chip 300. Accordingly, all calculations and memory operations may be performed on-die
(on hardware chip 300) because the processor subunits of hardware chip 300 communicate with dedicated
memory banks of hardware chip 300.

[080] FIG. 3B is a diagrammatic representation of an embodiment depicting another exemplary
hardware chip 300". Although depicted as an alternative to hardware chip 300, the architecture depicted in
FIG. 3B may be combined, at least in part, with the architecture depicted in FIG. 3A.

[081] As depicted in FIG. 3B, hardware chip 300’ may comprise a plurality of processor
subunits, e.g., processor subunits 350a, 350b, 350c, and 350d. As further depicted in FIG. 3B, each
processor subunit may have a plurality of dedicated memory instances. For example, processor subunit
350a is operably connected to dedicated memory instances 330a and 330b, processor subunit 350b is
operably connected to dedicated memory instances 330c¢ and 330d, processor subunit 350c is operably
connected to dedicated memory instances 330e and 330f, and processor subunit 350d is operably
connected to dedicated memory instances 330g and 330h. Moreover, as depicted in FIG. 3B, the
processor subunits and their corresponding memory banks may be grouped, e.g., into processing groups

310a, 310b, 310c, and 310d. As explained above, a “processing group” may represent a spatial distinction

13

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

on a substrate on which hardware chip 300’ is formed and/or a logical grouping for the purposes of
compiling code for execution on hardware chip 300",

[082] As further depicted in FIG. 3B, the processor subunits may communicate with each other
via buses. For example, as shown in FIG. 3B, processor subunit 350a may communicate with processor
subunit 350b via bus 360a, with processor subunit 350¢ via bus 360c, and with processor subunit 350d
via bus 360f. Similarly, processor subunit 350b may communicate with processor subunit 350a via bus
360a (as described above), with processor subunit 350c via bus 360e, and with processor subunit 350d via
bus 360d. In addition, processor subunit 350¢c may communicate with processor subunit 350a via bus
360c (as described above), with processor subunit 350b via bus 360e (as described above), and with
processor subunit 350d via bus 360b. Accordingly, processor subunit 350d may communicate with
processor subunit 350a via bus 360f (as described above), with processor subunit 350b via bus 360d (as
described above), and with processor subunit 350c¢ via bus 360b (as described above). One of ordinary
skill will understand that fewer buses than depicted in FIG. 3B may be used. For example, bus 360e may
be eliminated such that communications between processor subunit 350b and 350¢ pass through processor
subunit 350a and/or 350d. Similarly, bus 360f may be eliminated such that communications between
processor subunit 350a and processor subunit 350d pass through processor subunit 350b or 350c.

[083] Moreover, one of ordinary skill will understand that architectures other than those
depicted in FIGS. 3A and 3B may be used. For example, an array of processing groups, each with a single
processor subunit and memory instance, may be arranged on a substrate. Processor subunits may
additionally or alternatively form part of controllers for corresponding dedicated memory banks, part of
controllers for memory mats of corresponding dedicated memory, or the like.

[084] In view of the architecture described above, hardware chips 300 and 300" may provide
significant increases in efficiency for memory-intensive tasks as compared with traditional architectures.
For example, database operations and artificial intelligence algorithms (such as neural networks) are
examples of memory-intensive tasks for which traditional architectures are less efficient than hardware
chips 300 and 300". Accordingly, hardware chips 300 and 300" may be referred to as database accelerator
processors and/or artificial intelligence accelerator processors.

Configuring the Disclosed Hardware Chips

[085] The hardware chip architecture described above may be configured for execution of code.
For example, each processor subunit may individually execute code (defining a set of instructions) apart
from other processor subunits in the hardware chip. Accordingly, rather than relying on an operating
system to manage multithreading or using multitasking (which is concurrency rather than parallelism),
hardware chips of the present disclosure may allow for processor subunits to operate fully in parallel.

[086] In addition to a fully parallel implementation described above, at least some of the
instructions assigned to each processor subunit may be overlapping. For example, a plurality of processor
subunits on a distributed processor may execute overlapping instructions as, for example, an

implementation of an operating system or other management software, while executing non-overlapping

14

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

instructions in order to perform parallel tasks within the context of the operating system or other
management software.

[087] FIG. 4 depicts an exemplary process 400 for executing a generic command with
processing group 410. For example, processing group 410 may comprise a portion of a hardware chip of
the present disclosure, e.g., hardware chip 300, hardware chip 300, or the like.

[088] As depicted in FIG. 4, a command may be sent to processor subunit 430, which is paired
with dedicated memory instance 420. An external host (e.g., host 350) may send the command to
processing group 410 for execution. Alternatively, host 350 may have sent an instruction set including the
command for storage in memory instance 420 such that processor subunit 430 may retrieve the command
from memory instance 420 and execute the retrieved command. Accordingly, the command may be
executed by processing element 440, which is a generic processing element configurable to execute the
received command. Moreover, processing group 410 may include a control 460 for memory instance 420.
As depicted in FIG. 4, control 460 may perform any reads and/or writes to memory instance 420 required
by processing element 440 when executing the received command. After execution of the command,
processing group 410 may output the result of the command, e.g., to the external host or to a different
processing group on the same hardware chip.

[089] In some embodiments, as depicted in FIG. 4, processor subunit 430 may further include
an address generator 450. An “address generator” may comprise a plurality of processing elements that
are configured to determine addresses in one or more memory banks for performing reads and writes and
may also perform operations on the data located at the determined addresses (e.g., addition, subtraction,
multiplication, or the like). For example, address generator 450 may determine addresses for any reads or
writes to memory. In one example, address generator 450 may increase efficiency by overwriting a read
value with a new value determined based on the command when the read value is no longer needed.
Additionally or alternatively, address generator 450 may select available addresses for storage of results
from execution of the command. This may allow for scheduling of result read-off for a later clock cycle,
when it is more convenient for the external host. In another example, address generator 450 may
determine addresses to read from and write to during a multi-cycle calculation, such as a vector or matrix
multiply-accumulate calculation. Accordingly, address generator 450 may maintain or calculate memory
addresses for reading data and writing intermediate results of the multi-cycle calculation such that
processor subunit 430 may continue processing without having to store these memory addresses.

[090] FIG. 5 depicts an exemplary process 500 for executing a specialized command with
processing group 510. For example, processing group 510 may comprise a portion of a hardware chip of
the present disclosure, e.g., hardware chip 300, hardware chip 300’, or the like.

[091] As depicted in FIG. 5, a specialized command (e.g., a multiply-accumulate command)
may be sent to processing element 530, which is paired with dedicated memory instance 520. An external
host (e.g., host 350) may send the command to processing element 530 for execution. Accordingly, the
command may be executed at a given signal from the host by processing element 530, a specialized

processing element configurable to execute particular commands (including the received command).

15

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

Alternatively, processing element 530 may retrieve the command from memory instance 520 for
execution. Thus, in the example of FIG. 5, processing element 530 is a multiply-accumulate (MAC)
circuit configured to execute MAC commands received from the external host or retrieved from memory
instance 520. After execution of the command, processing group 410 may output the result of the
command, e.g., to the external host or to a different processing group on the same hardware chip.
Although depicted with a single command and a single result, a plurality of commands may be received
or retrieved and executed, and a plurality of results may be combined on processing group 510 before
output.

[092] Although depicted as a MAC circuit in FIG. 5, additional or alternative specialized
circuits may be included in processing group 510. For example, a MAX-read command (which returns the
max value of a vector) a MAX0-read command (a common function also termed a rectifier, which returns
the entire vector but also does MAX with 0), or the like may be implemented.

[093] Although depicted separately, the generalized processing group 410 of FIG. 4 and the
specialized processing group 510 of FIG. 5 may be combined. For example, a generic processor subunit
may be coupled to one or more specialized processor subunits to form a processor subunit. Accordingly,
the generic processor subunit may be used for all instructions not executable by the one or more
specialized processor subunits.

[094] One of ordinary skill will understand that neural network implementation and other
memory-intensive tasks may be handled with specialized logic circuits. For example, database queries,
packet inspection, string comparison, and other functions may increase in efficiency if executed by the
hardware chips described herein.

A Memory-Based Architecture for Distributed Processing

[095] On hardware chips consistent with the present disclosure, dedicated buses may transfer
data between processor subunits on the chip and/or between the processor subunits and their
corresponding dedicated memory banks. The use of dedicated buses may reduce arbitration costs because
competing requests are either not possible or easily avoided using software rather than hardware.

[096] FIG. 6 schematically depicts a diagrammatic representation of a processing group 600.
Processing group 600 may be for use in a hardware chip, e.g., hardware chip 300, hardware chip 300’, or
the like. Processor subunit 610 may be connected via buses 630 to memory 620. Memory 620 may
comprise a Randomly Accessible Memory (RAM) element that stores data and code for execution by
processor subunit 610. In some embodiments, memory 620 may be an N-Way memory (wherein N is a
number equal to or larger than 1 that implies the number of segments in an interleaved memory 620).
Because processor subunit 610 is coupled to memory 620 dedicated to processor subunit 610 via bus 630,
N may be kept relatively small without compromising the execution performance. This represents an
improvement over conventional multiway register files or caches where a lower N generally results in
lower execution performance, and a higher N generally results in large area and power loss.

[097] The size of memory 620, the number of ways, and the width of bus 630 may be adjusted

to meet the requirements of tasks and application implementations of a system using processing group

16

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

600 according to, for instance, the size of data involved in the task or tasks. Memory element 620 may
comprise one or more types of memory known in the art, e.g., volatile memory (such as RAM, DRAM,
SRAM, phase-change RAM (PRAM), magnetoresistive RAM (MRAM), resistive RAM (ReRAM), or the
like) or non-volatile memory (such as flash or ROM). According to some embodiments, a portion of
memory element 620 may comprise a first memory type, while another portion may comprise another
memory type. For instance, the code region of a memory element 620 may comprise a ROM element,
while a data region of the memory element 620 may comprise a DRAM element. Another example for
such partitioning is storing the weights of a neural network in flash while storing the data for calculation
in DRAM.

[098] Processor subunit 610 comprises a processing element 640 that may comprise a
processor. The processor can be pipelined or not pipelined, a customized Reduced Instruction Set
Computing (RISC) element or other processing scheme, implemented on any commercial Integrated
Circuit (IC) known in the art (such as ARM, ARC, RISC-V, etc.), as appreciated by one of ordinary skill.
Processing element 640 may comprise a controller that, in some embodiments, includes an Arithmetic
Logic Unit (ALU) or other controller.

[099] According to some embodiments, processing element 640, which executes received or
stored code, may comprise a generic processing element and, therefore, be flexible and capable of
performing a wide variety of processing operations. Non-dedicated circuitry typically consumes more
power than specific-operation-dedicated circuitry when comparing the power consumed during
performance for a specific operation. Therefore, when performing specific complex arithmetic
calculations, processing element 640 may consume more power and perform less efficiently than
dedicated hardware. Therefore, according to some embodiments, a controller of processing element 640
may be designed to perform specific operations (e.g., addition or “move” operations).

[0100] In one example, the specific operations may be performed by one or more accelerators
650. Each accelerator may be dedicated and programmed to perform a specific calculation (such as
multiplication, floating point vector operations, or the like). By using accelerator(s), the average power
consumed per calculation per processor subunit may be lowered, and the calculation throughput
henceforth increases. Accelerator(s) 650 may be chosen according to an application that the system is
designed to implement (e.g., execution of neural networks, execution of database queries, or the like).
Accelerator(s) 650 may be configured by processing element 640 and may operate in tandem therewith
for lowering power consumption and accelerating calculations and computations. The accelerators may
additionally or alternatively be used to transfer data between memory and MUXs/DEMUXs/input/output
ports (e.g., MUX 650 and DEMUX 660) of processing group 600, such as a smart DMA (direct memory
access) peripheral.

[0101] Accelerator(s) 650 may be configured to perform a variety of functions. For instance, one
accelerator may be configured to perform 16-bit floating point calculation or 8-bit integer calculations,
which are often used in neural networks. Another example of an accelerator function is a 32-bit floating

point calculation, which is often used during a training stage of a neural network. Yet another example of

17

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

an accelerator function is query processing, such as that used in databases. In some embodiments,
accelerator(s) 650 may comprise specialized processing elements to perform these functions and/or may
be configured according to configuration data, stored on the memory element 620, such that it may be
modified.

[0102] Accelerator(s) 650 may additionally or alternatively implement a configurable scripted
list of memory movements to time movements of data to/from memory 620 or to/from other accelerators
and/or inputs/outputs. Accordingly, as explained further below, all the data movement inside the
hardware chip using processing group 600 may use software synchronization rather than hardware
synchronization. For example, an accelerator in one processing group (e.g., group 600) may transfer data
from its input to its accelerator every tenth cycle and then output data at the next cycle, thereby letting the
information flow from the memory of the processing group to another one.

[0103] As further depicted in FIG. 6, in some embodiments, processing group 600 may further
comprise at least one input multiplexer (MUX) 660 connected to its input port and at least one output
DEMUX 670 connected to its output port. These MUXs/DEMUXs may be controlled by control signals
(not shown) from processing element 640 and/or from one of accelerator(s) 650, determined according to
a current instruction being carried out by processing element 640 and/or the operation executed by an
accelerator of accelerator(s) 650. In some scenarios, processing group 600 may be required (according to
a predefined instruction from its code memory) to transfer data from its input port to its output port.
Accordingly, one or more of the input MUXSs (e.g., MUX 660) may be directly connected via one or more
buses to an output DEMUX (e.g., DEMUX 670), in addition to each of the DEMUXs/MUXSs being
connected to processing element 640 and accelerator(s) 650.

[0104] The processing group 600 of FIG. 6 may be arrayed to form a distributed processor, for
example, as depicted in FIG. 7A. The processing groups may be disposed on substrate 710 to form an
array. In some embodiments, substrate 710 may comprise a semiconductor substrate, such as silicon.
Additionally or alternatively, substrate 710 may comprise a circuit board, such as a flexible circuit board.

[0105] As depicted in FIG. 7A, substrate 710 may include, disposed thereon, a plurality of
processing groups, such as processing group 600. Accordingly, substrate 710 includes a memory array
that includes a plurality of banks, such as banks 720a, 720b, 720c, 720d, 720e, 720f, 720g, and 720h.
Furthermore, substrate 710 includes a processing array that may include a plurality of processor subunits,
such as subunits 730a, 730b, 730c, 730d, 730e, 730f, 730g, and 730h.

[0106] Furthermore, as explained above, each processing group may include a processor subunit
and one or more corresponding memory banks dedicated to the processor subunit. Accordingly, as
depicted in FIG. 7A, each subunit is associated with a corresponding, dedicated memory bank, e.g.:
Processor subunit 730a is associated with memory bank 720a, processor subunit 730b is associated with
memory bank 720b, processor subunit 730c is associated with memory bank 720c, processor subunit
730d is associated with memory bank 720d, processor subunit 730e is associated with memory bank
720e, processor subunit 730f is associated with memory bank 720f, processor subunit 730g is associated

with memory bank 720g, processor subunit 730h is associated with memory bank 720h.

18

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0107] To allow each processor subunit to communicate with its corresponding, dedicated
memory bank(s), substrate 710 may include a first plurality of buses connecting one of the processor
subunits to its corresponding, dedicated memory bank(s). Accordingly, bus 740a connects processor
subunit 730a to memory bank 720a, bus 740b connects processor subunit 730b to memory bank 720b, bus
740c connects processor subunit 730c to memory bank 720c, bus 740d connects processor subunit 730d
to memory bank 720d, bus 740e connects processor subunit 730e to memory bank 720e, bus 740f
connects processor subunit 730f to memory bank 720f, bus 740g connects processor subunit 730g to
memory bank 720g, and bus 740h connects processor subunit 730h to memory bank 720h. Moreover, to
allow each processor subunit to communicate with other processor subunits, substrate 710 may include a
second plurality of buses connecting one of the processor subunits to another of the processor subunits. In
the example of FIG. 7A, bus 750a connects processor subunit 730a to processor subunit 750e, bus 750b
connects processor subunit 730a to processor subunit 750b, bus 750c connects processor subunit 730b to
processor subunit 750f, bus 750d connects processor subunit 730b to processor subunit 750c, bus 750
connects processor subunit 730c to processor subunit 750g, bus 750f connects processor subunit 730¢ to
processor subunit 750d, bus 750g connects processor subunit 730d to processor subunit 750h, bus 750h
connects processor subunit 730h to processor subunit 750g, bus 750i connects processor subunit 730g to
processor subunit 750g, and bus 750j connects processor subunit 730f to processor subunit 750e.

[0108] Accordingly, in the example arrangement shown in FIG. 7A, the plurality of logic
processor subunits is arranged in at least one row and at least one column. The second plurality of buses
connect each processor subunit to at least one adjacent processor subunit in the same row and to at least
one adjacent processor subunit in the same column. FIG. 7A may be referred to as a “partial tile
connection.”

[0109] The arrangement shown in FIG. 7A may be modified to form a “full tile connection.” A
full tile connection includes additional buses connecting diagonal processor subunits. For example, the
second plurality of buses may include additional buses between processor subunit 730a and processor
subunit 730f, between processor subunit 730b and processor subunit 730e, between processor subunit
730b and processor subunit 730g, between processor subunit 730c and processor subunit 730f, between
processor subunit 730c and processor subunit 730h, and between processor subunit 730d and processor
subunit 730g.

[0110] A full tile connection may be used for convolution calculations, in which data and results
stored in a near processor subunit are used. For example, during convolutional image processing, each
processor subunit may receive a tile of the image (such as a pixel or a group of pixels). In order to
calculate the convolution results, each processor subunit may acquire data from all eight adjacent
processor subunits, each of which have received a corresponding tile. In a partial tile connection, the data
from the diagonal adjacents may be passed through other adjacent processor subunits connected to the
processor subunit. Accordingly, the distributed processor on a chip may be an artificial intelligence

accelerator processor.

19

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0111] In a specific example of a convolutional calculation, an N x M image may be divided
across a plurality of processor subunits. Each processor subunit may perform a convolution with an A x B
filter on its corresponding tile. To perform the filtering on one or more pixels on a boundary between
tiles, each processor subunit may require data from neighboring processor subunits having tiles including
pixels on the same boundary. Accordingly, the code generated for each processor subunit configures the
subumnit to calculate the convolutions and pull from one of the second plurality of buses whenever data is
needed from an adjacent subunit. Corresponding commands to output data to the second plurality of buses
are provided to the subunits to ensure proper timing of needed data transfers.

[0112] The partial tile connection of FIG. 7A may be modified to be an N-partial tile connection.
In this modification, the second plurality of buses may further connect each processor subunit to
processor subunits within a threshold distance of the processor subunit (e.g., within n processor subunits)
in the four directions along which the buses of FIG. 7A run (i.e., up, down, left, and right). A similar
modification may be made to the full-tile connection (to result in an N-full tile connection) such that the
second plurality of buses further connects each processor subunit to processor subunits within a threshold
distance of the processor subunit (e.g., within n processor subunits) in the four directions along which the
buses of FIG. 7A run in additional to the two diagonal directions.

[0113] Other arrangements are possible. For example, in the arrangement shown in FIG. 7B, bus
750a connects processor subunit 730a to processor subunit 730d, bus 750b connects processor subunit
730a to processor subunit 730b, bus 750c¢ connects processor subunit 730b to processor subunit 730c, and
bus 750d connects processor subunit 730c to processor subunit 730d. Accordingly, in the example
arrangement shown in FIG. 7B, the plurality of processor subunits is arranged in a star pattern. The
second plurality of buses connect each processor subunit to at least one adjacent processor subunit within
the star pattern.

[0114] Further arrangements (not shown) are possible. For example, a neighbor connection
arrangement may be used such that the plurality of processor subunits is arranged in one or more lines
(e.g., similar to that depicted in FIG. 7A). In a neighbor connection arrangement, the second plurality of
buses connect each processor subunit to a processor subunit to the left in the same line, to a processor
subunit to the right in the same line, to the processor subunits both to the left and to the right in the same
line, etc.

[0115] In another example, an N-linear connection arrangement may be used. In an N-linear
connection arrangement, the second plurality of buses connect each processor subunit to processor
subunits within a threshold distance of the processor subunit (e.g., within n processor subunits). The N-
linear connection arrangement may be used with the line array (described above), the rectangular array
(depicted in FIG. 7A), the elliptical array (depicted in FIG. 7B), or any other geometrical array.

[0116] In yet another example, an N-log connection arrangement may be used. In an N-log
connection arrangement, the second plurality of buses connect each processor subunit to processor
subunits within a threshold power of two distance of the processor subunit (e.g., within 2" processor

subunits). The N-log connection arrangement may be used with the line array (described above), the

20

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

rectangular array {(depicted in FIG. 7A), the elliptical array (depicted in FIG. 7B), or any other
geometrical array.

[0117] Any of the connection schemes described above may be combined for use in the same
hardware chip. For example, a full tile connection may be used in one region while a partial tile
connection is used in another region. In another example, an N-linear connection arrangement may be
used in one region while an N-full tile connection is used in another region.

[0118] Alternatively to or in addition with dedicated buses between processor subunits of the
memory chip, one or more shared buses may be used to interconnect all (or a subset of) the processor
subunits of a distributed processor. Collisions on the shared buses may still be avoided by timing data
transfers on the shared buses using code executed by the processor subunits, as explained further below.
Additionally with or alternatively to shared buses, configurable buses may be used to dynamically
connect processor subunits to form groups of processors units connected to separated buses. For example,
the configurable buses may include transistors or other mechanisms that may be controlled by processor
subunit to direct data transfers to a selected processor subunit.

[0119] Inboth FIGS. 7A and 7B, the plurality of processor subunits of the processing array is
spatially distributed among the plurality of discrete memory banks of the memory array. In other
alternative embodiments (not shown), the plurality of processor subunits may be clustered in one or more
regions of the substrate, and the plurality of memory banks may be clustered in one or more other regions
of the substrate. In some embodiments, a combination of spatial distribution and clustering may be used
(not shown). For example, one region of the substrate may include a cluster of processor subunits, another
region of the substrate may include a cluster of memory banks, and yet another region of the substrate
may include processing arrays distributed amongst memory banks.

[0120] One of ordinary skill will recognize that arraying processor groups 600 on a substrate is
not an exclusive embodiment. For example, each processor subunit may be associated with at least two
dedicated memory banks. Accordingly, processing groups 310a, 310b, 310c, and 310d of FIG. 3B may be
used in lieu of or in combination with processing group 600 to form the processing array and the memory
array. Other processing groups including, for example, three, four, or more dedicated memory banks (not
shown) may be used.

[0121] Each of the plurality of processor subunits may be configured to execute software code
associated with a particular application independently, relative to other processor subunits included in the
plurality of processor subunits. For example, as explained below, a plurality of sub-series of instructions
may be grouped as machine code and provided to each processor subunit for execution.

[0122] In some embodiments, each dedicated memory bank comprises at least one dynamic
random access memory {(DRAM). Alternatively, the memory banks may comprise a mix of memory
types, such as static random access memory (SRAM), DRAM, Flash or the like.

[0123] In conventional processors, data sharing between processor subunits is usually performed
with shared memory. Shared memory typically requires a large portion of chip area and/or performed a

bus that is managed by additional hardware (such as arbiters). The bus results in bottlenecks, as described

21

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

above. In addition, the shared memory, which may be external to the chip, typically includes cache
coherency mechanisms and more complex caches (e.g., L1 cache, L2 cache, and shared DRAM) in order
to provide accurate and up-to-date data to the processor subunits. As explained further below, the
dedicated buses depicted in FIGS. 7A and 7B allow for hardware chips that are free of hardware
management (such as arbiters). Moreover, the use of dedicated memories as depicted in FIGS. 7A and 7B
allow for the elimination of complex caching layers and coherency mechanism.

[0124] Instead, in order to allow each processor subunit to access data calculated by other
processor subunits and/or stored in memory banks dedicated to the other processor subunits, buses are
provided whose timing is performed dynamically using code individually executed by each processor
subunit. This allows for elimination of most, if not all, bus management hardware as conventionally used.
Moreover, complex caching mechanisms are replaced with direct transfers over these buses, resulting in
lower latency times during memory reads and writes.

Memory-Based Processing Arrays

[0125] As depicted in FIGS. 7A and 7B, a memory chip of the present disclosure may operate
independently. Alternatively, memory chips of the present disclosure may be operably connected with
one or more additional integrated circuits, such as a memory device (e.g., one or more DRAM banks), a
system-on-a-chip, a field-programmable gate array (FPGA), or other processing and/or memory chip. In
such embodiments, tasks in a series of instructions executed by the architecture may be divided (e.g., by a
compiler, as described below) between processor subunits of the memory chip and any processor subunits
of the additional integrated circuit(s). For example, the other integrated circuits may comprise a host (e.g.,
host 350 of FIG. 3A) that inputs instructions and/or data to the memory chip and receives output
therefrom.

[0126] In order to interconnect memory chips of the present disclosure with one or more
additional integrated circuits, the memory chip may include a memory interface, such as a memory

interface complying with a Joint Electron Device Engineering Council (JEDEC) standard or any of its

variants. The one or more additional integrated circuits may then connect to the memory interface.
Accordingly, if the one or more additional integrated circuits are connected to a plurality of memory chips
of the present disclosure, data may be shared between the memory chips through the one or more
additional integrated circuits. Additionally or alternatively, the one or more additional integrated circuits
may include buses to connect to buses on the memory chips of the present disclosure such that the one or
more additional integrated circuits may execute code in tandem with the memory chips of the present
disclosure. In such embodiments, the one or more additional integrated circuits further assist with
distributed processing even though they may be on different substrates than the memory chips of the
present disclosure.

[0127] Furthermore, memory chips of the present disclosure may be arrayed in order to form an
array of distributed processors. For example, one or more buses may connect a memory chip 770a to an
additional memory chip 770b, as depicted in FIG. 7C. In the example of FIG. 7C, memory chip 770a

includes processor subunits with one or more corresponding memory banks dedicated to each processor

22

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

subunit, e.g.: Processor subunit 730a is associated with memory bank 720a, processor subunit 730b is
associated with memory bank 720b, processor subunit 730e is associated with memory bank 720c, and
processor subunit 730f is associated with memory bank 720d. Buses connect each processor subunit to its
corresponding memory bank. Accordingly, bus 740a connects processor subunit 730a to memory bank
720a, bus 740b connects processor subunit 730b to memory bank 720b, bus 740¢ connects processor
subunit 730e to memory bank 720c, and bus 740d connects processor subunit 730f to memory bank 720d.
Moreover, bus 750a connects processor subunit 730a to processor subunit 750e, bus 750b connects
processor subunit 730a to processor subunit 750b, bus 750c connects processor subunit 730b to processor
subunit 7501, and bus 750d connects processor subunit 730e to processor subunit 750f. Other
arrangements of memory chip 770a may be used, for example, as described above.

[0128] Similarly, memory chip 770b includes processor subunits with one or more
corresponding memory banks dedicated to each processor subunit, e.g.: Processor subunit 730c is
associated with memory bank 720e, processor subunit 730d is associated with memory bank 720f,
processor subunit 730g is associated with memory bank 720g, and processor subunit 730h is associated
with memory bank 720h. Buses connect each processor subunit to its corresponding memory bank.
Accordingly, bus 740e connects processor subunit 730c to memory bank 720e, bus 740f connects
processor subunit 730d to memory bank 7201, bus 740g connects processor subunit 730g to memory bank
720g, and bus 740h connects processor subunit 730h to memory bank 720h. Moreover, bus 750g connects
processor subunit 730¢ to processor subunit 750g, bus 750h connects processor subunit 730d to processor
subunit 750h, bus 750i connects processor subunit 730c to processor subunit 750d, and bus 750j connects
processor subunit 730g to processor subunit 750h. Other arrangements of memory chip 770b may be
used, for example, as described above.

[0129] The processor subunits of memory chip 770a and 770b may be connected using one or
more buses. Accordingly, in the example of FIG. 7C, bus 750e may connect processor subunit 730b of
memory chip 770a and processor subunit 730c of memory chip 770b, and bus 750f may connect
processor subunit 730f of memory chip 770a and processor subunit 730c of memory 770b. For example,
bus 750e may serve as an input bus to memory chip 770b (and thus an output bus for memory chip 770a)
while bus 750f may serve as an input bus to memory chip 770a (and thus an output bus for memory chip
770b) or vice versa. Alternatively, buses 750e and 750f may both server as two-way buses between
memory chips 770a and 770b.

[0130] Buses 750e and 750f may include direct wires or may be interleaved on a high-speed
connection in order to reduce the pins used for the inter-chip interface between memory chip 770a and
integrated circuit 770b. Moreover, any of the connection arrangements described above used in the
memory chip itself may be used to connect the memory chip to one or more additional integrated circuits.
For example, memory chip 770a and 770b may be connected using a full-tile or partial-tile connection
rather than only two buses as shown in FIG. 7C.

[0131] Accordingly, although depicted using buses 750e and 750f, architecture 760 may include

fewer buses or additional buses. For example, a single bus between processor subunits 730b and 730c or

23

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

between processor subunits 730f and 730c may be used. Alternatively, additional buses, e.g., between
processor subunits 730b and 730d, between processor subunits 730f and 730d, or the like, may be used.

[0132] Furthermore, although depicted as using a single memory chip and an additional
integrated circuit, a plurality of memory chips may be connected using buses as explained above. For
example, as depicted in the example of FIG. 7C, memory chips 770a, 770b, 770c, and 770d are connected
in an array. Each memory chip includes processor subunits and dedicated memory banks similar to the
memory chips described above. Accordingly, a description of these components is not repeated here.

[0133] In the example of FIG. 7C, memory chips 770a, 770b, 770c, and 770d are connected in a
loop. Accordingly, bus 750a connects memory chips 770a and 770d, bus 750c connects memory chips
770a and 770b, bus 750e connects memory chips 770b and 770c, and bus 750g connects memory chips
770c¢ and 770d. Although memory chips 770a, 770b, 770c, and 770d may be connected with full-tile
connections, partial-tile connections, or other connection arrangements, the example of FIG. 7C allows
for fewer pin connections between memory chips 770a, 770b, 770c¢, and 770d.

Relatively Large Memories

[0134] Embodiments of the present disclosure may use dedicated memories of relatively large
size as compared with shared memories of conventional processors. The use of dedicated memories rather
than shared memories allows for gains in efficiency to continue without tapering off with memory
increases. This allows for memory-intensive tasks such as neural network processing and database queries
to be performed more efficiently than in conventional processors, where the efficiency gains of increasing
shared memory taper off due to the von Neumann bottleneck.

[0135] For example, in distributed processors of the present disclosure, a memory array disposed
on the substrate of the distributed processor may include a plurality of discrete memory banks. Each of
the discrete memory banks may have a capacity greater than one megabyte, as well as a processing array
disposed on the substrate, including a plurality of processor subunits. As explained above, each one of the
processor subunits may be associated with a corresponding, dedicated one of the plurality of discrete
memory banks. In some embodiments, the plurality of processor subunits may be spatially distributed
among the plurality of discrete memory banks within the memory array. By using dedicated memories of
at least one megabyte, rather than shared caches of a few megabytes for a large CPU or GPU, the
distributed processors of the present disclosure gain efficiencies that are not possible in conventional
systems due to the von Neumann bottleneck in CPUs and GPUs.

[0136] Different memories may be used as the dedicated memories. For example, each dedicated
memory bank may comprise at least one DRAM bank. Alternatively, each dedicated memory bank may
comprise at least one static random access memory bank. In other embodiments, different types of
memories may be combined on a single hardware chip.

[0137] As explained above, each dedicated memory may be at least one megabyte. Accordingly,
each dedicated memory bank may be the same size or at least two of the plurality of memory banks may

have different sizes.

24

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0138] Moreover, as described above, the distributed processor may include a first plurality of
buses, each connecting one of the plurality of processor subunits to a corresponding, dedicated memory
bank and a second plurality of buses, each connecting one of the plurality of processor subunits to another
one of the plurality of processor subunits.

Synchronization Using Software

[0139] As explained above, hardware chips of the present disclosure may manage data transters
using software rather than hardware. In particular, because the timings of transfers on the buses, reads and
writes to the memories, and calculations of the processor subunits are set by the sub-series of instructions
executed by the processor subunits, hardware chips of the present disclosure may execute code to prevent
collisions on the buses. Accordingly, hardware chips of the present disclosure may avoid hardware
mechanisms conventionally used to manage data transfers (such as network controllers within in a chip,
packet parsers and packets transferors between processor subunits, bus atbitrators, a plurality of buses to
avoid arbitration, or the like).

[0140] If hardware chips of the present disclosure transferred data conventionally, connecting N
processor subunits with buses would require bus arbitration or wide MUXs controlled by an arbiter.
Instead, as described above, embodiments of the present disclosure may use a bus that is only a wire, an
optical cable, or the like between processor subunits, where the processor subunits individually execute
code to avoid collision on the buses. Accordingly, embodiments of the present disclosure may preserve
space on the substrate as well as materials cost and efficiency losses (e.g., due to power and time
consumption by arbitration). The efficiency and space gains are even greater when compared to other
architectures using first-in-first-out (FIFO) controllers and/or mailboxes.

[0141] Furthermore, as explained above, each processor subunit may include one or more
accelerators in addition to one or more processing elements. In some embodiments, the accelerator(s) may
read and write from the buses rather than the processing element(s). In such embodiments, additional
efficiency may be obtained by allowing the accelerator(s) to transmit data during the same cycle in which
the processing element(s) perform one or more calculations. Such embodiments, however, require
additional materials for the accelerator(s). For example, additional transistors may be required for
fabrication of the accelerator(s).

[0142] The code also may account for the internal behavior, including timing and latencies, of
the processor subunits (e.g., including the processing elements and/or accelerators forming part of the
processor subunit). For example, a compiler (as described below) may perform pre-processing that
accounts for the timing and latencies when generating the sub-series of instructions that control the data
transfers.

[0143] In one example, a plurality of processor subunits may be assigned a task of calculating a
neural network layer containing a plurality of neurons fully-connected to a previous layer of a larger
plurality of neurons. Assuming data of the previous layer is evenly spread between the plurality of
processor subunits, one way to perform the calculation may be to configure each processor subunit to

transmit the data of the previous layer to the main bus in tumn and then each processor subunit will

25

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

multiply this data by the weight of the corresponding neuron that the subunit implements. Because each
processor subunit calculates more than one neuron, each processor subunit will transmit the data of the
previous layer a number of times equal to the number of neurons. Thus, the code of each processor
subunit is not the same as the code for other processor subunits because the subunits will transmit at
different times.

[0144] In some embodiments, a distributed processor may comprise a substrate (e.g., a
semiconductor substrate, such as silicon and/or a circuit board, such as a flexible circuit board) with a
memory array disposed on the substrate, the memory array including a plurality of discrete memory
banks, and a processing array disposed on the substrate, the processing array including a plurality of
processor subunits, as depicted, e.g., in FIGS. 7A and 7B. As explained above, each one of the processor
subunits may be associated with a corresponding, dedicated one of the plurality of discrete memory
banks. Moreover, as depicted, e.g., in FIGS. 7A and 7B, the distributed processor may further comprise a
plurality of buses, each one of the plurality of buses connecting one of the plurality of processor subunits
to at least another one of the plurality of processor subunits.

[0145] As explained above, the plurality of buses may be controlled in software. Accordingly,
the plurality of buses may be free of timing hardware logic components such that data transfers between
processor subunits and across corresponding ones of the plurality of buses are uncontrolled by timing
hardware logic components. In one example, the plurality of buses may be free of bus arbiters such that
data transfers between processor subunits and across corresponding ones of the plurality of buses are
uncontrolled by bus arbiters.

[0146] In some embodiments, as depicted, e.g., in FIGS. 7A and 7B, the distributed processor
may further comprise a second plurality of buses connecting one of the plurality of processor subunits to a
corresponding, dedicated memory bank. Similar to the plurality of buses described above, the second
plurality of buses may be free of timing hardware logic components such that data transfers between
processor subunits and corresponding, dedicated memory banks are uncontrolled by timing hardware
logic components. In one example, the second plurality of buses may be free of bus arbiters such that data
transfers between processor subunits and corresponding, dedicated memory banks are uncontrolled by bus
arbiters.

[0147] As used herein, the phrase “free of* does not necessarily imply the absolute absence of
components, such as timing hardware logic components {e.g., bus arbiters, arbitration trees, FIFO
controllers, mailboxes, or the like). Such components may still be included in a hardware chip described
as “free of” those components. Instead, the phrase “free of”” refers to the function of the hardware chip;
that is, a hardware chip “free of” timing hardware logic components controls the timing of its data
transfers without use of the timing hardware logic components, if any, included therein. For example, a
hardware chip that executes code including sub-series of instructions that control data transfers between
processor subunits of the hardware chip, even if the hardware chip includes timing hardware logic

components as a secondary precaution to protect against collisions due to errors in the executed code.

26

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0148] As explained above, the plurality of buses may comprise at least one of wires or optical
fibers between corresponding ones of the plurality of processor subunits. Accordingly, in one example, a
distributed processor free of timing hardware logic components may include only wires or optical fibers
without bus arbiters, arbitration trees, FIFO controllers, mailboxes, or the like.

[0149] In some embodiments, the plurality of processor subunits is configured to transfer data
across at least one of the plurality of buses in accordance with code executed by the plurality of processor
subunits. Accordingly, as explained below, a compiler may organize sub-series of instructions, each sub-
series comprising code executed by a single processor subunit. The sub-series instructions may instruct
the processor subunit when to transfer data onto one of the buses and when to retrieve data from the
buses. When the sub-series are executed in tandem across the distributed processor, the timing of transfers
between the processor subunits may be governed by the instructions to transfer and retrieve included in
the sub-series. Thus, the code dictates timing of data transfers across at least one of the plurality of buses.
The compiler may generate code to be executed by a single processor subunit. Additionally, the compiler
may generate code to be executed by groups of processor subunits. In some cases, the compiler may treat
all the processor subunits together as if they were one super-processor (e.g., a distributed processor), and
the compiler may generate code for execution by that defined super-processor/distributed processor.

[0150] As explained above and depicted in FIGS. 7A and 7B, the plurality of processor subunits
may be spatially distributed among the plurality of discrete memory banks within the memory array.
Alternatively, the plurality of processor subunits may be clustered in one or more regions of the substrate,
and the plurality of memory banks may be clustered in one or more other regions of the substrate. In some
embodiments, a combination of spatial distribution and clustering may be used, as explained above.

[0151] In some embodiments, a distributed processor may comprise a substrate (e.g., a
semiconductor substrate, including silicon and/or a circuit board, such as a flexible circuit board) with a
memory array disposed on the substrate, the memory array including a plurality of discrete memory
banks. A processing array may also be disposed on the substrate, the processing array including a
plurality of processor subunits, as depicted, e.g., in FIGS. 7A and 7B. As explained above, each one of
the processor subunits may be associated with a corresponding, dedicated one of the plurality of discrete
memory banks. Moreover, as depicted, e.g., in FIGS. 7A and 7B, the distributed processor may further
comprise a plurality of buses, each one of the plurality of buses connecting one of the plurality of
processor subunits to a corresponding, dedicated one of the plurality of discrete memory banks.

[0152] As explained above, the plurality of buses may be controlled in software. Accordingly,
the plurality of buses may be free of timing hardware logic components such that data transfers between a
processor subunit and a corresponding, dedicated one of the plurality of discrete memory banks and
across a corresponding one of the plurality of buses are not controlled by timing hardware logic
components. In one example, the plurality of buses may be free of bus arbiters such that data transfers
between processor subunits and across corresponding ones of the plurality of buses are uncontrolled by

bus arbiters.

27

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0153] In some embodiments, as depicted, e.g., in FIGS. 7A and 7B, the distributed processor
may further comprise a second plurality of buses connecting one of the plurality of processor subunits to
at least another one of the plurality of processor subunits. Similar to the plurality of buses described
above, the second plurality of buses may be free of timing hardware logic components such that data
transfers between processor subunits and corresponding, dedicated memory banks are uncontrolled by
timing hardware logic components. In one example, the second plurality of buses may be free of bus
arbiters such that data transfers between processor subunits and corresponding, dedicated memory banks
are uncontrolled by bus arbiters.

[0154] In some embodiments, the distributed processor may use a combination of software
timing with hardware timing components. For example, a distributed processor may comprise a substrate
(e.g., a semiconductor substrate, including silicon and/or a circuit board, such as a flexible circuit board)
with a memory array disposed on the substrate, the memory array including a plurality of discrete
memory banks. A processing array may also be disposed on the substrate, the processing array including
a plurality of processor subunits, as depicted, e.g., in FIGS. 7A and 7B. As explained above, each one of
the processor subunits may be associated with a corresponding, dedicated one of the plurality of discrete
memory banks. Moreover, as depicted, e.g., in FIGS. 7A and 7B, the distributed processor may further
comprise a plurality of buses, each one of the plurality of buses connecting one of the plurality of
processor subunits to at least another one of the plurality of processor subunits. Moreover, as explained
above, the plurality of processor subunits may be configured to execute software that controls timing of
data transfers across the plurality of buses to avoid colliding data transfers on at least one of the plurality
of buses. In such an example, the software may control the timing of the data transfers, but the transfers
themselves may be controlled, at least in part, by one or more hardware components.

[0155] In such embodiments, the distributed processor may further comprise a second plurality
of buses connecting one of the plurality of processor subunits to a corresponding, dedicated memory
bank. Similar to the plurality of buses described above, the plurality of processor subunits may be
configured to execute software that controls timing of data transfers across the second plurality of buses
to avoid colliding data transfers on at least one of the second plurality of buses. In such an example, as
explained above, the software may control the timing of the data transfers, but the transfers themselves
may be controlled, at least in part, by one or more hardware components.

Division of Code

[0156] As explained above, hardware chips of the present disclosure may execute code in
parallel across processor subunits included on a substrate forming the hardware chip. Additionally,
hardware chips of the present disclosure may perform multitasking. For example, hardware chips of the
present disclosure may perform area multitasking, in which one group of processor subunits of the
hardware chip execute one task (e.g., audio processing) while another group of processor subunits of the
hardware chip execute another task (e.g., image processing). In another example, hardware chips of the
present disclosure may perform timing multitasking, in which one or more processor subunits of the

hardware chip execute one task during a first period of time and another task during a second period of

28

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

time. A combination of area and timing multitasking may also be used such that one task may be assigned
to a first group of processor subunits during a first period of time while another task may be assigned to a
second group of processor subunits during the first period of time, after which a third task may be
assigned to processor subunits included in the first group and the second group during a second period of
time.

[0157] In order to organize machine code for execution on memory chips of the present
disclosure, machine code may be divided between processor subunits of the memory chip. For example, a
processor on a memory chip may comprise a substrate and a plurality of processor subunits disposed on
the substrate. The memory chip may further comprise a corresponding plurality of memory banks
disposed on the substrate, each one of the plurality processor subunits being connected to at least one
dedicated memory bank not shared by any other processor subunit of the plurality of processor subunits.
Each processor subunit on the memory chip may be configured to execute a series of instructions
independent from other processor subunits. Each series of instructions may be executed by configuring
one or more general processing elements of the processor subunit in accordance with code defining the
series of instructions and/or by activating one or more special processing elements (e.g., one or more
accelerators) of the processor subunit in accordance with a sequence provided in the code defining the
series of instructions.

[0158] Accordingly, each series of instructions may define a series of tasks to be performed by a
single processor subunit. A single task may comprise an instruction within an instruction set defined by
the architecture of one or more processing elements in the processor subunit. For example, the processor
subunit may include particular registers, and a single task may push data onto a register, pull data from a
register, perform an arithmetic function on data within a register, perform a logic operation on data within
a register, or the like. Moreover, the processor subunit may be configured for any number of operands,
such as a 0-operand processor subunit (also called a “stack machine™), a 1-operand processor subunit
(also called an accumulator machine), a 2-operand processor subunit (such as a RISC), a 3-operand
processor subunit (such as a complex instruction set computer (CISC)), or the like. In another example,
the processor subunit may include one or more accelerators, and a single task may activate an accelerator
to perform a specific function, such as a MAC function, a MAX function, a MAX-0 function, or the like.

[0159] The series of instructions may further include tasks for reading and writing from the
dedicated memory banks of the memory chip. For example, a task may include writing a piece of data to a
memory bank dedicated to the processor subunit executing the task, reading a piece of data from a
memory bank dedicated to the processor subunit executing the task, or the like. In some embodiments, the
reading and writing may be performed by the processor subunit in tandem with a controller of the
memory bank. For example, the processor subunit may execute a read or write task by sending a control
signal to the controller to perform the read or write. In some embodiments, the control signal may include
a particular address to use for reads and writes. Alternatively, the processor subunit may defer to the

memory controller to select an available address for the reads and writes.

29

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0160] Additionally or alternatively, the reading and writing may be performed by one or more
accelerators in tandem with a controller of the memory bank. For example, the accelerators may generate
the control signals for the memory controller, similar to how the processor subunit generates control
signals, as described above.

[0161] In any of the embodiments described above, an address generator may also be used to
direct the reads and writes to specific addresses of a memory bank. For example, the address generator
may comprise a processing element configured to generate memory addresses for reads and writes. The
address generator may be configured to generate addresses in order to increase efficiency, e.g., by writing
results of a later calculation to the same address as the results of a former calculation that are no longer
needed. Accordingly, the address generator may generate the controls signals for the memory controller,
either in response to a command from the processor subunit (e.g., from a processing element included
therein or from one or more accelerator(s) therein) or in tandem with the processor subunit. Additionally
or alternatively, the address generator may generate the addresses based on some configuration or
registers for example generating a nested loop structure to iterate on certain addresses in the memory at a
certain pattern.

[0162] In some embodiments, each series of instructions may comprise a set of machine code
defining a corresponding series of tasks. Accordingly, the series of tasks described above may be
encapsulated within machine code comprising the series of instructions. In some embodiments, as
explained below with respect to FIG. 8, the series of tasks may be defined by a compiler configured to
distribute a higher-level series of tasks amongst the plurality of logic circuits as a plurality of series of
tasks. For example, the compiler may generate the plurality of series of tasks based on the higher-level
series of tasks such that the processor subunits, executing each corresponding series of tasks in tandem,
perform the same function as outlined by the higher-level series of tasks.

[0163] As explained further below, the higher-level series of tasks may comprise a set of
instructions in a human-readable programming language. Correspondingly, the series of tasks for each
processor subunit may comprise lower-level series of tasks, each of which comprises a set of instructions
in a machine code.

[0164] As explained above with respect to FIGS. 7A and 7B, the memory chip may further
comprise a plurality of buses, each bus connecting one of the plurality of processor subunits to at least
one other of the plurality of processor subunits. Moreover, as explained above, data transfers on the
plurality of buses may be controlled using software. Accordingly, data transfers across at least one of the
plurality of buses may be predefined by the series of instructions included in a processor subunit
connected to the at least one of the plurality of buses. Therefore, one of the tasks included in the series of
instructions may include outputting data to one of the buses or pulling data from one of the buses. Such
tasks may be executed by a processing element of the processor subunit or by one or more accelerators
included in the processor subunit. In the latter embodiment, the processor subunit may perform a
calculation or send a control signal to a corresponding memory bank in the same cycle during which

accelerator(s) pull data from or place data on one of the buses.

30

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0165] In one example, the series of instructions included in the processor subunit connected to
the at least one of the plurality of buses may include a sending task that comprises a command for the
processor subunit connected to the at least one of the plurality of buses to write data to the at least one of
the plurality of buses. Additionally or alternatively, the series of instructions included in the processor
subunit connected to the at least one of the plurality of buses may include a receiving task that comprises
a command for the processor subunit connected to the at least one of the plurality of buses to read data
from the at least one of the plurality of buses.

[0166] Additionally or alternatively to distribution of code amongst processor subunits, data may
be divided between memory banks of the memory chip. For example, as explained above, a distributed
processor on a memory chip may comprise a plurality of processor subunits disposed on the memory chip
and a plurality of memory banks disposed on the memory chip. Each one of the plurality of memory
banks may be configured to store data independent from data stored in other ones of the plurality of
memory banks, and each one of the plurality of processor subunits may be connected to at least one
dedicated memory bank from among the plurality of memory banks. For example, each processor subunit
may have access to one or more memory controllers of one or more corresponding memory banks
dedicated to the processor subunit, and no other processor subunit may have access to these
corresponding one or more memory controllers. Accordingly, the data stored in each memory bank may
be unique to the dedicated processor subunit. Moreover, the data stored in each memory bank may be
independent of the memory stored in other memory banks because no memory controllers may be shared
between memory banks.

[0167] In some embodiments, as described below with respect to FIG. 8, the data stored in each
of the plurality of memory banks may be defined by a compiler configured to distribute data amongst the
plurality of memory banks. Moreover, the compiler may be configured to distribute data defined in a
higher-level series of tasks amongst the plurality of memory banks using a plurality of lower-level tasks
distributed amongst corresponding processor subunits.

[0168] As explained further below, the higher-level series of tasks may comprise a set of
instructions in a human-readable programming language. Correspondingly, the series of tasks for each
processor subunit may comprise lower-level series of tasks, each of which comprises a set of instructions
in a machine code.

[0169] As explained above with respect to FIGS. 7A and 7B, the memory chip may further
comprise a plurality of buses, each bus connecting one of the plurality of processor subunits to one or
more corresponding, dedicated memory banks from among the plurality of memory banks. Moreover, as
explained above, data transfers on the plurality of buses may be controlled using software. Accordingly,
data transfers across a particular one of the plurality of buses may be controlled by a corresponding
processor subunit connected to the particular one of the plurality of buses. Therefore, one of the tasks
included in the series of instructions may include outputting data to one of the buses or pulling data from
one of the buses. As explained above, such tasks may be executed by (i) a processing element of the

processor subunit or (ii) one or more accelerators included in the processor subunit. In the latter

31

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

embodiment, the processor subunit may perform a calculation or use buses connecting the processor
subunit to other processor subunits in the same cycle during which accelerator(s) pull data from or place
data on one of the buses connected to the one or more corresponding, dedicated memory banks.

[0170] Therefore, in one example, the series of instructions included in the processor subunit
connected to the at least one of the plurality of buses may include a sending task. The sending task may
comprise a command for the processor subunit connected to the at least one of the plurality of buses to
write data to the at least one of the plurality of buses for storage in the one or more corresponding,
dedicated memory banks. Additionally or alternatively, the series of instructions included in the processor
subunit connected to the at least one of the plurality of buses may include a receiving task. The receiving
task may comprise a command for the processor subunit connected to the at least one of the plurality of
buses to read data from the at least one of the plurality of buses for storage in the one or more
corresponding, dedicated memory banks. Accordingly, the sending and receiving tasks in such
embodiments may comprise control signals that are sent, along the at least one of the plurality of buses, to
one or more memory controllers of the one or more corresponding, dedicated memory banks. Moreover,
the sending and receiving tasks may be executed by one portion of the processing subunit (e.g., by one or
more accelerators thereof) concurrently with a calculation or other task executed by another portion of the
processing subunit (e.g., by one or more different accelerators thereof). An example of such a concurrent
execution may include a MAC-relay command, in which receiving, multiplying, and sending are executed
in tandem.

[0171] In addition to distributing data amongst the memory banks, particular portions of data
may be duplicated across different memory banks. For example, as explained above, a distributed
processor on a memory chip may comprise a plurality of processor subunits disposed on the memory chip
and a plurality of memory banks disposed on the memory chip. Each one of the plurality of processor
subunits may be connected to at least one dedicated memory bank from among the plurality of memory
banks, and each memory bank of the plurality of memory banks may be configured to store data
independent from data stored in other ones of the plurality of memory banks. Moreover, at least some of
the data stored in one particular memory bank from among the plurality of memory banks may comprise a
duplicate of data stored in at least another one of the plurality of memory banks. For example, a number,
string, or other type of data used in the series of instructions may be stored in a plurality of memory banks
dedicated to different processor subunits rather than being transferred from one memory bank to other
processor subunits in the memory chip.

[0172] In one example, parallel string matching may use data duplication described above. For
example, a plurality of strings may be compared to the same string. A conventional processor would
compare each string in the plurality to the same string in sequence. On a hardware chip of the present
disclosure, the same string may be duplicated across the memory banks such that the processor subunits
may compare a separate string in the plurality to the duplicated string in parallel.

[0173] In some embodiments, as described below with respect to FIG. 8, the at least some data

duplicated across the one particular memory bank from among the plurality of memory banks and the at

32

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

least another one of the plurality of memory banks is defined by a compiler configured to duplicate data
across memory banks. Moreover, the compiler may be configured to duplicate the at least some data
using a plurality of lower-level tasks distributed amongst corresponding processor subunits.

[0174] Duplication of data may be useful for certain tasks that re-use the same portions of data
across different calculations. By duplicating these portions of data, the different calculations may be
distributed amongst processor subunits of the memory chip for parallel execution while each processor
subunit may store the portions of data in, and access the stored portions from, a dedicated memory bank
(rather than pushing and pulling the portions of data across buses connecting the processor subunits). In
one example, the at least some data duplicated across the one particular memory bank from among the
plurality of memory banks and the at least another one of the plurality of memory banks may comprise
weights of a neural network. In this example, each node in the neural network may be defined by at least
one processor subunit from among the plurality of processor subunits. For example, each node may
comprise machine code executed by the at least one processor subunit defining the node. In this example,
duplication of the weights may allow each processor subunit to execute machine code to effect, at least in
part, a corresponding node while only accessing one or more dedicated memory banks (rather than
performing data transfers with other processor subunits). Because the timing of reads and writes to the
dedicated memory bank(s) are independent of other processor subunits while the timing of data transfers
between processor subunits requires timing synchronization (e.g., using software, as explained above),
duplication of memory to avoid data transfers between processor subunits may produce further
efficiencies in overall execution.

[0175] As explained above with respect to FIGS. 7A and 7B, the memory chip may further
comprise a plurality of buses, each bus connecting one of the plurality of processor subunits to one or
more corresponding, dedicated memory banks from among the plurality of memory banks. Moreover, as
explained above, data transfers on the plurality of buses may be controlled using software. Accordingly,
data transfers across a particular one of the plurality of buses may be controlled by a corresponding
processor subunit connected to the particular one of the plurality of buses. Therefore, one of the tasks
included in the series of instructions may include outputting data to one of the buses or pulling data from
one of the buses. As explained above, such tasks may be executed by (i) a processing element of the
processor subunit or (ii) one or more accelerators included in the processor subunit. As further explained
above, such tasks may include a sending task and/or a receiving tasks that comprise control signals that
are sent, along the at least one of the plurality of buses, to one or more memory controllers of the one or
more corresponding, dedicated memory banks.

[0176] FIG. 8 depicts a flowchart of a method 800 for compiling a series of instructions for
execution on an exemplary memory chip of the present disclosure, e.g., as depicted in FIGS. 7A and 7B.
Method 800 may be implemented by any conventional processor, whether generic or special-purpose.

[0177] Method 800 may be executed as a portion of a computer program forming a compiler. As
used herein, a “compiler” refers to any computer program that converts a higher-level language (e.g., a

procedural language, such as C, FORTRAN, BASIC, or the like; an object-oriented language, such as

33

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

Java, C++, Pascal, Python, or the like; etc.) to a lower-level language (e.g., assembly code, object code,
machine code, or the like). The compiler may allow a human to program a series of instructions in a
human-readable language, which is then converted to a machine-executable language.

[0178] At step 810, the processor may assign tasks associated with the series of instructions to
different ones of the processor subunits. For example, the series of instructions may be divided into
subgroups, the subgroups to be executed in parallel across the processor subunits. In one example, a
neural network may be divided into its nodes, and one or more nodes may be assigned to separate
processor subunits. In this example, each subgroup may comprise a plurality of nodes connected across
different layers. Thus, a processor subunit may implement a node from a first layer of the neural network,
a node from a second layer connected to the node from the first layer implemented by the same processor
subunit, and the like. By assigning nodes based on their connections, data transfers between the processor
subunits may be lessened, which may result in greater efficiency, as explained above.

[0179] As explained above depicted in FIGS. 7A and 7B, the processor subunits may be
spatially distributed among the plurality of memory banks disposed on the memory chip. Accordingly, the
assignment of tasks may be, at least in part, a spatial divisional as well as a logical division.

[0180] At step 820, the processor may generate tasks to transfer data between pairs of the
processor subunits of the memory chip, each pair of processor subunits being connected by a bus. For
example, as explained above, the data transfers may be controlled using software. Accordingly, processor
subunits may be configured to push and pull data on buses at synchronized times. The generated tasks
may thus include tasks for performing this synchronized pushing and pulling of data.

[0181] As explained above, step 820 may include pre-processing to account for the internal
behavior, including timing and latencies, of the processor subunits. For example, the processor may use
known times and latencies of the processor subunits (e.g., the time to push data to a bus, the time to pull
data from a bus, the latency between a calculation and a push or pull, or the like) to ensure that the
generated tasks synchronize. Therefore, the data transfers comprising at least one push by one or more
processor subunits and at least one pull by one or more processor subunits may occur simultaneously
rather than incurring a delay due to timing differences between the processor subunits, latencies of the
processor subunits, or the like.

[0182] At step 830, the processor may group the assigned and generated tasks into the plurality
of groups of sub-series instructions. For example, the sub-series instructions may each comprise a series
of tasks for execution by a single processor subunit. Therefore, each of the plurality of groups of sub-
series instructions may correspond to a different one of the plurality of processor sub-units. Accordingly,
steps 810, 820, and 830 may result in dividing the series of instructions into a plurality of groups of sub-
series instructions. As explained above, step 820 may ensure that any data transfers between the different
groups are synchronized.

[0183] Atstep 840, the processor may generate machine code corresponding to each of the

plurality of groups of subs-series instructions. For example, the higher-level code representing sub-series

34

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

instructions may be converted to lower-level code, such as machine code, executable by corresponding
processor subunits.

[0184] At step 850, the processor may assign the generated machine code corresponding to each
of the plurality of groups of subs-series instructions to a corresponding one of the plurality of processor
subunits in accordance with the division. For example, the processor may label each sub-series
instructions with an identifier of the corresponding processor subunit. Thus, when the sub-series
instructions are uploaded to a memory chip for execution (e.g., by host 350 of FIG. 3A), each sub-series
may configure a correct processor subunit.

[0185] In some embodiments, assigning tasks associated with the series of instructions to the
different ones of the processor subunits may depend, at least in part, on a spatial proximity between two
or more of the processor subunits on the memory chip. For example, as explained above, efficiency may
be increased by lessening the number of data transfers between processor subunits. Accordingly, the
processor may minimize data transfers that move data across more than two of processor subunits.
Therefore, the processor may use a known layout of the memory chip in combination with one or more
optimization algorithms (such as a greedy algorithm) in order to assign sub-series to processor subunits in
a way that maximizes (at least locally) adjacent transfers and minimizes (at least locally) transfers to non-
neighboring processor subunits.

[0186] Method 800 may include further optimizations for the memory chips of the present
disclosure. For example, the processor may group data associated with the series of instructions based on
the division and assign the data to the memory banks in accordance with the grouping. Accordingly, the
memory banks may hold data used for the sub-series instructions assigned to each processor subunit to
which each memory bank is dedicated.

[0187] In some embodiments, grouping the data may include determining at least a portion of
the data to duplicate in two or more of the memory banks. For example, as explained above, some data
may be used across more than one sub-series instructions. Such data may be duplicated across the
memory banks dedicated to the plurality of processor subunits to which the different sub-series
instructions are assigned. This optimization may further reduce data transfers across processor subunits.

[0188] The output of method 800 may be input to a memory chip of the present disclosure for
execution. For example, a memory chip may comprise a plurality of processor subunits and a
corresponding plurality of memory banks, each processor subunit being connected to at least one memory
bank dedicated to the processor subunit, and the processor subunits of the memory chip may be
configured to execute the machine code generated by method 800. As explained above with respect to
FIG. 3A, host 350 may input the machine code generated by method 800 to the processor subunits for
execution.

Sub-banks and Sub-controllers

[0189] In conventional memory banks, controllers are provided at the bank level. Each bank
includes a plurality of mats, which are typically arranged in a rectangular manner but may be arranged in

any geometrical shape. Each mat includes a plurality of memory cells, which are also typically arranged

35

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

in a rectangular manner but may be arranged in any geometrical shape. Each cell may store a single bit of
data (e.g., depending on whether the cell is retained at a high voltage or a low voltage).

[0190] An example of this conventional architecture is depicted in FIGS. 9 and 10. As shown in
FIG. 9, at the bank level, a plurality of mats (e.g., mats 930-1, 930-2, 940-1, and 940-2) may form bank
900. In a conventional rectangular organization, bank 900 may be controlled across global wordlines
(e.g., wordline 950) and global bitlines (e.g., bitline 960). Accordingly, row decoder 910 may select the
correct wordline based on an incoming control signal (e.g., a request for a read from an address, a request
for a write to an address, or the like) and global sense amplifier 920 (and/or a global column decoder, not
shown in FIG. 9) may select the correct bitline based on the control signal. Amplifier 920 may also
amplify any voltage levels from a selected bank during a read operation. Although depicted as using a
row decoder for initial selecting and performing amplification along columns, a bank may additionally or
alternatively use a column decoder for initial selecting and perform amplification along rows.

[0191] FIG. 10 depicts an example of a mat 1000. For example, mat 1000 may form a portion of
a memory bank, such as bank 900 of FIG. 9. As depicted in FIG. 10, a plurality of cells (e.g., cells 1030-
1, 1030-2, and 1030-3) may form mat 1000. Each cell may comprise a capacitor, a transistor, or other
circuitry that stores at least one bit of data. For example, a cell may comprise a capacitor that is charged
to represent a ‘17 and discharged to represent a ‘0’ or may comprise a flip-flop having a first state
representing a ‘1’ and a second state representing a ‘0.” A conventional mat may comprise, for example,
512 bits by 512 bits. In embodiments where mat 1000 forms a portion of MRAM, ReRAM, or the like, a
cell may comprise a transistor, resistor, capacitor or other mechanism for isolating an ion or portion of a
material that stores at least one bit of data. For example, a cell may comprise a electrolyte ion, a portion
of chalcogenide glass, or the like, having a first state representing a ‘1’ and a second state representing a
0.

[0192] As further depicted in FIG. 10, in a conventional rectangular organization, mat 1000 may
be controlled across local wordlines (e.g., wordline 1040) and local bitlines (e.g., bitline 1050).
Accordingly, wordline drivers (e.g., wordline driver 1020-1, 1020-2, . . . , 1020-x) may control the
selected wordline to perform a read, write, or refresh based on a control signal from a controller
associated with the memory bank of which mat 1000 forms a part (e.g., a request for a read from an
address, a request for a write to an address, a refresh signal). Moreover, local sense amplifiers (e.g., local
amplifiers 1010-1, 1010-2, . . ., 1010-x) and/or local column decoders (not shown in FIG. 10) may
control the selected bitline to perform a read, write, or refresh. The local sense amplifiers may also
amplify any voltage levels from a selected cell during a read operation. Although depicted as using a
wordline driver for initial selecting and performing amplification along columns, a mat may instead use a
bitline driver for initial selecting and perform amplification along rows.

[0193] As explained above, a large number of mats are duplicated to form a memory bank.
Memory banks may be grouped to form a memory chip. For example, a memory chip may comprise eight
to thirty-two memory banks. Accordingly, pairing processor subunits with memory banks on a

conventional memory chip may result in only eight to thirty two processor subunits. Accordingly,

36

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

embodiments of the present disclosure may include memory chips with additional sub-bank hierarchy.
These memory chips of the present disclosure may then include processor subunits with memory sub-
banks used as the dedicated memory banks paired with the processor subunits allowing for a larger
number of sub processors, which may then achieve higher parallelism and performance of in-memory
computing.

[0194] In some embodiments of the present disclosure, the global row decoder and global sense
amplifier of bank 900 may be replaced with sub-bank controllers. Accordingly, rather than sending
control signals to a global row decoder and a global sense amplifier of the memory bank, a controller of
the memory bank may direct the control signal to the appropriate sub-bank controller. The direction may
be controlled dynamically or may be hard-wired (e.g., via one or more logic gates). In some
embodiments, fuses may be used to indicate the controller of each sub bank or mat whether to block or
pass the control signal to the appropriate sub-bank or mat. In such embodiments, faulty sub-banks may
thus be deactivated using the fuses.

[0195] In one example of such embodiments, a memory chip may include a plurality of memory
banks, each memory bank having a bank controller and a plurality of memory sub-banks, each memory
sub-bank having a sub-bank row decoder and a sub-bank column decoder for allowing reads and writes to
locations on the memory sub-bank. Each sub-bank may comprise a plurality of memory mats, each
memory mat having a plurality of memory cells and may have internally local row decoders, column
decoders, and/or local sense amplifiers. The sub-bank row decoders and the sub-bank column decoders
may process read and write requests from the bank controller or from a sub-bank processor subunit used
for in memory computations on the sub-bank memory, as described below. Additionally, each memory
sub-bank may further have a controller configured to determine whether to process read requests and
write requests from the bank controller and/or to forward them to the next level (e.g., of row and column
decoders on a mat) or to block the requests, e.g., to allow an internal processing element or processor
subunit to access the memory. In some embodiments, the bank controller may be synchronized to a
system clock. However, the sub-bank controllers may be not synchronized to the system clock.

[0196] As explained above, the use of sub-banks may allow for the inclusion of a larger number
processor subunits in the memory chip than if processor subunits were paired with memory banks of
conventional chips. Accordingly, each sub-bank may further have a processor subunit using the sub-bank
as a dedicated memory. As explained above, the processor subunit may comprise a RISC, a CISC, or
other general-purpose processing subunit and/or may comprise one or more accelerators. Additionally,
the processor subunit may include an address generator, as explained above. In any of the embodiments
described above, each processor subunit may be configured to access a sub-bank dedicated to the
processor subunit using the row decoder and the column decoder of the sub-bank without using the bank
controller. The processor sub-unit associated with the sub-bank may also handle the memory mats
(including the decoder and memory redundancy mechanisms, described below) and/or determine whether
a read or write request from an upper level (e.g., the bank level or the memory level) is forwarded and

handled accordingly.

37

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0197] In some embodiments, the sub-bank controller may further include a register that stores a
state of the sub-bank. Accordingly, the sub-bank controller may return an error if the sub-bank controller
receives a control signal from the memory controller while the register indicates that the sub-bank is in
use. In embodiments where each sub-bank further includes a processor subunit, the register may indicate
an error if the processor subunit in the sub-bank is accessing the memory in conflict with an external
request from the memory controller.

[0198] FIG. 11 shows an example of another embodiment of a memory bank using sub-bank
controllers. In the example of FIG. 11, bank 1100 has a row decoder 1110, a column decoder 1120, and a
plurality of memory sub-banks (e.g., sub-banks 1170a, 1170b, and 1170c) with sub-bank controllers (e.g.,
controllers 1130a, 1130b, and 1130c). The sub-bank controllers may include address resolvers (e.g.,
resolvers 1140a, 1140b, and 1140c), which may determine whether to pass a request to one or more sub-
banks controlled by the sub-bank controller.

[0199] The sub-bank controllers may further include one or more logic circuits (e.g., logic
1150a, 1150b, and 1150c). For example, a logic circuit comprising one or more processing elements may
allow for one or more operations, such as refreshing of cells in the sub-bank, clearing of cells in the sub-
bank, or the like, to be performed without processing requests externally from bank 1100. Alternatively,
the logic circuit may comprise a processor subunit, as explained above, such that the processor sub-unit
has any sub-banks controlled by the sub-bank controller as corresponding, dedicated memory. In the
example of FIG. 11, logic 1150a may have sub-bank 1170a as a corresponding, dedicated memory, logic
1150b may have sub-bank 1170b as a corresponding, dedicafed memory, and logic 1150¢ may have sub-
bank 1170c as a corresponding, dedicated memory. In any of the embodiments described above, the logic
circuits may have buses to the sub-banks, e.g., buses 1131a, 1131b, or 1131c.As further depicted in FIG.
11, the sub-bank controllers may each include a plurality of decoders, such as a sub-bank row decoder
and a sub-bank column decoder for allowing reads and writes, either by a processing element or processor
subunit or by a higher-level memory controller issuing commands, to locations on the memory
sub-bank(s). For example, sub-bank controller 1130a includes decoders 1160a, 1160b, and 1160c, sub-
bank controller 1130b includes decoders 1160d, 1160e, and 1160f, and sub-bank controller 1130c
includes decoders 1160g, 1160h, and 1160i. The sub-bank controllers may, based on a request from bank
row decoder 1110, select a wordline using the decoders included in the sub-bank controllers. The
described system may allow a processing element or processor subunit of the sub-bank to access the
memory without interrupting other banks and even other sub-banks, thereby allowing each sub-bank
processor subunit to perform memory computations in parallel with the other sub-bank processor
subunits.

[0200] Furthermore, each sub-bank may comprise a plurality of memory mats, each memory mat
having a plurality of memory cells. For example, sub-bank 1170a includes mats 1190a-1, 1190a-2, . . .,
1190a-x; sub-bank 1170b includes mats 1190b-1, 1190b-2, . . ., 1190b-x; and sub-bank 1170c includes
mats 1190¢-1, 1190¢-2, . . ., 1190¢-3. As further depicted in FIG. 11, each sub-bank may include at least
one decoder. For example, sub-bank 1170a includes decoder 1180a, sub-bank 1170b includes decoder

38

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

1180b, and sub-bank 1170c¢ includes decoder 1180c. Accordingly, bank column decoder 1120 may select
a global bitline (e.g., bitline 1121a or 1121b) based on external requests while the sub-bank selected by
bank row decoder 1110 may use its column decoder to select a local bitline (e.g., bitline 1181a or 1181b)
based on local requests from the logic circuit to which the sub-bank is dedicated. Accordingly, each
processor subunit may be configured to access a sub-bank dedicated to the processor subunit using the
row decoder and the column decoder of the sub-bank without using the bank row decoder and the bank
column decoder. Thus, each processor subunit may access a corresponding sub-bank without interrupting
other sub-banks. Moreover, sub-bank decoders may reflect accessed data to the bank decoders when the
request to the sub-bank is external to the processor subunit. Alternatively, in embodiments where each
sub-bank has only one row of memory mats, the local bitlines may be the bitlines of the mat rather than
bitlines of the sub-bank.

[0201] A combination of embodiments using sub-bank row decoders and sub-bank column
decoders with the embodiment depicted in FIG. 11 may be used. For example, the bank row decoder may
be eliminated but the bank column decoder retained and local bitlines used.

[0202] FIG. 12 shows an example of an embodiment of a memory sub-bank 1200 having a
plurality of mats. For example, sub-bank 1200 may represent a portion of sub-bank 1100 of FIG. 11 or
may represent an alternative implementation of a memory bank. In the example of FIG. 12, sub-bank
1200 includes a plurality of mats (e.g., mats 1240a and 1240b). Moreover, each mat may include a
plurality of cells. For example, mat 1240a includes cells 1260a-1, 1260a-2, . . ., 1260a-x, and mat 1240b
includes cells 1260b-1, 1260b-2, . . ., 1260b-x.

[0203] Each mat may be assigned a range of addresses that will be assigned to the memory cells
of the mat. These addresses may be configured at production such that mats may be shuffled around and
such that faulted mats may be deactivated and left unused (e.g., using one or more fuses, as explained
further below).

[0204] Sub-bank 1200 receives read and write requests from memory controller 1210. Although
not depicted in FIG. 12, requests from memory controller 1210 may be filtered through a controller of
sub-bank 1200 and directed to an appropriate mat of sub-bank 1200 for address resolution. Alternatively,
at least a portion (e.g., higher bits) of an address of a request from memory controller 1210 may be
transmitted to all mats of sub-bank 1200 (e.g., mats 1240a and 1240b) such that each mat may process the
full address and the request associated with the address only if the mat’s assigned address range includes
the address specified in the command. Similar to the sub-bank direction described above, the mat
determination may be dynamically controlled or may be hardwired. In some embodiments, fuses may be
used to determine the address range for each mat, also allowing for disabling of faulty mats by assigning
an illegal address range. Mats may additionally or alternatively be disabled by other common methods or
connection of fuses.

[0205] In any of the embodiments described above, each mat of the sub-bank may include a row
decoder (e.g., row decoder 1230a or 1230b) for selection of a wordline in the mat. In some embodiments,

each mat may further include fuses and comparators (e.g., 1220a and 1220b). As described above, the

39

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

comparators may allow each mat to determine whether to process an incoming request, and the fuses may
allow each mat to deactivate if faulty. Alternatively, row decoders for the bank and/or sub-bank may be
used rather than a row decoder in each mat.

[0206] Furthermore, in any of the embodiments described above, a column decoder included in
the appropriate mat (e.g., column decoder 1250a or 1250b) may select a local bitline (e.g., bitline 1251 or
1253). The local bitline may be connected to a global bitline of the memory bank. In embodiments where
the sub-bank has local bitlines of its own, the local bitline of the cell may be further connected to the local
bitline of the sub-bank. Accordingly, data in the selected cell may be read through the column decoder
(and/or sense amplifier) of the cell, then through the column decoder (and/or sense amplifier) of the sub-
bank (in embodiments including a sub-bank column decoder and/or sense amplifier), and then through the
column decoder (and/or sense amplifier) of the bank.

[0207] Mat 1200 may be duplicated and arrayed to form a memory bank (or a memory
sub-bank). For example, a memory chip of the present disclosure may comprise a plurality of memory
banks, each memory bank having a plurality of memory sub-banks, and each memory sub-bank having a
sub-bank controller for processing reads and writes to locations on the memory sub-bank. Furthermore,
each memory sub-bank may comprise a plurality of memory mats, each memory mat having a plurality of
memory cells and having a mat row decoder and a mat column decoder (e.g., as depicted in FIG. 12). The
mat row decoders and the mat column decoders may process read and write requests from the sub-bank
controller. For example, the mat decoders may receive all requests and determine (e.g., using a
comparator) whether to process the request based on a known address range of each mat, or the mat
decoders may only receive requests within the known address range based on selection of a mat by the
sub-bank (or bank) controller.

Controller Data Transfers

[0208] Any of the memory chips of the present disclosure may also share data using memory
controllers (or sub-bank controllers or mat controllers) in addition to sharing data using processing
subunits. For example, a memory chip of the present disclosure may comprise a plurality of memory
banks (e.g., an SRAM bank, a DRAM bank, or the like), each memory bank having a bank controller, a
row decoder, and a column decoder for allowing reads and writes to locations on the memory bank, as
well as a plurality of buses connecting each controller of the plurality of bank controllers to at least one
other controller of the plurality of bank controllers. The plurality of buses may be similar to the buses
connecting the processing subunits, as described above, but connecting the bank controllers directly rather
than through the processing subunits. Furthermore, although described as connecting the bank controllers,
buses may additionally or alternatively connect sub-bank controllers and/or mat controllers.

[0209] In some embodiments, the plurality of buses may be accessed without interruption of data
transfers on main buses of the memory banks connected to one or more processor subunits. Accordingly,
a memory bank (or sub-bank) may transmit data to or from a corresponding processor subunit in the same
clock cycle as transmitting data to or from a different memory bank (or sub-bank). In embodiments where

each controller is connected to a plurality of other controllers, the controllers may be configurable for

40

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

selection of one other of the other controllers for sending or receiving of data. In some embodiments,
each controller may be connected to at least one neighboring controller (e.g., pairs of spatially adjacent
controllers may be connected to one another).

Redundant Logic in Memory Circuits

[0210] The disclosure is generally directed to a memory chip with primary logic portions for on-
chip data processing. The memory chip may include redundant logic portions, which may replace
defective primary logic portions to increase the fabrication yield of the chip. Thus, the chip may include
on-chip components that allow a configuration of logic blocks in the memory chip based on individual
testing of the logic portions. This feature of the chip may increase yields because a memory chip with
larger areas dedicated to logic portions is more susceptible to fabrication failures. For example, DRAM
memory chips with large redundant logic portions may be susceptible to fabrication issues that reduce
yield, However, implementing redundant logic portions may result in increased yield and reliability
because it provides a manufacturer or user of DRAM memory chips to turn on or off full logic portions
while maintaining the ability of high parallelism. It should be noted that here and throughout the
disclosure, example of certain memory types (such as DRAM) may be identified in order to facilitate the
explanation of disclosed embodiments. It is to be understood, however, that in such instances the
identified memory types are not intended to be limiting. Rather, memory types such as DRAM, Flash,
SRAM, ReRAM, PRAM, MRAM, ROM, or any other memory may be used together with the disclosed
embodiments even if fewer examples are specifically identified in a certain section of the disclosure.

[0211] Fig. 13 is a block diagram of an exemplary memory chip 1300, consistent with disclosed
embodiments. Memory chip 1300 may be implemented as a DRAM memory chip. Memory chip 1300
may also be implemented as any type of memory volatile or non-volatile, such as Flash, SRAM, ReRAM,
PRAM, and/or MRAM, etc. Memory chip 1300 may include a substrate 1301 in which an address
manager 1302, a memory array 1304 including a plurality of memory banks, 1304(a,a) to 1304(z,z), a
memory logic 1306, a business logic 1308, and a redundant business logic 1310 are disposed. Memory
logic 1306 and business logic 1308 may constitute primary logic blocks, while redundant business logic
1310 may constitute redundant blocks. In addition, memory chip 1300 may include configuration
switches, which may include deactivation switches 1312, and an activation switches 1314. Deactivation
switches 1312 and activation switches 1314 may also be disposed in the substrate 1301. In this
Application, memory logic 1306, business logic 1308, and redundant business logic 1310 may also be
collectively referred to as the “logic blocks.”

[0212] Address manager 1302 may include row and column decoders or other type of memory
auxiliaries. Alternatively, or additionally, address manager 1302 may include a microcontroller or
processing unit.

[0213] In some embodiments, as shown in Fig. 13, memory chip 1300 may include a single
memory array 1304 that may arrange the plurality of memory blocks in a two-dimensional array on
substrate 1301. In other embodiments, however, memory chip 1300 may include multiple memory arrays

1304 and each of the memory arrays 1304 may arrange memory blocks in different configurations. For

41

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

example, memory blocks in at least one of the memory arrays (also known as memory banks) may be
arranged in a radial distribution to facilitate routing between address manager 1302 or memory logic 1306
to the memory blocks.

[0214) Business logic 1308 may be used to do the in-memory computation of an application that
is not related to the logic used to manage the memory itself. For example, business logic 1308 may
implement functions related to Al such as floating, integer, or MAC operations used as activation
functions. In addition, business logic 1308 may implement data base related functions like min, max, sort,
count, among others. Memory logic 1306 may perform tasks related to memory management, including
(but not limited to) read, write, and refresh operations. Therefore, business logic may be added in one or
more of the bank level, mats level, or a group of mats level. Business logic 1308 may have one or more
address outputs and one or more data inputs/outputs. For instance, business logic 1308 can address by
row\column lines to address manager 1302. In certain embodiments, however, the logic blocks may be
additionally or alternatively addressed via data inputs\outputs.

[0215] Redundant business logic 1310 may be a replicate of business logic 1308. In addition,
redundant business logic 1310 may be connected to deactivation switches 1312 and/or activation switches
1314, which may include small fuse\anti-fuse, and used for logic disabling or enabling one of the
instances (e.g., an instance which is connected by default) and enable one of the other logic blocks (e.g.,
an instance which is disconnected by default). In some embodiments, as further described in connection
to Fig. 15, the redundancy of blocks may be local within a logic block, such as business logic 1308.

[0216] In some embodiments, the logic blocks in memory chip 1300 may be connected to
subsets of memory array 1304 with dedicated buses. For example, a set of memory logic 1306, business
logic 1308, and redundant business logic 1310 may be connected to the first row of memory blocks in
memory array 1304 (i.e., memory blocks 1304 (a,a) to 1304 (a,z)). The dedicated buses may allow
associated logic blocks to quickly access data from the memory blocks without requirements of opening
communication lines through, for example, address manager 1302.

[0217] Each of the plurality of primary logic blocks may be connected to at least one of the
plurality of memory banks 1304. Also, redundant blocks, such as redundant business block 1310, may be
connected to at least one of the memory instances 1304(a,a)-(z,z). Redundant blocks may replicate at least
one of the plurality of primary logic blocks, such as memory logic 1306 or business logic 1308.
Deactivation switches 1312 may be connected to at least one of the plurality of primary logic blocks and
activation switches 1314 may be connected to at least one of the plurality of redundant blocks.

[0218] In these embodiments, upon detecting of a fault associated with one of the plurality of
primary logic blocks (memory logic 1306 and/or business logic 1308), deactivation switches 1312 may be
configured to disable the one of the plurality of primary logic blocks. Simultaneously, activation switches
1314 may be configured to enable one of the plurality of redundant blocks, such as redundant logic block
1310, that replicates the one of the plurality of primary logic blocks.

[0219] In addition, activation switches 1314 and deactivation switches 1312, which may

collectively be referred to as “configuration switches,” may include an external input to configure the

42

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

status of the switch. For instance, activation switches 1314 may be configured so an activation signal in
the external input causes a closed switch condition, while deactivation switches 1312 may be configured
so a deactivation signal in the external input causes an open switch condition. In some embodiments, all
configuration switches in 1300 may be deactivated by default and become activated or enabled after a test
indicates an associated logic block is functional and a signal is applied in the external input.
Alternatively, in some cases, all configuration switches in 1300 may be enabled by default and may be
deactivated or disabled after a test indicates an associated logic block is not functional and a deactivation
signal is applied in the external input.

[0220] Regardless of whether a configuration switch is initially enabled or disabled, upon
detection of a fault associated with an associated logic block, the configuration switch may disable the
associated logic block. In cases where the configuration switch is initially enabled, the state of the
configuration switch may be changed to disabled in order to disable the associated logic block. In cases
where the configuration switch is initially disabled, the state of the configuration switch may be left in its
disabled state in order to disable the associated logic block. For example, the result of an operability test
may indicate that a certain logic block is nonoperational or that it fails to operate within certain
specifications. In such cases, the logic block may be disabled my not enabling its corresponding
configuration switch.

[0221] In some embodiments, configuration switches may be connected to two or more logic
blocks and may be configured to choose between different logic blocks. For example, a configuration
switch may be connected to both business logic 1308 and redundant logic block 1310. Configuration
switch may enable redundant logic block 1310 while disabling business logic 1308.

[0222] Alternatively, or additionally, at least one of the plurality of primary logic blocks
(memory logic 1306 and/or business logic 1308) may be connected to a subset of the plurality of memory
banks or memory instances 1304 with a first dedicated connection. Then, at least one of the plurality of
redundant blocks (such as redundant business logic 1310), which replicates the at least one of the plurality
of primary logic blocks, may be connected to the subset of the same plurality of memory banks or
instances 1304 with a second dedicated connection.

[0223] Moreover, memory logic 1306 may have different functions and capabilities than
business logic 1308. For example, while memory logic 1306 may be designed to enable read and write
operations in the memory bank 1304, business logic 1308 may be designed to perform in-memory
computations. Therefore, if the business logic 1308 includes a first business logic block, and the business
logic 1308 includes a second business logic block (like redundant business logic 1310), it is possible to
disconnect defective business logic 1308 and reconnect redundant business logic 1310 without missing
any capability.

[0224] In some embodiments, configuration switches (including deactivation switches 1312 and
activation switches 1314) may be implemented with a fuse, an anti-fuse, or a programmable device

(including a one-time programmable device), or other form of non-volatile memory.

43

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0225] Fig. 14 is a block diagram of an exemplary redundant logic block set 1400, consistent
with disclosed embodiments. In some embodiments, redundant logic block set 1400 may be disposed in
substrate 1301. Redundant logic block set 1400 may include at least one of business logic 1308, and
redundant business logic 1310, connected to switches 1312 and 1314, respectively. In addition, business
logic 1308 and redundant business logic 1310 may be connected to an address bus 1402 and a data bus
1404.

[0226] In some embodiments, as shown in Fig. 14, the switches 1312 and 1314 may connect
logic blocks to a clock node. In this way, the configuration switches may engage or disengage the logic
blocks from the clock signal, effectively activating or deactivating the logic blocks. In other
embodiments, however, switches 1312 and 1314 may connect logic blocks to other nodes for activation or
deactivation. For instance, configuration switches may connect logic blocks to a voltage supply node
(e.g., VCC) or to the ground node (e.g., GND) or clock signal. In this way, the logic blocks may be enable
of disable by the configuration switches because they would create an open circuit or cut-off the logic
block power supply.

[0227] In some embodiments, as shown in Fig. 14, address bus 1402 and data bus 1404 may be
in opposite sides of the logic blocks, which are connected in parallel to each one of the buses. In this way,
routing of the different on-chip components may be facilitated by the logic block set 1400.

[0228] In some embodiments, each one of the plurality of deactivation switches 1312 couple at
least one of the plurality of primary logic blocks with a clock node, and each one of the plurality of
activation switches 1314 may be couple at least one of the plurality of redundant blocks with the clock
node allowing to connect\disconnect the clock as a simple activation\deactivation mechanism.

[0229] Redundant business logic 1310 of redundant logic block set 1400 allows the designer to
choose, based on area and routing, the blocks that are worth duplication. For example, a chip designer
may select larger blocks for duplication because larger blocks may be more error prone. Thus, a chip
designer may decide to duplicate large logic blocks. On the other hand, a designer may prefer to duplicate
smaller logic blocks because they are easily duplicated without a significant loss of space. Moreover,
using the configuration in Fig. 14, a designer may easily choose to duplicate logic blocks depending on
the statistics of errors per area.

[0230] Fig. 15 is a block diagram for an exemplary logic block 1500, consistent with disclosed
embodiments. The logic block may be business logic 1308 and/or redundant business logic 1310. In other
embodiments, however, the exemplary logic block may describe memory logic 1306 or other component
of memory chip 1300.

[0231] Logic block 1500 presents yet another embodiment where the logic redundancy is used
within a small processor pipeline. The logic block 1500 may include a register 1508, a fetch circuit 1504,
decoder 1506, and a write-back circuit 1518. In addition, logic block 1500 may include a computation
unit 1510 and a duplicated computing unit 1512. However, in other embodiments, logic block 1500 may
include other units that do not comprise a controller pipeline but include sporadic processing elements

that comprise a required business logic.

44

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0232] Computation unit 1510 and duplicated computation unit 1512 may include a digital
circuit capable of performing digital calculations. For example, computation unit 1510 and duplicated
computation unit 1512 may include an arithmetic logic unit (ALU) to perform arithmetic and bitwise
operations on binary numbers. Alternatively, computation unit 1510 and duplicated computation unit
1512 may include a floating-point unit (FPU), which operates on floating point numbers. In addition, in
some embodiments computation unit 1510 and duplicated computation unit 1512 may implement data
base related functions like min, max, count, and compare operations, among others.

[0233] In some embodiments, as shown in Fig. 15, computation unit 1510 and duplicated
computation unit 1512 may be connected to switching circuits 1514 and 1516. When activated the
switching circuits may enable or disable the computing units.

[0234] In logic block 1500, the duplicated computation unit 1512 may replicate the computation
unit 1510, Moreover, in some embodiments, register 1508, fetch circuit 1504, decoder 1506, and write-
back circuit 1518 (collectively referred to as the local logic units) may be smaller in size than the
computation unit 1510. Because larger elements are more prone to issues during fabrication, a designer
may decide to replicate larger units (such as computation unit 1510) instead of smaller units (such as the
local logic units). Depending on historic yields and error rates, however, a designed may elect to duplicate
local logic units additionally or alternatively to large units (or the entire block). For example, computation
unit 1510 may be larger, and thus more error prone, than register 1508, fetch circuit 1504, decoder 1506,
and write-back circuit 1518. A designer may choose to duplicate computation unit 1510 instead of the
other elements in logic block 1500 or the whole block.

[0235] Logic block 1500 may include a plurality of local configuration switches, each one of the
plurality of local configuration switches being connected to at least one of the at least one of computation
unit 1510 or duplicated computation unit 1512. Local configuration switches may be configured to
disable computation unit 1510 and enable duplicated computation unit 1512 when a fault is detected in
the computation unit 1510.

[0236] Fig. 16 shows block diagrams of exemplary logic blocks connected with a bus, consistent
with disclosed embodiments. In some embodiments, logic blocks 1602 (which may represent memory
logic 1306, business logic 1308, or redundant business logic 1310) may be independent of each other,
may be connected via a bus, and may be activated externally by addressing them specifically. For
example, memory chip 1300 may include many logic blocks, each logic block having an ID number. In
other embodiments, however, logic blocks 1602 may represent larger units comprised of a plurality one or
more of memory logic 1306, business logic 1308, or redundant business logic 1310.

[0237] In some embodiments, each one of logic blocks 1602 may be redundant with the other
logic blocks 1602. This complete redundancy, in which all blocks may operate as primary or redundant
blocks, may improve fabrication yields because a designer may disconnect faulty units while maintaining
functionality of the overall chip. For example, a designer may have the ability to disable logic areas that
are prone to errors but maintain similar computation capabilities because the all duplicate blocks may be

connected to the same address and data buses. For example, the initial number of logic blocks 1602 may

45

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

greater than a target capability. Then, disabling some logic blocks 1602 would not affect the target
capability.

[0238] A bus connected to the logic blocks may include address bus 1614, command lines 1616,
and data lines 1618. As shown in Fig. 16, each one of the logic blocks may be connected independently
from each line in the bus. In certain embodiments, however, logic blocks 1602 may be connected in a
hierarchical structure to facilitate routing. For instance, each line in the bus may be connected to a
multiplexer that routes the line to different logic blocks 1602.

[0239] In some embodiments, to allow external access without knowing the internal chip
structure, which may change due to enable and disabled units, each one of the logic blocks may include
Fused IDs such as fused identification 1604. Fused identification 1604 may include an array of switches
(like fuses) that determine an ID and may be connected to a managing circuit. For example, fused
identification 1604 may be connected to address manager 1302. Alternatively, fused identification 1604
may be connected to higher memory address units. In these embodiments, fused identification 1604 may
be configurable to for a specific address. For example, fused identification 1604 may include a
programmable, non-volatile device that determines a final ID based on instructions received form a
managing circuit.

[0240] A distributed processor on a memory chip may be designed with the configuration
depicted in Fig. 16. A testing procedure executed as BIST at chip wakeup or at factory testing may assign
running ID numbers to blocks in the plurality of primary logic blocks (memory logic 1306 and business
logic 1308) that pass a testing protocol. A testing procedure may also assign illegal ID numbers to blocks
in the plurality of primary logic blocks that do not pass the testing protocol. The test procedure may also
assign running ID numbers to blocks in the plurality of redundant blocks (redundant logic block 1310)
that pass the testing protocol. Because redundant blocks replace failing primary logic blocks, the blocks in
the plurality of redundant blocks assigned running ID numbers may be equal to, or greater than, the
blocks in the plurality of primary logic blocks assigned illegal ID numbers, thereby disabling the block. In
addition, each one of the plurality of primary logic blocks and each one of the plurality of redundant
blocks may include at least one fused identification 1604. Also, as shown in Fig. 16, the bus connecting
logic blocks 1602 may include a command line, a data line, and an address line.

[0241] In other embodiments, however, all logic blocks 1602 that are connected to the bus will
start disabled and with no ID number. Tested one by one, each good logic block will get a running ID
number, and those logic blocks not working will remain with illegal ID, which would disable these
blocks. In this manner, redundant logic blocks may improve the fabrication yields by replacing blocks
that are known to be defective during the testing process.

[0242] Address bus 1614 may couple a managing circuit to each one of the plurality of memory
banks, each one of the plurality of primary logic blocks, and each one of the plurality of redundant blocks.
These connections allow the managing circuit to, upon detection of the fault associated with a primary
logic blocks (such as business logic 1308), assign an invalid address to the one of the plurality of primary

logic blocks and assign a valid address to the one of the plurality of redundant blocks.

46

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0243] For example, as shown in Fig. 164, illegal IDs are configured to all logic blocks 1602(a)-
(c) (e.g., address OXFFF). After testing logic blocks 1602(a) and 1602(c) are verified to be functional
while logic block 1602(b) is not functional. In Fig. 16A unshaded logic blocks may represent logic blocks
that passed the functionality test successfully, while shaded logic blocks may represent logic blocks that
failed the test for functionality. Then, the test procedure changes the illegal IDs to legal IDs for logic
blocks that are functional while leaving the illegal IDs for logic blocks that are not functional. As an
example, in Fig. 16A, the address for logic blocks 1602(a) and 1602(c) is changed from OxFFF to 0x001
and 0x002, respectively. In contrast, the address for logic block 1602(b) remains the illegal address
0xFFF. In some embodiments, the ID is changed by programming a corresponding fused identification
1604.

[0244] Different results from the testing of logic blocks 1602 may result in a different
configuration. For example, as shown in Fig. 16B, address manager 1302 may initially assign illegal IDs
to all logic blocks 1602 (i.e., 0xFFF). The testing results, however, may indicate that both logic blocks
1602(a) and 1602(b) are functional. In these cases, testing of logic block 1602(c) may not be necessary
because memory chip 1300 may require only two logic blocks. Therefore, to minimize testing resources,
logic blocks may be tested only according to the minimum number of functional logic blocks needed by
the product definition of 1300, leaving other logic blocks untested. Fig. 16B also shows unshaded logic
blocks, which represent tested logic blocks that passed the test for functionality, and shaded logic blocks,
which represent untested logic blocks.

[0245] In these embodiments, a production tester (external or internal, automatic or manual) or a
controller executing a BIST at startup, may change illegal IDs to running IDs for tested logic blocks that
are functional while leaving the illegal IDs to untested logic blocks. As an example, in Fig. 16B, the
address for logic blocks 1602(a) and 1602(b) is changed from O0xFFF to 0x001 and 0x002, respectively. In
contrast, the address for untested logic block 1602(c) remains with the illegal address OxFFF.

[0246] Fig. 17 is a block diagram for exemplary units 1702 and 1712 connected in series,
consistent with disclosed embodiments. Fig. 17 may represent an entire system or chip. Alternatively, Fig.
17 may represent a block in a chip containing other functional blocks.

[0247] Units 1702 and 1712 may represent complete units that include a plurality of logic blocks
such as memory logic 1306 and/or business logic 1308. In these embodiments units 1702 and 1712 may
also include elements required to perform operations such as address manager 1302. In other
embodiments, however, units 1702 and 1712 may represent logic units such as business logic 1308 or
redundant business logic 1310.

[0248] Fig. 17 presents embodiments in which units 1702 and 1712 may need to communicate
between themselves. In such cases, units 1702 and 1712 may be connected in series. However, a non-
working unit may break the continuity between the logic blocks. Therefore, the connection between units
may include a bypass option when a unit needs to be disabled due to a defect. The bypass option can also

be a part of the bypassed unit itself.

47

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0249] In Fig. 17 units may be connected in series (e.g., 1702(a)-(c)), and a failing unit (e.g.,
1702(b)) may be bypassed when it is defective. The units may further be connected in parallel with
switching circuits. For example, in some embodiments units 1702 and 1712 may be connected with
switching circuits 1722 and 1728, as depicted in Fig. 17. In the example depicted in Fig. 17, unit 1702(b)
is defective. For example, unit 1702(b) does not pass a test for a circuit functionality. Therefore, unit
1702(b) may be disabled using, for example, activation switches 1314 (not shown in Figure 17) and/or
switching circuit 1722(b) may be activated to bypass unit 1702(b) and sustain the connectivity between
logic blocks.

[0250] Accordingly, when a plurality of primary units are connected in series, each one of the
plurality of units may be connected in parallel with a parallel switch. Upon detection of a fault associated
with the one of the plurality of units, the parallel switch connected to the one of the plurality of units may
be activated to connect two of the plurality of units.

[0251] In other embodiments, as shown in Fig. 17, switching circuits 1728 may include a
sampling point or more that would cause a cycle or cycles delay maintaining synchronization between
different lines of units. When a unit is disabled, shorting the connection between adjacent logic blocks
may generate synchronization errors with other calculations. For example, if a task requires data from
both A and B lines, and each of A and B is carried by an independent series of units, disabling a unit
would cause a desynchronization between the lines that would require further data management. To
prevent desynchronizations, sample circuits 1730 may simulate the delay caused by the disabled unit
1712(b). Nonetheless, in some embodiments, the parallel switch may include an anti-fuse instead of a
sampling circuit 1730.

[0252] Figure 18 is a block diagram of exemplary units connected in a two-dimension array,
consistent with disclosed embodiments. Fig. 18 may represent an entire system or chip. Alternatively, Fig.
18 may represent a block in a chip containing other functional blocks.

[0253] Units 1806 may represent autonomous units that include a plurality of logic blocks such
as memory logic 1306 and/or business logic 1308. However, in other embodiments units 1806 may
represent logic units such as business logic 1308. Where convenient, discussion of Fig. 18 may refer to
elements identified in Fig. 13 (e.g., memory chip 1300) and discussed above.

[0254] As shown in Fig. 18, units may be arranged in a two-dimensional array in which units
1806 (which may include or represent one or more of memory logic 1306, business logic 1308, or
redundant business logic 1310) are interconnected via switching boxes 1808 and connection boxes 1810.
In addition, in order to control the configuration of the two-dimensional array, the two-dimensional array
may include I/O blocks 1804 in the periphery of the two-dimensional array.

[0255] Connection boxes 1810 may be programmable and reconfigurable devices that may
respond to signals inputted from the I/0 blocks 1804. For example, connection boxes may include a
plurality of input pins from units 1806 and may also be connected to switching boxes 1803.

Alternatively, connection boxes 1810 may include a group of switches connecting pins of programmable

48

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

logic cells with routing tracks, while switching boxes 1808 may include a group of switches connecting
different tracks.

[0256] In certain embodiments, connection boxes 1810 and switching boxes 1808 may be
implemented with configuration switches such as switches 1312 and 1314. In such embodiments,
connection boxes 1810 and switching boxes 1808 may be configured by a production tester or a BIST
executed at chip startup.

[0257] In some embodiments, connection boxes 1810 and switching boxes 1808 may be
configured after units 1806 are tested for a circuit functionality. In such embodiments, I/O blocks 1804
may be used to send testing signals to units 1806. Depending on the test results, I/O blocks 1804 may
send programming signals that configure connection boxes 1810 and switching boxes 1808 in a manner
disabling the units 1806 that fail the testing protocol and enabling units 1806 that pass the testing
protocol.

[0258] In such embodiments, the plurality of primary logic blocks and the plurality of redundant
blocks may be disposed on the substrate in a two-dimensional grid. Therefore, each one of the plurality of
primary units 1806 and each one of the plurality of redundant blocks, such as redundant business logic
1310, may be interconnected with switching boxes 1808, and an input block may be disposed in the
periphery of each line and each column of the two-dimensional grid.

[0259] Fig. 19 is a block diagram for exemplary units in a complex connection, consistent with
disclosed embodiments. Fig. 19 may represent an entire system. Alternatively, Fig. 19 may represent a
block in a chip containing other functional blocks.

[0260] The complex connection of Fig. 19 includes units 1902(a)-(f) and configuration switches
1904(a)-(h). Units 1902 may represent autonomous units that include a plurality of logic blocks such as
memory logic 1306 and/or business logic 1308. However, in other embodiments units 1902 may represent
logic units such as memory logic 1306, business logic 1308, or redundant business logic 1310.
Configuration switches 1904 may include any of deactivation switches 1312 and activation switches
1314.

[0261] As shown in Fig. 19, the complex connection may include units 1902 in two planes. For
example, the complex connection may include two independent substrates separated in the z-axis.
Alternatively, or additionally, units 1902 may be arranged in two surfaces of a substrate. For example,
with the objective to reduce the area of memory chip 1300, substrate 1301 may be arranged in two
overlapping surfaces and connected with configuration switches 1904 arranged in three dimensions.
Configuration switches may include deactivation switches 1312 and/or activation switches 1314,

[0262] A first plane of the substrate may include “main” unit 1902. These blocks may be
enabled by default. In such embodiments, a second plain may include “redundant” unit 1902. These units
may be disabled by default.

[0263] In some embodiments, configuration switches 1904 may include anti-fuses. Thus, after
testing of units 1902, the blocks may be connected in a tile of functional units by switching certain anti-

fuses to “always-on” and disable selected units 1902, even if they are in a different plane. In the example

49

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

presented in Fig. 19, one of the ‘main’ units (unit 1902(e)) is not working. Fig. 19 may represent
nonfunctional or untested blocks as shaded blocks while tested or functional blocks may be unshaded.
Therefore, configuration switches 1904 are configured so one of the logic blocks in a different plane (e.g.,
unit 1902(f)) becomes active. In this way even though one of the main logic blocks was defective, the
memory chip is still working by replacing a spare logic unit.

[0264] Fig. 19 additionally shows that one of the units 1902 (i.e., 1902(c)) in the second plane is
not tested or enabled because the main logic blocks are functional. For example, in Fig. 19, both main
units 1902(a) and 1902(d) passed a test for functionality. Thus, units 1902(c) was not tested or enabled.
Therefore, Fig. 19 shows the ability to specifically select the logic blocks that become active depending
on testing results.

[0265] In some embodiments, as shown in Fig. 19, not all units 1902 in a first plain may have a
corresponding spare or redundant blocks. However, in other embodiments, all units may be redundant
with each other for complete redundancy where all units are both primary or redundant. In addition, while
some implementations may follow the star network topology depicted in Fig. 19, other implementation
may use parallel connections, serial connections, and/or couple the different elements with configuration
switches in parallel or in series.

[0266] Fig. 20 is an exemplary flowchart illustrating a redundant block enabling process 2000,
consistent with disclosed embodiments. The enabling process 2000 may be implemented for memory chip
1300 and specially for DRAM memory chips. In some embodiments, process 2000 may include steps of
testing each one of a plurality of logic blocks on the substrate of the memory chip for at least one circuit
functionality, identifying faulty logic blocks in the plurality of primary logic blocks based on the testing
results, testing at least one redundant or additional logic block on the substrate of the memory chip for the
at least one circuit functionality, disabling the at least one faulty logic block by applying an external
signal to a deactivation switch, and enabling the at least one redundant block by applying the external
signal to an activation switch, the activation switch being connected with the at least one redundant block
and being disposed on the substrate of the memory chip. The description of Fig. 20 below further
elaborates on each step of process 2000.

[0267] Process 2000 may include testing a plurality of logic blocks (step 2002), such as business
block 1308 and a plurality of redundant blocks (e.g., redundant business block 1310). The testing may be
before packaging using, for example, probing stations for on-wafer testing. Step 2000, however, may also
be performed after packaging.

[0268] The testing in step 2002 may include applying a finite sequence of testing signals to
every logic block in memory chip 1300 or a subset of logic blocks in memory chip 1300. The testing
signals may include requesting a computation that is expected to yield a 0 or a 1. In other embodiments,
the testing signal may request reading a specific address in a memory bank or writing in a specific
memory bank.

[0269] Testing techniques may be implemented to test the response of the logic blocks under

iterative processes in step 2002. For example, the test may involve testing logic blocks by transmitting

50

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

instructions to write data in a memory bank and then verifying the integrity of the written data. In some
embodiments, the testing may include repeating the algorithm with data inversed.

[0270] In alternative embodiments, the testing of step 2002 may include running a model of the
logic blocks to generate a target memory image based on a set of testing instructions. Then, the same
sequence of instructions may be executed to the logic blocks in the memory chip, and the results may be
recorded. The residual memory image of the simulation may also be compared to the image taken from
the test, and any mismatch may be flagged as a failure.

[0271] Alternatively, in step 2002, testing may include shadow modeling, where a diagnostic is
generated but the results are not necessarily predicted. Instead, the test using shadow modeling may be
run in parallel on both the memory chip and a simulation. For example, when the logic blocks in the
memory chip complete an instruction or task, the simulation may be signaled to execute the same
instruction. Once the logic blocks in the memory chip finalize the instructions, the two models'
architectural states may be compared. If there is a mismatch, then a failure is flagged.

[0272] In some embodiments, all logic blocks (including, e.g., each one of memory logic 1306,
business logic 1308, or redundant business logic 1310) may be tested in step 2002. In other embodiments,
however, only subsets of the logic blocks may be tested in different testing rounds. For example, in a first
round of testing only memory logic 1306 and associated blocks may be tested. In a second round, only
business logic 1308 and associated blocks may be tested. In a third round, depending on the results of the
first two rounds, logic blocks associated with redundant business logic 1310 may be tested.

[0273] Process 2000 may continue to step 2004. In step 2004, faulty logic blocks may be
identified, and faulty redundant blocks may also be identified. For example, logic blocks that do not pass
the testing of step 2002 may be identified as faulty blocks in step 2004. In other embodiments, however,
only certain faulty logic blocks may be initially identified. For example, in some embodiments, only logic
blocks associated with business logic 1308 may be identified, and faulty redundant blocks are only
identified if they are required for substituting a faulty logic block. In addition, identifying faulty blocks
may include writing on a memory bank or a nonvolatile memory the identification information of the
identified faulty blocks.

[0274] In step 2006, faulty logic blocks may be disabled. For example, using a configuration
circuit, the faulty logic blocks may be disabled by disconnecting them from clock, ground, and/or power
nodes. Alternatively, faulty logic blocks may be disabled by configuring connection boxes in an
arrangement that avoids the logic blocks. Yet, in other embodiments, faulty logic blocks may be disabled
by receiving an illegal address from address manager 1302.

[0275] In step 2008, redundant blocks that duplicate the faulty logic blocks may be identified.
To support the same capabilities of the memory chips even though some logic blocks have failed, in step
2008, redundant blocks that are available and can duplicate faulty logic blocks may be identified. For
example, if a logic block that performs multiplications of vectors is determined to be faulty, in step 2008,
an address manager 1302 or an on-chip controller may identify an available redundant logic block that

also performs multiplication of vectors.

51

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0276] In step 2010, the redundant blocks identified in step 2008 may be enabled. In contrast to
the disable operation of step 2006, in step 2010, the identified redundant blocks may be enabled by
connecting them to clock, ground, and/or power nodes. Alternatively, identified redundant blocks may be
enabled by configuring connection boxes in an arrangement that connects the identified redundant blocks.
Yet, in other embodiments, identified redundant blocks may be enabled by receiving a running address at
the test procedure execution time.

[0277] Fig. 21 is an exemplary flow chart illustrating an address assignment process 2100,
consistent with disclosed embodiments. The address assignment process 2100 may be implemented for
memory chip 1300 and specially for a DRAM memory chips. As described in relation to Fig. 16, in some
embodiments, logic blocks in memory chip 1300 may be connected to a data bus and have an address
identification. Process 2100 describes an address assignment method that disables faulty logic blocks and
enables logic blocks that pass a test. The steps described in process 2100 will be described as being
performed by a production tester or a BIST executed at chip startup; however, other components of
memory chip 1300 and/or external devices may also perform one or more steps of process 2100.

[0278] In step 2102, the tester may disable all logic and redundant blocks by assigning an illegal
identification to each logic block at a chip level.

[0279] In step 2104, the tester may execute a testing protocol of a logic block. For example, the
tester may run testing methods described in step 2002 for one or more of the logic blocks in memory chip
1300.

[0280] In step 2106, depending on the results of the test in step 2104, the tester may determine
whether the logic block is defective. If the logic block is not defective (step 2106: no), address manager
may assign a running ID to the tested logic block in step 2108. If the logic block is defective (step 2106:
yes), address manager 1302 may leave the illegal ID for the defective logic block in step 2110.

[0281] In step 2112, address manager 1302 may select a redundant logic block that replicates the
defective logic block. In some embodiments, the redundant logic block that replicates the defective logic
block may have the same components and connections to the defective logic blocks. In other
embodiments, however, the redundant logic block may have different components and/or connections to
the defective logic blocks but be able to perform an equivalent operation. For example, if the defective
logic block is designed to perform multiplication of vectors, the selected redundant logic block would
also be capable of performing multiplication of vectors, even if it does not have the same architecture as
the defective unit.

[0282] In step 2114, address manager 1302 may test the redundant block. For instance, the tester
may apply the testing techniques applied in step 2104 to the identified redundant block.

[0283] In step 2116, based on the results of testing in step 2114, the tester may determine
whether the redundant block is defective. In step 2118, if the redundant block is not defective (step 2116:
no), the tester may assign a running ID to the identified redundant block. In some embodiments, process
2100 may return to step 2104 after step 2118, creating an iteration loop to test all logic blocks in the

memory chip.

52

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0284] If the tester determines the redundant block is defective (step 2116: yes), in step 2120, the
tester may determine if additional redundant blocks are available. For example, the tester may query a
memory bank with information regarding available redundant logic blocks. If redundant logic blocks are
available (step 2120: yes), the tester may return to step 2112 and identify a new redundant logic block
replicating the defective logic block. If redundant logic blocks are not available (step 2120: no), in step
2122, the tester may generate an error signal. The error signal may include information of the defective
logic block and the defective redundant block.

Coupled memory banks

[0285] The presently disclosed embodiments also include a distributed high-performance
processor. The processor may include a memory controller that interfaces memory banks and processing
units. The processor may be configurable to expedite delivery of data to the processing units for
calculations. For example, if a processing unit requires two data instances to perform a task, the memory
controller may be configured so communication lines independently provide access to the information
from two data instances. The disclosed memory architecture seeks to minimize hardware requirements
that are associated with complex cache memory and complex register files schemes. Normally, processor
chips include cache hierarchies that allow cores to work directly with registers. However, the cache
operations require significant die area and consume additional power. The disclosed memory architecture
avoids the use of a cache hierarchy by adding logic components in the memory.

[0286] The disclosed architecture also enables strategic (or even optimized) placement of data in
memory banks. Even if the memory banks have a single port and high latency, the disclosed memory
architecture may enable high performance and avoid memory accessing bottlenecks by strategically
positioning data in different blocks of memory banks. With the goal of providing a continuous stream of
data to the processing units, a compilation optimization step may determine how data should be stored in
memory banks for specific or generic tasks. Then, the memory controller, which interfaces processing
units and memory banks, may be configured to grant access to specific processing units when they require
data to perform operations.

[0287] The configuration of the memory chip may be performed by a processing unit (e.g., a
configuration manager) or an external interface. The configuration may be also written by a compiler or
other SW tool. In addition, the configuration of the memory controller may be based on the available
ports in the memory banks and the organization of data in the memory banks. Accordingly, the disclosed
architecture may provide processing units with a constant flow of data or simultaneous information from
different memory blocks. In this way, computation tasks within the memory may be quickly processed by
avoiding latency bottlenecks or cache memory requirements.

[0288] Moreover, data stored in the memory chip may be arranged based on compilation
optimization steps. The compilation may allow for building of processing routines in which the processor
efficiently assigns tasks to processing units without memory latency associated delays. The compilation
may be performed by a compiler and transmitted to a host connected to an external interface in the

substrate. Normally, high latency for certain access patterns and/or low numbers of ports would result in

53

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

data bottlenecks for processing units requiring the data. The disclosed compilation, however, may
position data in memory banks in a way that enables processing units to continuously receive data even
with disadvantageous memory types.

[0289] Furthermore, in some embodiments, a configuration manager may signal required
processing units based on computations that are required by a task. Different processing units or logic
blocks in the chip may have specialized hardware or architectures for different tasks. Therefore,
depending on the task that will be performed, a processing unit, or a group of processing units, may be
selected to perform the task. The memory controller on the substrate may be configurable to route data, or
grant access, according to the selection of processing subunits to improve data transfer rates. For
example, based on the compilation optimization and the memory architecture, processing units may be
granted access to memory banks when they are required to perform a task.

[0290] Moreover, the chip architecture may include on-chip components that facilitate transfer
of data by reducing the time required to access data in the memory banks. Therefore, the present
disclosure describes chip architecture(s), along with a compilation optimization step, for a high-
performance processor capable of performing specific or generic tasks using simple memory instances.
The memory instances may have high latency in random access and/or low number of ports, such as those
used in a DRAM device or other memory-oriented technologies, but the disclosed architecture may
overcome these shortcomings by enabling a continuous (or nearly continuous) flow of data from memory
banks to processing units.

[0291] In this application, simultaneous communication may refer to communication within a
clock cycle. Alternatively, simultaneous communication may refer to sending information within a
predetermine amount of time. For example, simultaneous communication may refer to communication
within a few nanoseconds.

[0292] Fig. 22 provides block diagrams for exemplary processing devices, consistent with
disclosed embodiments. Fig. 22A shows a first embodiment of a processing device 2200 in which a
memory controller 2210 connects a first memory block 2202 and a second memory block 2204 using
multiplexers. Memory controller 2210 may also connect at least a configuration manager 2212, a logic
block 2214, and multiple accelerators 2216(a)-(n). Fig. 22B shows a second embodiment of processing
device 2200 in which memory controller 2210 connects memory blocks 2202 and 2204 using a bus that
connects memory controller 2210 with at least a configuration manager 2212, a logic block 2214, and
multiple accelerators 2216(a)-(n). In addition, host 2230 may be external and connected to processing
device 2200 through, for example, an external interface.

[0293] Memory blocks 2202 and 2204 may include 2 DRAM mats or group of mats, DRAM
banks, MRAM\ PRAM\ RERAM\ SRAM units, Flash mats, or other memory technologies. Memory
blocks 2202 and 2204 may alternatively include non-volatile memories, a flash memory device, a
Resistive Random Access Memory (ReRAM) device, or a Magnetoresistive Random Access Memory

(MRAM) device.

54

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0294] Memory blocks 2202 and 2204 may additionally include a plurality of memory cells
arranged in rows and columns between a plurality of word lines (not shown) and a plurality of bit lines
(not shown). The gates of each row of memory cells may be connected to a respective one of the plurality
of word lines. Each column of memory cells may be connected to a respective one of the plurality of bit
lines.

[0295] In other embodiments, a memory area (including memory blocks 2202 and 2204) is built
from simple memory instances. In this application, the term “memory instance” may be used
interchangeably with the term “memory block.” The memory instances (or blocks) may have poor
characteristics. For example, the memories may be only one port memories and may have high random-
access latency. Alternatively, or additionally, the memories may be inaccessible during column and line
changes and face data access problems related to, for example, capacity charging and/or circuitry setups.
Nonetheless, the architecture presented in Fig. 22 still facilitates parallel processing in the memory device
by allowing dedicated connections between memory instances and processing units and arranging the data
in a certain manner that takes the characteristics of the blocks into account.

[0296] In some device architectures, memory instances may include several ports, facilitating the
parallel operations. Nonetheless, in such embodiments, the chip may still achieve an improved
performance when data is compiled and organized based on the chip architecture. For example, a
compiler may improve the efficiency of access in the memory area by providing instructions and
organizing data placement, so it can be readily access even using one-port memories.

[0297] Furthermore, memory blocks 2202 and 2204 may be multiple types for memory in a
single chip. For example, memory blocks 2202 and 2204 may be eFlash and eDRAM. Also, memory
blocks may include DRAM with instances of ROM.

[0298] Memory controller 2210 may include a logic circuit to handle the memory access and
return the results to the rest of the modules. For example, memory controller 2210 may include an address
manager and selection devices, such as multiplexers, to route data between the memory blocks and
processing units or grant access to the memory blocks. Alternatively, Memory controller 2210 may
include double data rate (DDR) memory controllers used to drive DDR SDRAM, where data is
transferred on both rising and falling edges of the system's memory clock.

[0299] In addition, memory controller 2210 may constitute Dual Channel memory controllers.
The incorporation of dual channel memory may facilitate control of parallel access lines by memory
controller 2210. The parallel access lines may be configured to have identical lengths to facilitate
synchronization of data when multiple lines are used in conjunction. Alternatively, or additionally, the
parallel access lines may allow access of multiple memory ports of the memory banks.

[0300] In some embodiments processing device 2200 may include one or more muxes that may
be connected to processing units. The processing units may include configuration manager 2212, logic
block 2214, and accelerators 2216, which may be connected directly to the mux. Also, memory controller
2210 may include at least one data input from a plurality of memory banks or blocks 2202 and 2204 and

at least one data output connected to each one of the plurality of processing units. With this configuration,

55

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

memory controller 2210 may simultaneously receive data from memory banks or memory blocks 2202
and 2204 via the two data inputs, and simultaneously transmits data received via to the at least one
selected processing unit via the two data outputs. In some embodiments, however, the at least one data
input and at least one data output may be implemented in a single port allowing only read or write
operations. In such embodiments, the single port may be implemented as a data bus including data,
address, and command lines.

[0301] Memory controller 2210 may be connected to each one of the plurality of memory blocks
2202 and 2204, and may also connect to processing units via, for example, a selection switch. Also
processing units on the substrate, including configuration manager 2212, logic block 2214, and
accelerators 2216, may be independently connected to memory controller 2210. In some embodiments,
configuration manager 2212 may receive an indication of a task to be performed and, in response,
configure memory controller 2210, accelerators 2216, and/or logic blocks 2214 according to a
configuration stored in memory or supplied externally. Alternatively, memory controller 2210 may be
configured by an external interface. The task may require at least one computation that may be used to
select at least one selected processing unit from the plurality of processing units. Alternatively, or
additionally, the selection may be based at least in part upon a capability of the selected processing unit
for performing the at least one computation. In response, memory controller 2210 may grant access to the
memory banks, or route data between the at least one selected processing unit and at least two memory
banks, using dedicated buses and/or in a pipelined memory access.

[0302] In some embodiments, first memory block 2202 of at least two memory blocks may be
arranged on a first side of the plurality of processing units; and second memory bank 2204 of the at least
two memory banks may be arranged on a second side of the plurality of processing units opposite to the
first side. Further, a selected processing unit to perform the task, for instance accelerator 2216(n), may be
configured to access second memory bank 2204 during a clock cycle in which a communication line is
opened to the first memory bank or first memory block 2202. Alternatively, the selected processing unit
may be configured to transfer data to second memory block 2204 during a clock cycle in which a
communication line is opened to first memory block 2202,

[0303] In some embodiments, memory controller 2210 may be implemented as an independent
element, as shown in Figure 22. In other embodiments, however, memory controller 2210 may be
embedded in the memory area or may be disposed along accelerators 2216(a)-(n).

[0304] A processing area in processing device 2200 may include configuration manager 2212,
logic block 2214, and accelerators 2216(a)-(n). Accelerators 2216 may include multiple processing
circuits with pre-defined functions and may be defined by a specific application. For example, an
accelerator may be a vector multiply accumulate (MAC) unit or a Direct Memory Access (DMA) unit
handling memory moving between modules. Accelerators 2216 may also be able to calculate their own
address and request the data from memory controller 2210 or write data to it. For example, configuration
manager 2212 may signal at least one of accelerators 2216 that he can access the memory bank. Then

accelerators 2216 may configure memory controller 2210 to route data or grant access to themselves. In

56

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

addition, accelerators 2216 may include at least one arithmetic logic unit, at least one vector handling
logic unit, at least one string compare logic unit, at least one register, and at least one direct memory
access.

[0305] Configuration manager 2212 may include digital processing circuits to configure
accelerators 2216 and instructs execution of tasks. For example, configuration manager 2212 may be
connected to memory controller 2210 and each one of the plurality of accelerators 2216. Configuration
manager 2212 may have its own dedicated memory to hold the configurations of accelerators 2216.
Configuration manager 2212 may use the memory banks to fetch commands and configurations via
memory controller 2210. Alternatively, configuration manager 2212 may be programmed through an
external interface. In certain embodiments, configuration manager 2212 may be implemented with an on-
chip reduced instruction set computer (RISC) or an on-chip complex CPU with its own cache hierarchy.
In some embodiments, configuration manager 2212 may also be omitted and the accelerators can be
configured through an external interface.

[0306] Processing device 2200 may also include an external interface (not shown). The external
interface allows access to the memory from an upper level, such a memory bank controller which receives
the command from external host 2230 or on-chip main processor or access to the memory from external
host 2230 or on-chip main processor. The external interface may allow programming of the configuration
manager 2212 and the accelerators 2216 by writing configurations or code to the memory via memory
controller 2210 to be used later by configuration manager 2212 or the units 2214 and 2216 themselves.
The external interface, however, may also directly program processing units without being routed through
memory controller 2210. In case configuration manager 2212 is a microcontroller, configuration manager
2212 may allow loading of code from a main memory to the controller local memory via the external
interface. Memory controller 2210 may be configured to interrupt the task in response to receiving a
request from the external interface.

[0307] The external interface may include multiple connectors associated with logic circuits that
provide a glue-less interface to a variety of elements on the processing device. The external interface may
include: Data /O Inputs for data reads and output for data writes; External address outputs; External CEO
chip select pins; Active-low chip selectors; Byte enable pins; a pin for wait states on the memory cycle; a
Write enable pin; an Output enable-active pin; and read-write enable pin. Therefore, the external interface
has the required inputs and outputs to control processes and obtain information from the processing
device. For example, the external interface may conform to JEDEC DDR standards. Alternatively, or
additionally, external interface may conform to other standards such as SPINOSPI or UART.

[0308] In some embodiments, the external interface may be disposed on the chip substrate and
may be connected external host 2230. The external host may gain access to memory blocks 2202 and
2204, memory controller 2210, and processing units via the external interface. Alternatively, or
additionally, external host 2230 may read and write to the memory or may signal configuration manager
2212, through read and write commands, to perform operations such as starting a process and/or stopping

a process. In addition, external host 2230 may configure the accelerators 2216 directly. In some

57

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

embodiments, external host 2230 be able to perform read/write operations directly on memory blocks
2202 and 2204.

[0309] In some embodiments, configuration manager 2212 and accelerators 2216 may be
configured to connect the device area with the memory area using direct buses depending on the target
task. For example, a subset of accelerators 2216 may connect with memory instances 2204 when the
subset of accelerators has the capability to perform computations required to execute the task. By doing
such a separation, it is possible to assure that dedicated accelerators get the bandwidth (BW) needed to
memory blocks 2202 and 2204. Moreover, this configuration with dedicated buses may allow splitting a
large memory to smaller instances or blocks because connecting memory instances to memory controller
2210 allows quick access to data in different memories even with high row latency time. To achieve the
parallelization of connection, memory controller 2210 may be connected to each of the memory instances
with data, address, and/or control buses.

[0310] The above-discussed inclusion of memory controller 2210 may eliminate the requirement
of a cache hierarchy or complex register file in the processing device. Although the cache hierarchy can
be added to give added capabilities, the architecture in processing device processing device 2200 may
allow a designer to add enough memory blocks or instances based on the processing operations and
manage the instances accordingly without a cache hierarchy. For example, the architecture in processing
device processing device 2200 may eliminate requirements of a cache hierarchy by implementing a
pipelined memory access. In the pipelined memory access, processing units may receive a sustaining flow
of data in every cycle certain data lines may be opened (or activated) while other data lines receive or
transmit data. The sustained flow of data using independent communication lines may allow an improved
execution speed and minimum latency due to line changes.

[0311] Moreover, the disclosed architecture in Fig. 22 enables a pipelined memory access it may
be possible to organize data in a low number of memory blocks and save power losses caused by line
switching. For example, a In some embodiments, a compiler may communicate host 2230 the
organization of, or a method to organize, data in memory banks to facilitate access to data during a given
task. Then, configuration manager 2212 may define which memory banks, and in some cases which ports
of the memory banks, may be accessed by the accelerators. This synchronization between the location of
data in memory banks and the access method to data, improves computing tasks by feeding data to the
accelerators with minimum latency. For example, in embodiments in which configuration manager 2212
includes a RISC\CPU, the method may be implemented in oftline software (SW) and then the
configuration manager 2212 may be programmed to execute the method. The method may be developed
in any language executable by RISC/CPU computers and may be executed on any platform. The inputs of
the method may include configuration of the memories behind memory controller and the data itself along
with the pattern of memory accesses. In addition, the method may be implemented in a language or
machine language specific to the embodiment and may also be just a series of configuration values in

binary or text.

58

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0312] As discussed above, in some embodiments, a compiler may provide instructions to host
2230 for organizing data in memory blocks 2202 and 2204 in preparation of a pipelined memory access.
The pipelined memory access may generally include steps of: receiving a plurality of addresses of a
plurality of memory banks or memory blocks 2202 and 2204; accessing the plurality of memory banks
according to the received addresses using independent data lines; supplying data from a first address
through a first communication line to at least one of the plurality of processing units and opening a
second communication line to a second address, the first address being in a first memory bank of the
plurality of memory banks, the second address being in second memory bank 2204 of the plurality of
memory banks; and supplying data from the second address through the second communication line to the
at least one of the plurality of processing units and opening a third communication line to a third address
in the first memory bank in the first line within a second clock cycle. In some embodiments, the pipelined
memory access may be executed with two memory blocks being connected to a single port. In such
embodiments, memory controller 2210 may hide the two memory blocks behind a single port but transmit
data to the processing units with the pipelined memory access approach.

[0313] In some embodiments, a compiler can run on host 2230 before executing a task. In such
embodiments, the compiler may be able to determine a configuration of data flow based on the
architecture of the memory device since the configuration would be known to the compiler.

[0314] In other embodiments, if the configuration of memory blocks 2204 and 2202 is unknown
at offline time, the pipelined method can run on host 2230 which may arrange data in memory blocks
before starting calculations. For example, host 2230 may directly write data in memory blocks 2204 and
2202. In such embodiments, processing units, such as configuration manager 2212 and memory controller
2210 may not have information regarding required hardware until run time. Then, it may be necessary to
delay the selection of an accelerator 2216 until a task starts running. In these situations, the processing
units or memory controller 2210 may randomly select an accelerator 2216 and create a test data access
pattern, which may be modified as the task is executed.

[0315] Nonetheless, when the task is known in advance, a compiler may organize data and
instructions in memory banks for host 2230 to provide to a processing unit, such as configuration
manager 2212, to set signal connections that minimize access latency. For example, in some cases n
words may be needed at the same time by accelerators 2216. However, each memory instance supports
retrieving only m words at a time, where “m” and “n” are integers and m < n. Thus, the compiler may
place the needed data across different memory instances or blocks facilitating data access. Also, to avoid
line miss latencies, a host may split data in different lines of different memory instances if processing
device 2200 includes multiple memory instances. The division of data may allow accessing the next line
of data in the next instance while still using data from the current instance.

[0316] For example, accelerator 2216(a) may be configured to multiply two vectors. Each one of
the vectors may be stored in independent memory blocks, such as memory blocks 2202 and 2204, and
each vector may include multiple words. Therefore, to complete a task requiring a multiplication by

accelerator 2216(a), it may be necessary to access the two memory blocks and retrieve multiple words.

59

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

However, in some embodiments, memory blocks only allow access of one word per clock cycle. For
instance, memory blocks may have a single port. In these cases, to expedite data transmittal during an
operation, a compiler may organize the words composing vectors in different memory blocks allowing
parallel and/or simultaneous reading of the words. In these situations, a compiler may store words in
memory blocks that have a dedicated line. For instance, if each vector includes two words and memory
controller has direct access to four memory blocks, a compiler may arrange data in four memory blocks,
each one transmitting a word and expediting data delivery. Moreover, in embodiments when memory
controller 2210 may have more than a single connection to each memory block, the compiler may instruct
configuration manager 2212 (or other processing unit) to access ports specific ports. In this way,
processing device 2200 may perform a pipelined memory access, continuously providing data to
processing units by simultaneously loading words in some lines and transmitting data in other lines. Thus,
this pipelined memory access avoid may avoid latency issues.

[0317] Fig. 23 is a block diagram of an exemplary processing device 2300, consistent with
disclosed embodiments. The block diagram shows a simplified processing device 2300 displaying a
single accelerator in the form of MAC Unit 2302, configuration manager 2304 (equivalent or similar to
configuration manager 2212), memory controller 2306 (equivalent or similar to memory controller 2210),
and a plurality of memory blocks 2308(a)-(d).

[0318] In some embodiments, MAC unit 2302 may be a specific accelerator for processing a
particular task. By way of example, the processing device 2300 may be tasked with 2D-convolutions.
Then, configuration manager 2304 can signal an accelerator that has the appropriate hardware to perform
calculations associated with the task. For instance, MAC unit 2302 may have four internal incrementing
counters (logical adders and registers to manage the four loops needed by a convulsion calculation) and a
multiply accumulate unit. Configuration manager 2304 may signal MAC unit 2302 to process incoming
data and execute the task. Configuration manager 2304 may transmit an indication to MAC unit 2302 to
execute the task. In these situations, MAC unit 2302 may iterate over calculated addresses, multiply the
numbers, and accumulate them to an internal register.

[0319] In some embodiments, configuration manager 2304 may configure the accelerators while
memory controller 2306 grants access to blocks 2308 and MAC unit 2302 using dedicated buses. In other
embodiments, however, memory controller 2306 can directly configure the accelerators based on
instructions received from configuration manger 2304 or an external interface. Alternatively, or
additionally, configuration manager 2304 can pre-load a few configurations and allow the accelerator to
iteratively run on different addresses with different sizes. In such embodiments, configuration manager
2304 may include a cache memory that stores a command before it is transmitted to at least one of the
plurality of processing units, such as accelerators 2216. However, in other embodiments configuration
manager 2304 may not include a cache.

[0320] In some embodiments, configuration manager 2304 or memory controller 2306 may
receive addresses that need to be accessed for a task. Configuration manager 2304 or memory controller

2306 may check a register to determine whether the address is already in a loaded line to one of memory

60

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

blocks 2308. If so, memory controller 2306 may read the word from memory block 2308 and pass it to
the MAC unit 2302. If the address is not in a loaded line, configuration manager 2304 may request
memory controller 2306 may load the line and signal MAC unit 2302 to delay until it is retrieved.

[0321] In some embodiments, as shown in Fig. 23, memory controller 2306 may include two
inputs form two independent addresses. But if more than two addresses should be accessed
simultaneously, and these addresses are in a single memory block (for example it is only in of memory
blocks 2308(a)), memory controller 2306 or configuration manager 2304 may raise an exception.
Alternatively, configuration manager 2304 may return invalid data signal when the two addresses can
only be access through a single line. In other embodiments, the unit may delay the process execution until
it is possible to retrieve all needed data. This may diminish the overall performance. Nonetheless, a
compiler may be able to find a configuration and data placement that would prevent delays.

[0322] In some embodiments, a compiler may create a configuration or instruction set for
processing device 2300 that may configure configuration manager 2304 and memory controller 2306 and
accelerator 2302 to handle situations in which multiple addresses need to be accessed from a single
memory block but the memory block has one port. For instance, a compiler may re-arrange data in
memory blocks 2308 such that processing units may access multiple lines in memory blocks 2308.

[0323] In addition, memory controller 2306 may also work simultaneously on more than one
input at the same time. For example, memory controller 2306 may allow accessing one of memory blocks
2308 through one port and supplying the data while receiving a request from a different memory block in
another input. Therefore, this operation may result in and accelerator 2216 tasked with the exemplary 2D-
convolutions receiving data from dedicated lines of communication with the pertinent memory blocks.

[0324] Additionally, or alternatively, memory controller 2306 or a logic block may hold refresh
counters for every memory block 2308 and handle the refresh of all lines. Having such a counter allows
memory controller 2306 to slip in the refresh cycles between dead access times from the devices.

[0325] Furthermore, memory controller 2306 may be configurable to perform the pipelined
memory access, receiving addresses and opening lines in memory blocks before supplying the data. The
pipelined memory access may provide data to processing units without interruption or delayed clock
cycles. For example, while memory controller 2306 or one of the logic blocks access data with the right
line in Fig. 23, it may be transmitting data in the left line. These methods will be explained in greater
detail in connection to Figure 26.

[0326] In response to the required data, processing device 2300 may use multiplexors and/or
other switching devices to choose which device gets serviced to perform a given task. For example,
configuration manager 2304 may configure multiplexers so at least two data lines reach the MAC unit
2302. In this way, a task requiring data from multiple addresses, such as 2D-convolutions, may be
performed faster because the vectors or words requiring multiplication during convolution can reach the
processing unit simultaneously, in a single clock. This data transferring method may allow the processing

units, such as accelerators 2216, to quickly output a result.

61

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0327] In some embodiments, configuration manager 2304 may be configurable to execute
processes based on priority of tasks. For example, configuration manager 2304 can be configured to let a
running process finish without any interruptions. In that case, configuration manger 2304 may provide an
instruction or configurations of a task to accelerators 2216, let them run uninterrupted, and switch
multiplexers only when the task is finished. However, in other embodiments, configuration manager 2304
may interrupt a task and reconfigure data routing when it receives a priority task, such a request from an
external interface. Nevertheless, with enough memory blocks 2308, memory controller 2306 may be
configurable to route data, or grant access, to processing units with dedicated lines that do not have to be
changed until a task is completed. Moreover, in some embodiments, all devices may be connected by
buses to the entries of configuration manager 2304, and the devices may manage access between
themselves and the buses (e.g., using the same logic as a multiplexer). Therefore, memory controller 2306
may be directly connected to a number of memory instances or memory blocks.

[0328] Alternatively, memory controller 2306 may be connected directly to memory sub-
instances. In some embodiments, each memory instance or block can be built from sub-instances (for
example, DRAM may be built from mats with independent data lines arranged in multiple sub-blocks).
Further, the instances may include at least one of DRAM mats, DRAM, banks, flash mats, or SRAM mats
or any other type of memory. Then, memory controller 2306 may include dedicated lines to address sub-
instances directly to minimize latency during a pipelined memory access.

[0329] In some embodiments, memory controller 2306 may also hold the logic needed for a
specific memory instance (such as row\col decoders, refresh logic, etc.) and memory blocks 2308 may
handle its own logic. Therefore, memory blocks 2308 may get an address and generate commands for
return\write data.

[0330] Fig. 24 depicts exemplary memory configuration diagrams, consistent with disclosed
embodiments. In some embodiments, a compiler generating code or configuration for processing device
2200 may perform a method to configure loading from memory blocks 2202 and 2204 by pre-arranging
data in each block. For example, a compiler may prearrange data so each word required for a task is
correlated to a line of memory instance or memory block(s). But for tasks that require more memory
blocks than the one available in processing device 2200, a compiler may implement methods of fitting
data in more than one memory location of each memory block. The compiler may also store data in
sequence and evaluate the latency of each memory block to avoid line miss latency. In some
embodiments, the host may be part of a processing unit, such as configuration manger 2212, but in other
embodiments the compiler host may be connected to processing device 2200 via an external interface. In
such embodiments, the host may run compiling functions, such as the ones described for the compiler.

[0331] In some embodiments, configuration manager 2212 may be a CPU or a micro controller
(uC). In such embodiments, configuration manager 2212 may have to access the memory to fetch
commands or instructions placed in the memory. A specific compiler may generate the code and place it
in the memory in a manner that allows for consecutive commands to be stored in the same memory line

and across a number of memory banks to allow for the pipelined memory access also on the fetched

62

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

command. In these embodiments, configuration manager 2212 and memory controller 2210 may be
capable of avoiding row latency in linear execution by facilitating the pipelined memory access.

[0332] The previous case of linear execution of a program described a method for a compiler to
recognize and place the instructions to allow for pipelined memory execution. However other software
structures may be more complex and would require the compiler to recognize them and act accordingly.
For example, in case a task requires loops and branches, a compiler may place all the loop code inside a
single line so that the single line can be looped without line opening latency. Then, memory controller
2210 may not need to change lines during an execution.

[0333] In some embodiments, configuration manager 2212 may include internal caching or
small memory. The internal caching may store commands that are executed by configuration manager
2212 to handle branches and loops. For example, commands in internal caching memory may include
instructions to configure accelerators for accessing memory blocks.

[0334] Fig. 25 is an exemplary flowchart illustrating a possible memory configuration process
2500, consistent with disclosed embodiments. Where convenient in describing memory configuration
process 2500, reference may be made to the identifiers of elements depicted in Fig. 22 and described
above. In some embodiments, process 2500 may be executed by a compiler that provides instructions to a
host connected through an external interface. In other embodiments, process 2500 may be executed by
components of processing device 2200, such as configuration manager 2212.

[0335] In general, process 2500 may include determining a number of words required
simultaneously to perform the task; determining a number of words that can be accessed simultaneously
from each one of the plurality of memory banks; and dividing the number of words required
simultaneously between multiple memory banks when the number of words required simultaneously is
greater than the number of words that can be accessed simultaneously. Moreover, dividing the number of
words required simultaneously may include executing a cyclic organization of words and sequentially
assigning one word per memory bank.

[0336] More specifically, process 2500 may begin with step 2502, in which a compiler may
receive a task specification. The specification include required computations and/or a priority level.

[0337] In step 2504, a compiler may identify an accelerator, or group of accelerators, that may
perform the task. Alternatively, the compiler may generate instructions so the processing units, such as
configuration manager 2212, may identify an accelerator to perform the task. For example, using the
required computation configuration manger 2212 may identify accelerators in the group of accelerators
2216 that may process the task.

[0338] In step 2506, the compiler may determine a number of words that needs to be
simultaneously accessed to execute the task. For example, the multiplication of two vectors requires
access to at least two vectors, and the compiler may therefore determine that vector words must be

simultaneously accessed to perform the operation.

63

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

[0339] In step 2508, the compiler may determine a number of cycles necessary to execute the
task. For example, if the task requires a convolution operation of four by-products, the compiler may
determine that at least 4 cycles will be necessary to perform the task.

[0340] In step 2510, the compiler may place words that are needed to be accessed
simultaneously in different memory banks. In that way, memory controller 2210 may be configured to
open lines to different memory instances and access the required memory blocks within a clock cycle,
without any required cached data.

[0341] In step 2512, the compiler place words that are accessed sequentially in the same memory
banks. For example, in the case that four cycles of operations are required, the compiler may generate
instructions to write needed words in sequential cycles in a single memory block to avoid changing lines
between different memory blocks during execution.

[0342] In step 2514, compiler generate instructions for programing processing units, such as
configuration manager 2212. The instructions may specify conditions to operate a switching device (such
as a multiplexor) or configure a data bus. With such instructions, configuration manager 2212 may
configure memory controller 2210 to route data from, or grant access to, memory blocks to processing
units using dedicated lines of communication according to a task.

[0343] Fig. 26 is an exemplary flowchart illustrating a memory read process 2600, consistent
with disclosed embodiments. Where convenient in describing memory read process 2600, reference may
be made to the identifiers of elements depicted in Fig. 22 and described above. In some embodiments, as
described below, process 2600 may be implemented by memory controller 2210. In other embodiments,
however, process 2600 may be implemented by other elements in the processing device 2200, such as
configuration manager 2212,

[0344] In step 2602, memory controller 2210, configuration manager 2212, or other processing
units may receive an indication to route data from, or grant access to, a memory bank. The request may
specify an address and a memory block.

[0345] In some embodiments, the request may be received via a data bus specifying a read
command in line 2218 and address in line 2220. In other embodiments, the request may be received via
demultiplexers connected to memory controller 2210.

[0346] In step 2604, configuration manager 2212, a host, or other processing units, may query an
internal register. The internal register may include information regarding opened lines to memory banks,
opened addresses, opened memory blocks, and/or upcoming tasks. Based on the information in the
internal register, it may be determined whether there are lines opened to the memory bank and/or whether
the memory block received the request in step 2602. Altemnatively, or additionally, memory controller
2210 may directly query the internal register.

[0347] If the internal register indicates that the memory bank is not loaded in an opened line
(step 2606: no), process 2600 may continue to step 2616 and a line may be loaded to a memory bank
associated with the received address. In addition, memory controller 2210 or a processing unit, such as

configuration manager 2212, may signal a delay to the element requesting information from the memory

64

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

address in step 2616. For example, if accelerator 2216 is requesting the memory information that is
located an already occupied memory block, memory controller 2210 may send a delay signal to the
accelerator in step 2618. In step 2620, configuration manager 2212 or memory controller 2210 may
update the internal register to indicate a line has opened to a new memory bank or a new memory block.

[0348] If the internal register indicates that the memory bank is loaded in an opened line (step
2606: yes), process 2600 may continue to step 2608. In step 2608, it may be determined whether the line
loaded the memory bank is being used for a different address. If the line is being used for a different
address (step 2608: yes), it would indicate that there are two instances in a single block and, therefore,
they cannot be accessed simultaneously. Thus, an error or exemption signal inay be send to the element
requesting information from the memory address in step 2616. But, if the line is not being used for a
different address (step 2608: no), a line may be opened for the address and retrieve data from the target
memory bank and continue to step 2614 to transmit data to the to the element requesting information from
the memory address.

[0349] With process 2600, processing device 2200 has the ability to establish direct connections
between processing units and the memory blocks or memory instances that contain the required
information to perform a task. This organization of data would enable reading information from organized
vectors in different memory instances, as well as allow the retrieval of information simultaneously from
different memory blocks when a device requests a plurality of these addresses.

[0350] Fig. 27 is an exemplary flowchart illustrating an execution process 2700, consistent with
disclosed embodiments. Where convenient in describing execution process 2700, reference may be made
to the identifiers of elements depicted in Fig. 22 and described above.

[0351] In step 2702, a compiler or a local unit, such as configuration manager 2212, may receive
an indication of a task that needs to be performed. The task may include a single operation (e.g.,
multiplication) or a more complex operation (e.g., convolution between matrixes). The task may also
indicate a required computation.

[0352] In step 2704, the compiler or configuration manager 2212 may determine a number of
words that is required simultaneously to perform the task. For example, configuration a compiler may
determine two words are required simultaneously to perform a multiplication between vectors. In another
example, a 2D convolution task, configuration manager 2212 may determine that “n” times “m” words
are required for a convolution between matrices, where “n” and “m” are the matrices dimensions.
Moreover, in step 2704, configuration manager 2212 may also determine a number of cycles necessary to
perform the task.

[0353] In step 2706, depending on the determinations in step 2704, a compiler may write words
that need to be accessed simultaneously in a plurality of memory banks disposed on the substrate. For
instance, when a number a number of words that can be accessed simultaneously from one of the plurality
of memory banks is lower than the number of words that are required simultaneously, a compiler may
organize data in multiple memory banks to facilitate access to the different required words within a clock.

Moreover, when configuration manager 2212 or the compiler determine a number of cycles is necessary

65

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

to perform the task, the compiler may write words that are needed in sequential cycles in a single memory
bank of the plurality of memory banks to prevent switching of lines between memory banks.

[0354] In step 2708, memory controller 2210 may be configured to read or grant access to at
least one first word from a first memory bank from the plurality of memory banks or blocks using a first
memory line..

[0355] In step 2170, a processing unit, for example one of accelerators 2216, may process the
task using the at least one first word.

[0356] In step 2712, memory controller 2210 may be configured to open a second memory line
in a second memory bank. For example, based on the tasks and using the pipelined memory access
approach, memory controller 2210 may be configured to open a second memory line in a second memory
block where information required for the tasks was written in step 2706. In some embodiments, the
second memory line may be opened when the task in step 2170 is about to be completed. For example, if
a task requires 100 clocks, the second memory line may be opened in the 90th clock.

[0357] In some embodiments, steps 2708-2712 may be executed within one line access cycle.

[0358] In step 2714, memory controller 2210 may be configured to grant access to data from at
least one second word from the second memory bank using the second memory line opened in step 2710.

[0359] In step 2176, a processing unit, for example one of accelerators 2216, may process the
task using the at least second word.

[0360] In step 2718, memory controller 2210 may be configured to open a second memory line
in the first memory bank. For example, based on the tasks and using the pipelined memory access
approach, memory controller 2210 may be configured to open a second memory line to the first memory
block. In some embodiments, the second memory line to the first block may be opened when the task in
step 2176 is about to be completed.

[0361] In some embodiments, steps 2714-2718 may be executed within one line access cycle.

[0362] In step 2720, memory controller 2210 may read or grant access to at least one third word
from the first memory bank from the plurality of memory banks or blocks using a second memory line in
the first bank or a first line in a third bank and continuing in different memory banks.

[0363] The foregoing description has been presented for purposes of illustration. It is not
exhaustive and is not limited to the precise forms or embodiments disclosed. Modifications and
adaptations will be apparent to those skilled in the art from consideration of the specification and practice
of the disclosed embodiments. Additionally, although aspects of the disclosed embodiments are described
as being stored in memory, one skilled in the art will appreciate that these aspects can also be stored on
other types of computer readable media, such as secondary storage devices, for example, hard disks or
CD ROM, or other forms of RAM or ROM, USB media, DVD, Blu-ray, 4K Ultra HD Blu-ray, or other
optical drive media.

[0364] Computer programs based on the written description and disclosed methods are within
the skill of an experienced developer. The various programs or program modules can be created using any

of the techniques known to one skilled in the art or can be designed in connection with existing software.

66

10

WO 2019/025864 PCT/IB2018/000995

For example, program sections or program modules can be designed in or by means of .Net Framework,
Net Compact Framework (and related languages, such as Visual Basic, C, etc.), Java, C++, Objective-C,
HTML, HTML/AJAX combinations, XML, or HTML with included Java applets.

[0365] Moreover, while illustrative embodiments have been described herein, the scope of any
and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects
across various embodiments), adaptations and/or alterations as would be appreciated by those skilled in
the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on
the language employed in the claims and not limited to examples described in the present specification or
during the prosecution of the application. The examples are to be construed as non-exclusive.
Furthermore, the steps of the disclosed methods may be modified in any manner, including by reordering
steps and/or inserting or deleting steps. It is intended, therefore, that the specification and examples be
considered as illustrative only, with a true scope and spirit being indicated by the following claims and

their full scope of equivalents.

67

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

WHAT IS CLAIMED IS:

1. A distributed processor, comprising:

a substrate;

a memory array disposed on the substrate, the memory array including a plurality of discrete
memory banks;

a processing array disposed on the substrate, the processing array including a plurality of
processor subunits, each one of the processor subunits being associated with a corresponding, dedicated
one of the plurality of discrete memory banks;

a first plurality of buses, each connecting one of the plurality of processor subunits to its
corresponding, dedicated memory bank; and

a second plurality of buses, each connecting one of the plurality of processor subunits to another

of the plurality of processor subunits.

2. The distributed processor of claim 1, wherein the substrate is a semiconductor substrate.
3. The distributed processor of claim 1, wherein the substrate is a circuit board.
4, The distributed processor of claim 1, wherein the plurality of processor subunits of the

processing array are spatially distributed among the plurality of discrete memory banks of the memory
array.

5. The distributed processor of claim 1, wherein the distributed processor on a chip is an
artificial intelligence accelerator processor.

6. The distributed processor of claim 1, wherein each of the plurality of processor subunits
is configured to execute software code associated with a particular application independently relative to
other processor subunits included in the plurality of processor subunits.

7. The distributed processor of claim 1, wherein the plurality of logic processor subunits are
arranged in at least one row and at least one column, and the second plurality of buses connect each
processor subunit to at least one adjacent processor subunit in the same row and to at least one adjacent
processor subunit in the same column.

8. The distributed processor of claim 1, wherein the plurality of processor subunits are
arranged in a star pattern, and the second plurality of buses connect each processor subunit to at least one
adjacent processor subunit within the star pattern.

9. The distributed processor of claim 1, wherein each processor subunit is associated with at
least two dedicated memory banks.

10. The distributed processor of claim 1, wherein each dedicated memory bank comprises at
least one dynamic random access memory.

11. A memory chip, comprising:

a substrate;

a memory array disposed on the substrate, the memory array including a plurality of discrete

memory banks;

68

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

a processing array disposed on the substrate, the processing array including a plurality of logic
portions each including an address generator, wherein each one of the address generators is associated
with a corresponding, dedicated one of the plurality of discrete memory banks; and

a plurality of buses, each connecting one of the plurality of address generators to its
corresponding, dedicated memory bank.

12. The memory chip of claim 11, wherein each address generator is configured to determine
addresses to be accessed for processing in a memory bank corresponding to the address generator.

13. The memory chip of claim 11, wherein the processing array further includes a plurality of
accelerators, each accelerator being associated with a corresponding address generator and configured to
perform a specific function.

14. The memory chip of claim 13, wherein the specific function comprises a multiply-
accumulate function, a minimum function, a maximum function, a compare function, or a count function.

15. The memory chip of claim 113, wherein the memory chip is at least one of a DRAM,
Flash, SRAM, ReRAM, PRAM, MRAM, or ROM memory chip.

16. The memory chip of claim 11, wherein each processor subunit comprises a reduced
instruction set computer (RISC) processor or a complex instruction set computer (CISC) processor.

17. The memory chip of claim 11, further comprising a memory interface connected to an
external host.

18. The memory chip of 17, wherein the memory interface comprises an interface compliant
with at least one Joint Electron Device Engineering Council (JEDEC) standard or its variants.

19. The memory chip of claim 11, wherein each of the plurality of logic portions corresponds
to at least one memory bank of the plurality of discrete memory banks, a plurality of memory mats
included in a single memory bank of the plurality of discrete memory banks, or a single memory mat
included in a single memory bank of the plurality of discrete memory banks.

20. A distributed processor, comprising:

a substrate;

a memory array disposed on the substrate, the memory array including a plurality of discrete
memory banks, wherein each of the discrete memory banks has a capacity greater than one megabyte; and
a processing array disposed on the substrate, the processing array including a plurality of
processor subunits, each one of the processor subunits being associated with a corresponding, dedicated

one of the plurality of discrete memory banks.

21. The distributed processor of claim 20, further including:

a first plurality of buses, each connecting one of the plurality of processor subunits to a
corresponding, dedicated memory bank; and

a second plurality of buses, each connecting one of the plurality of processor subunits to another
one of the plurality of processor subunits.

22. The distributed processor of claim 20, wherein each dedicated memory bank comprises at

least one dynamic random access memory bank.

69

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

23. The distributed processor of claim 20, wherein each dedicated memory bank comprises at
least one static random access memory bank.

24. The distributed processor of claim 20, wherein each dedicated memory bank is the same
size.

25. The distributed processor of claim 20, wherein at least two of the plurality of memory
banks have different sizes.

26. The distributed processor of claim 20, wherein the plurality of processor subunits are

spatially distributed among the plurality of discrete memory banks within the memory array.

27. The distributed processor of claim 20, wherein the substrate includes a semiconductor
substrate.
28. A distributed processor, comprising:

a substrate;

a memory array disposed on the substrate, the memory array including a plurality of discrete
memory banks; and

a processing array disposed on the substrate, the processing array including a plurality of
processor subunits, each one of the processor subunits being associated with a corresponding, dedicated
one of the plurality of discrete memory banks; and

a plurality of buses, each one of the plurality of buses connecting one of the plurality of processor
subunits to at least another one of the plurality of processor subunits,

wherein the plurality of buses are free of timing hardware logic components such that data
transfers between processor subunits and across corresponding ones of the plurality of buses are
uncontrolled by timing hardware logic components.

29. The distributed processor of claim 28, wherein the plurality of buses are free of bus
arbiters such that data transfers between processor subunits and across corresponding ones of the plurality
of buses are uncontrolled by bus arbiters.

30. The distributed processor of claim 28, wherein the plurality of buses comprise at least
one of wires or optical fibers between corresponding ones of the plurality of processor subunits.

31. The distributed processor of claim 28, wherein the plurality of processor subunits are
configured to transfer data across at least one of the plurality of buses in accordance with code executed
by the plurality of processor subunits.

32. The distributed processor of claim 31, wherein the code dictates timing of data transfers
across at least one of the plurality of buses.

33. The distributed processor of claim 28, further comprising a second plurality of buses,
wherein each of the second plurality of buses connects one of the plurality of processor subunits to a
corresponding, dedicated memory bank.

34, The distributed processor of claim 33, wherein the second plurality of buses are free of
timing hardware logic components such that data transfers between processor subunits and corresponding,

dedicated memory banks are uncontrolled by timing hardware logic components.

70

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

35. The distributed processor of claim 33, wherein the second plurality of buses are free of
bus arbiters such that data transfers between processor subunits and corresponding, dedicated memory
banks are uncontrolled by bus arbiters.

36. The distributed processor of claim 28, wherein the plurality of processor subunits are

spatially distributed among the plurality of discrete memory banks within the memory array.

37. The distributed processor of claim 28, wherein the substrate includes a semiconductor
substrate.
38. A distributed processor on a memory chip, comprising:

a substrate;

a memory array disposed on the substrate, the memory array including a plurality of discrete
memory banks; and

a processing array disposed on the substrate, the processing array including a plurality of
processor subunits, each one of the processor subunits being associated with a corresponding, dedicated
one of the plurality of discrete memory banks; and

a plurality of buses, each one of the plurality of buses connecting one of the plurality of processor
subunits to a corresponding, dedicated one of the plurality of discrete memory banks,

wherein the plurality of buses are free of timing hardware logic components such that data
transfers between a processor subunit and a corresponding, dedicated one of the plurality of discrete
memory banks and across a corresponding one of the plurality of buses are uncontrolled by timing
hardware logic components.

39, A distributed processor, comprising:

a substrate;

a memory array disposed on the substrate, the memory array including a plurality of discrete
memory banks; and

a processing array disposed on the substrate, the processing array including a plurality of
processor subunits, each one of the processor subunits being associated with a corresponding, dedicated
one of the plurality of discrete memory banks; and

a plurality of buses, each one of the plurality of buses connecting one of the plurality of processor
subunits to at least another one of the plurality of processor subunits,
wherein the plurality of processor subunits are configured to execute software that controls timing of data
transfers across the plurality of buses to avoid colliding data transfers on at least one of the plurality of
buses.

40. A distributed processor on a memory chip, comprising:

a substrate;

a plurality of processor subunits disposed on the substrate, each processor subunit being
configured to execute a series of instructions independent from other processor subunits, each series of

instructions defining a series of tasks to be performed by a single processor subunit;

71

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

a corresponding plurality of memory banks disposed on the substrate, each one of the plurality
processor subunits being connected to at least one dedicated memory bank not shared by any others of the
plurality of processor subunits; and

a plurality of buses, each of the plurality of buses connecting one of the plurality of processor
subunits to at least one other of the plurality of processor subunits,

wherein data transfers across at least one of the plurality of buses are predefined by the series of
instructions included in a processor subunit connected to the at least one of the plurality of buses.

41. The distributed processor on a memory chip of claim 40, wherein each series of
instructions comprises a set of machine code defining a corresponding series of tasks.

42. The distributed processor on a memory chip of claim 41, wherein the series of tasks are
defined by a compiler configured to distribute a higher-level series of tasks amongst the plurality of logic
circuits as a plurality of series of tasks.

43. The distributed processor on a memory chip of claim 42, wherein the higher-level series
of tasks comprises a set of instructions in a human-readable programming language.

44, The distributed processor on a memory chip of claim 40, wherein the series of
instructions included in the processor subunit connected to the at least one of the plurality of buses
includes a sending task that comprises a command for the processor subunit connected to the at least one
of the plurality of buses to write data to the at least one of the plurality of buses.

45. The distributed processor on a memory chip of claim 40, wherein the series of
instructions included in the processor subunit connected to the at least one of the plurality of buses
includes a receiving task that comprises a command for the processor subunit connected to the at least one
of the plurality of buses to read data from the at least one of the plurality of buses.

46. A distributed processor on a memory chip, comprising:

a plurality of processor subunits disposed on the memory chip;

a plurality of memory banks disposed on the memory chip, wherein each one of the plurality of
memory banks is configured to store data independent from data stored in other ones of the plurality of
memory banks, and wherein each one of the plurality of processor subunits is connected to at least one
dedicated memory bank from among the plurality of memory banks; and

a plurality of buses, wherein each one of the plurality of buses connects one of the plurality of
processor subunits to one or more corresponding, dedicated memory banks from among the plurality of
memory banks,

wherein data transfers across a particular one of the plurality of buses are controlled by a
corresponding processor subunit connected to the particular one of the plurality of buses.

47. The distributed processor on a memory chip of claim 46, wherein the data stored in each
of the plurality of memory banks are defined by a compiler configured to distribute data amongst the

plurality of memory banks.

72

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

48. The distributed processor on a memory chip of claim 47, wherein the compiler is
configured to distribute data defined in a higher-level series of tasks amongst the plurality of memory
banks using a plurality of lower-level tasks distributed amongst corresponding processor subunits.

49. The distributed processor on a memory chip of claim 48, wherein the higher-level series
of tasks comprises a set of instructions in a human-readable programming language.

50. The distributed processor on a memory chip of claim 48, wherein the lower-level series
of tasks comprises a set of instructions in a machine code.

51. A distributed processor on a memory chip, comprising:

a plurality of processor subunits disposed on the memory chip;

a plurality of memory banks disposed on the memory chip, wherein each one of the plurality of
processor subunits is connected to at least one dedicated memory bank from among the plurality of
memory banks, and wherein each memory bank of the plurality of memory banks is configured to store
data independent from data stored in other ones of the plurality of memory banks, and wherein at least
some of the data stored in one particular memory bank from among the plurality of memory banks
comprises a duplicate of data stored in at least another one of the plurality of memory banks; and

a plurality of buses, wherein each one of the plurality of buses connects one of the plurality of
processor subunits to one or more corresponding, dedicated memory banks from among the plurality of
memory banks,

wherein data transfers across a particular one of the plurality of buses are controlled by a
corresponding processor subunit connected to the particular one of the plurality of buses.

52. The distributed processor on a memory chip of claim 51, wherein the at least some data
duplicated across the one particular memory bank from among the plurality of memory banks and the at
least another one of the plurality of memory banks is defined by a compiler configured to duplicate data
across memory banks.

53. The distributed processor on a memory chip of claim 51, wherein the at least some data
duplicated across the one particular memory bank from among the plurality of memory banks and the at
least another one of the plurality of memory banks comprises weights of a neural network.

54, The distributed processor on a memory chip of claim 53, wherein each node in the neural
network is defined by at least one processor subunit from among the plurality of processor subunits.

55. The distributed processor on a memory chip of claim 54, wherein each node comprises
machine code executed by the at least one processor subunit defining the node.

56. A non-transitory computer-readable medium storing instructions for compiling a series of
instructions for execution on a memory chip comprising a plurality of processor subunits and a plurality
of memory banks, wherein each processor subunit from among the plurality of processor subunits is
connected to at least one corresponding, dedicated memory bank from among the plurality of memory
banks, the instructions causing at least one processor to:
divide the series of instructions into a plurality of groups of sub-series instructions, the division

comprising:

73

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

assigning tasks associated with the series of instructions to different ones of the processor
subunits, wherein the processor subunits are spatially distributed among the plurality of memory banks
disposed on the memory chip;

generating tasks to transfer data between pairs of the processor subunits of the memory chip, each
pair of processor subunits being connected by a bus, and

grouping the assigned and generated tasks into the plurality of groups of sub-series instructions,
wherein each of the plurality of groups of sub-series instructions corresponds to a different one of the
plurality of processor sub-units;

generate machine code corresponding to each of the plurality of groups of subs-series
instructions; and

assign the generated machine code corresponding to each of the plurality of groups of subs-series
instructions to a corresponding one of the plurality of processor subunits in accordance with the division.

57. The non-transitory computer-readable medium of claim 56, wherein the assigning of
tasks associated with’the series of instructions to the different ones of the processor subunits depends on a
spatial proximity between two or more of the processor subunits on the memory chip.

58. The non-transitory computer-readable medium of claim 56, wherein the instructions
further cause the at least one processor to:

group data associated with the series of instructions based on the division; and

assign the data to the memory banks in accordance with the grouping.

59. The non-transitory computer-readable medium of claim 58, wherein grouping the data
comprises determining at least a portion of the data to duplicate in two or more of the memory banks.

60. A memory chip comprising a plurality of processor subunits and a corresponding
plurality of memory banks, each processor subunit being connected to at least one memory bank
dedicated to the processor subunit, the processor subunits of the memory chip being configured to execute
the machine code generated according to claim 56.

61. A memory chip, comprising:

a plurality of memory banks, each memory bank having a bank row decoder, a bank column
decoder, and a plurality of memory sub-banks, each memory sub-bank having a sub-bank row decoder
and a sub-bank column decoder for allowing reads and writes to locations on the memory sub-bank, each
memory sub-bank comprising:

a plurality of memory mats, each memory mat having a plurality of memory cells,

wherein the sub-bank row decoders and the sub-bank column decoders are connected to the bank
row decoder and the bank column decoder.

62. The memory chip of claim 61, wherein each memory sub-bank further has a sub-bank
controller configured to determine whether to processor read requests and write requests from a controller
of the memory bank.

63. The memory chip of claim 62, wherein the controller of the memory is synchronized to a

system clock.

74

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

64. The memory chip of claim 62, wherein the controllers of the memory sub-banks are not
synchronized to a system clock.

65. The memory chip of claim 61, wherein each sub-bank further has a processor subunit
using the sub-bank as a dedicated memory.

66. The memory chip of claim 61, wherein the processor subunit comprises a configurable
processor subunit or an accelerator.

67. The memory chip of claim 65, wherein each processor subunit is configured to access a
sub-bank dedicated to the processor subunit using the row decoder and the column decoder of the sub-
bank without using the bank row decoder and the bank column decoder.

68. A memory chip, comprising:

a plurality of memory banks, each memory bank having a bank controller and a plurality of
memory sub-banks, each memory sub-bank having a sub-bank row decoder and a sub-bank column
decoder for allowing reads and writes to locations on the memory sub-bank, each memory sub-bank
comprising:

a plurality of memory mats, each memory mat having a plurality of memory cells,

wherein the sub-bank row decoders and the sub-bank column decoders process read and write
requests from the bank controller.

69. The memory chip of claim 68, wherein each memory sub-bank further has a sub-bank

controller configured to determine whether to processor read requests and write requests from the bank

controller.

70. The memory chip of claim 69, wherein the bank controller is synchronized to a system
clock.

71. The memory chip of claim 69, wherein the controllers of the memory sub-banks are not

synchronized to a system clock.

72. The memory chip of claim 68, wherein each sub-bank further has a processor subunit
using the sub-bank as a dedicated memory.

73. The memory chip of claim 72, wherein each processor subunit is configured to access a
sub-bank dedicated to the processor subunit using the row decoder and the column decoder of the sub-
bank without using the bank controller.

74. A memory chip, comprising:

a plurality of memory banks, each memory bank having a having a bank controller for processing
reads and writes to locations on the memory bank, each memory bank comprising:

a plurality of memory mats, each memory mat having a plurality of memory cells and having a
mat row decoder and a mat column decoder,

wherein the mat row decoders and the mat column decoders process read and write requests from

the sub-bank controller.

75

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

75. The memory chip of claim 74, wherein each memory mat further has a comparator
configured to determine whether to processor read requests and write requests from the sub-bank
controller based on the command address from the bank controller.

76. The memory chip of claim 74, wherein each memory mat has an assigned address range
that is determined by one or more fuses.

77. The memory chip of claim 76, wherein the one or more fuses are configured to disable a
memory mat that is faulty.

78. The memory chip of claim 74, wherein each sub-bank further has a processor subunit
using the sub-bank as a dedicated memory.

79. A memory chip, comprising:

a plurality of memory banks, each memory bank having a bank controller, a row decoder, and a
column decoder for allowing reads and writes to locations on the memory bank; and

a plurality of buses connecting each controller of the plurality of bank controllers to at least one
other controller of the plurality of bank controllers.

80. The memory chip of claim 79, wherein the plurality of buses may be accessed without
interruption of data transfers on main buses of the memory banks.

81. The memory chip of claim 79, wherein each controller is connected to a plurality of other
controllers and is configurable for selection of one other of the other controllers for sending or receiving
of data.

82. The memory chip of claim 79, wherein each memory bank comprises a dynamic random
access memory bank.

83, The memory chip of claim 79, wherein each controller is configurable and is configured
to determine addresses for reading and writing in the memory bank having the controller.

84. The memory chip of claim 79, wherein each controller is configured to process data
incoming from other controllers before passing the data to the memory bank having the controller.

85. The memory chip of claim 79, wherein each controller is connected to another spatially
adjacent controller.

86. A memory device, comprising:

a substrate;

a plurality of memory banks on the substrate;

a plurality of primary logic blocks on the substrate, each of the plurality of primary logic blocks
being connected to at least one of the plurality of memory banks;

a plurality of redundant blocks on the substrate, each of the plurality of redundant blocks being
connected to at least one of the memory banks, each of the plurality of redundant blocks replicating at
least one of the plurality of primary logic blocks; and

a plurality of configuration switches on the substrate, each one of the plurality of the
configuration switches being connected to at least one of the plurality of primary logic blocks or to at

least one of the plurality of redundant blocks;

76

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

wherein upon detection of a fault associated with one of the plurality of primary logic blocks:
a first configuration switch of the plurality of configuration switches is configured to
disable the one of the plurality of primary logic blocks, and
a second configuration switch of the plurality of configuration switches is configured to

enable one of the plurality of redundant blocks that replicates the one of the plurality of primary

logic blocks.
87. The memory device of claim 86, wherein

the plurality of configuration switches comprise a plurality of activation switches and a plurality
of deactivation switches,

each one of the plurality of activation switches and each one of the plurality of deactivation
switches comprise an external input;

each one of the plurality of activation switches is configured so an activation signal in the
external input causes a closed switch condition; and

each one of the plurality of deactivation switches is configured so a deactivation signal in the
external input causes an open switch condition.

88. The memory device of claim 86, wherein

at least one of the plurality of primary logic blocks is connected to a subset of the plurality of
memory banks with a first dedicated connection, and

at least one of the plurality of redundant blocks, which replicates the at least one of the plurality
of primary logic blocks, is connected to the subset of the plurality of memory banks with a second
dedicated connection.

89. The memory device of claim 87, wherein

each one of the plurality of configuration switches couple at least one of the plurality of primary
or redundant logic blocks with at least one of a clock node or a power node.

90. The memory device of claim 86, wherein the plurality of primary logic blocks comprise:

at least one memory logic block configured to enable read and write operations in the memory
bank; and

at least one business logic block configured to perform in-memory computations.

91. The memory device of claim 90, wherein

the at least one business logic block comprises a first business logic block; and

the plurality of redundant blocks comprise a second business logic block replicating the first
business logic block.

92, The memory device of claim 86, wherein the plurality of configuration switches comprise
at least one of a fuse, an anti-fuse, a non-volatile memory device, or a one-time programmable device.

93. The memory device of claim 86, wherein each one of the plurality of primary logic
blocks and each one of the plurality of redundant blocks are connected to an address bus and a data bus.

94. The memory device of claim 86, wherein at least one of the plurality of primary logic

blocks comprise:

77

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

at least one local logic unit;

at least one computation unit; and

at least one duplicated unit,

wherein,

the at least one duplicated unit replicates the at least one computation unit, and
the at least one local logic unit has a smaller size than the at least one computation unit.

95. The memory device of claim 94, wherein the at least one of the plurality of primary logic
blocks comprise:

a plurality of local configuration switches, each one of the plurality of local configuration
switches being connected to at least one of the at least one computation unit or the at least one duplicated
unit,

wherein the local configuration switches are configured to disable the at least one local
computation unit and enable the at least one duplicated unit when a fault is detected in the at least one
computation unit.

96. The memory device of claim 86 further comprising

an address manager; and

an address bus coupling the address manager to each one of the plurality of memory banks, each
one of the plurality of primary logic blocks, and each one of the plurality of redundant blocks,

wherein upon detection of the fault associated with the one of the plurality of primary logic
blocks, an invalid address is assigned to the one of the plurality of primary logic blocks and a valid
address is assigned to the one of the plurality of redundant blocks.

97. The memory device of claim 86, wherein

the plurality of primary logic blocks are connected in series;

each one of the plurality of primary logic blocks is connected in parallel with a parallel switch;
and

upon detection of the fault associated with the one of the plurality of primary logic blocks, the
parallel switch connected to the one of the plurality of primary logic blocks is activated to couple two of
the plurality of primary logic blocks.

98. The memory device of claim 97, wherein the parallel switch comprises an anti-fuse.

99. The memory device of claim 97, wherein the parallel switch comprises a sampling circuit
with a selected cycle delay.

100. The memory device of claim 86, wherein

the plurality of primary logic blocks and the plurality of redundant blocks are disposed on the
substrate in a two-dimensional grid;

each one of the plurality of primary logic blocks and each one of the plurality of redundant blocks
are interconnected with connection boxes; and

an input block is disposed in a periphery of each line and each column of the two-dimensional

grid.

78

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

101. The memory device of claim 86, wherein the memory chip comprises at least one of a
DRAM, a Flash, an SRAM, a ReRAM, a PRAM, or a MRAM memory.

102. The memory device of claim 86, wherein each one of the plurality of primary logic
blocks has equivalent computing capabilities to at least one of the plurality of redundant blocks.

103. The memory device of claim 86, wherein the plurality of primary logic blocks comprise
at least one local computing unit and at least one redundant computing unit, the at least one redundant
computing unit replicating the at least one local computing unit.

104. The memory device of claim 86, wherein the first configuration switch is further
configured to enable the one of the plurality of redundant blocks that replicates the one of the plurality of
primary logic blocks.

105. A distributed processor on a memory chip, comprising:

a substrate;

an address manager on the substrate;

a plurality of primary logic blocks on the substrate, each of the plurality of primary logic blocks
being connected to at least one of the plurality of memory banks;

a plurality of redundant blocks on the substrate, each of the plurality of redundant blocks being
connected to at least one of the plurality of memory banks, each of the plurality of redundant blocks
replicating at least one of the plurality of primary logic blocks; and

a bus on the substrate connected to each of the plurality of primary logic blocks, each of the
plurality of redundant blocks, and the address manager,

wherein the processor is configured to:

assign running ID numbers to blocks in the plurality of primary logic blocks that pass a
testing protocol;

assign illegal ID numbers to blocks in the plurality of primary logic blocks that do not
pass the testing protocol; and

assign running ID numbers to blocks in the plurality of redundant blocks that pass the
testing protocol.

106. The distributed memory chip of claim 105, wherein the blocks in the plurality of
redundant blocks assigned running ID numbers is equal to, or greater than, the blocks in the plurality of
primary logic blocks assigned illegal ID numbers.

107. The distributed memory chip of claim 106, wherein each one of the plurality of primary
logic blocks and each one of the plurality of redundant blocks comprise a fused identification circuit.

108. The distributed memory chip of claim 107, wherein the bus comprises a command line, a
data line, and an address line.

109. A method for configuring a distributed processor on a memory chip, comprising:

testing each one of a plurality of primary logic blocks on the substrate of the memory chip for at

least one circuit functionality;

79

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

identifying at least one faulty logic block in the plurality of primary logic blocks based on the
testing results, the at least one faulty logic block being connected to at least one memory bank disposed
on the substrate of the memory chip;
testing at least one redundant block on the substrate of the memory chip for the at least one circuit
functionality, the at least one redundant block replicating the at least one faulty logic block and being
connected to the at least one memory bank;
disabling the at least one faulty logic block by applying an external signal to a deactivation
switch, the deactivation switch being connected with the at least one faulty logic block and being
disposed on the substrate of the memory chip; and
enabling the at least one redundant block by applying the external signal to an activation switch,
the activation switch being connected with the at least one redundant block and being disposed on the
substrate of the memory chip.
110. A method for configuring a distributed processor on a memory chip, comprising;:
enabling a plurality of primary logic blocks and a plurality of redundant blocks on the substrate of
the memory;
testing each one of the plurality of primary logic blocks on the substrate of the memory chip for
at least one circuit functionality;
identifying at least one faulty logic block in the plurality of primary logic blocks based on the
testing results, the at least one faulty logic block being connected to at least one memory bank disposed
on the substrate of the memory chip;
testing at least one redundant block on the substrate of the memory chip for the at least one circuit
functionality, the at least one redundant block replicating the at least one faulty logic block and being
connected to the at least one memory bank;
disabling at least one redundant block by applying the external signal to an activation switch, the
activation switch being connected with the at least one redundant block and being disposed on the
substrate of the memory chip.
111. A processing device, comprising:
a substrate;
a plurality of memory banks on the substrate;
a memory controller on the substrate connected to each one of the plurality of memory banks; and
a plurality of processing units on the substrate, each one of the plurality of processing units being
connected to the memory controller, the plurality of processing units comprising a configuration manager;
wherein the configuration manager is configured to:
receive a first indication of a task to be performed, the task requiring at least one
computation;
signal at least one selected processing unit from the plurality of processing units
based upon a capability of the selected processing unit for performing the at least one

computation; and

80

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

transmit a second indication to the at least one selected processing unit, and
wherein the memory controller is configured to:
route data from at least two memory banks to the at least one selected processing
unit using at least one communication line, the at least one communication line being
connected to the at least two memory banks and the at least one selected processing vnit
via the memory controller.

112. The processing device of claim 111, wherein

transmitting the second indication comprises communicating an instruction to execute the task by
the at least one selected processing unit, and wherein the at least one selected processing unit is
configured to transmit or receive data to and from the memory controller.

113. The processing device of claim 111, wherein transmitting the second indication
comprises communicating the instruction to route data to the memory controller.

114. The processing device of claim 111, wherein the at least one selected processing unit is
configured to open a memory line in a second memory bank from the at least two memory banks during a
series of accesses to an opened memory line in a first memory bank from the at least two memory banks.

115. The processing device of claim 114, wherein the selected processing unit is configured to
transfer data to the second memory bank during a line access period in which a communication line is
opened to the first memory bank.

116. The processing device of claim 111, wherein

the memory controller comprises at least two data inputs from the plurality of memory banks and
at least two data outputs connected to each one of the plurality of processing units;

the memory controller is configured to simultaneously receive data from two memory banks via
the two data inputs; and

the memory controller is configured to simultaneously transmit data received via the two data
inputs to the at least one selected processing unit via the two data outputs.

117. The processing device of claim 111, wherein the plurality of processing units comprise a
plurality of accelerators configured for pre-defined tasks.

118. The processing device of claim 117, wherein the plurality of accelerators comprise at
least one of a vector multiply accumulate unit or a direct memory access.

119. The processing device of claim 117, wherein the configuration manager comprises at
least one of a RISC processor or a micro-controller.

120. The processing device of claim 111, further comprising an external interface connected to
the memory banks.

121. The processing device of claim 111, wherein

the processing device is further configured to:

supply data from a first address through a first memory line to at least one of the plurality of

processing units and open a second address in a second memory line within a line access period, the first

81

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

address being in a first memory bank of the plurality of memory banks, the second address being in a
second memory bank of the plurality of memory banks; and

supply data from the second address through the second memory line to the at least one of the
plurality of processing units and open a third address in the first memory bank in the first line within a
second line access period.

122. The processing device of claim 111, wherein

a compiler is configured to:

determine a number of words required simultaneously to perform the task;

determine a number of words that can be accessed simultaneously from each one of the plurality
of memory banks; and

divide the number of words required simultaneously between multiple memory banks when the
number of words required simultaneously is greater than the number of words that can be accessed
simultaneously.

123. The processing device of claim 122, wherein the words comprise machine instructions.

124. The processing device of claim 111, wherein the configuration manager comprises a local
memory that stores a command to be transmitted to at least one of the plurality of processing units.

125. The processing device of claim 111, wherein the memory controller is configured to
interrupt the task in response to receiving a request from an external interface.

126. The processing device of claim 111, wherein the plurality of memory banks includes at
least one of DRAM mats, DRAM, banks, flash mats, or SRAM mats.

127. The processing device of claim 111, wherein the plurality of processing units comprise at
least one arithmetic logic unit, at least one vector handling logic unit, at least one register, and at least one
direct memory access.

128. The processing device of claim 111, wherein the configuration manger and the plurality
of processing units are configured to hand over access to the memory controller between each other after
finalizing a task.

129. A method performed for operating a distributed memory device comprising:

compiling, by a compiler, a task for the distributed memory device, the task requiring at least one
computation, the compiling comprising:

determining a number of words that are required simultaneously to perform the task, and

providing instructions for writing words that need to be accessed simultaneously in a
plurality of memory banks disposed on the substrate when a number a number of words that can
be accessed simultaneously from one of the plurality of memory banks is lower than the number
of words that are required simultaneously;

receiving, by a configuration manager disposed on the substrate, an indication to perform the
task; and

in response to receiving the indication, configuring a memory controller disposed in the substrate

to:

82

10

15

20

25

30

35

WO 2019/025864 PCT/IB2018/000995

within a first line access cycle:
access at least one first word from a first memory bank from the plurality of
memory banks using a first memory line,
send the at least one first word to at least one processing unit, and
open a first memory line in the second memory bank to access a second address
from the second memory bank from the plurality of memory banks, and
within a second line access cycle:
access at least one second word from the second memory bank using the first
memory line,
send the at least one second word to at least one processing unit, and
access a third address from the first memory bank using a second memory line in
the first bank.
130. The method of claim 129 further wherein the compiling the task further comprises:
determining a number of cycles necessary to perform the task; and
writing words that are needed in sequential cycles in a single memory bank of the plurality of
memory banks.
131. A non-transitory computer-readable medium that stores instructions that, when executed
by at least one processor, cause the at least one processor to:
determine a number of words that are required simultaneously to perform a task, the task
requiring at least one computation;
write words that need to be accessed simultaneously in a plurality of memory banks disposed on
the substrate when a number a number of words that can be accessed simultaneously from one of the
plurality of memory banks is lower than the number of words that are required simultaneously;
transmit an indication to perform the task to a configuration manager disposed on the substrate;
and
transmit instructions to configure a memory controller disposed on the substrate to,
within a first line access cycle:
access at least one first word from a first memory bank from the plurality of
memory banks using a first memory line,
send the at least one first word to at least one processing unit, and
open a first memory line in the second memory bank to access a second address
from the second memory bank from the plurality of memory banks, and
within a second line access cycle:
access at least one second word from the second memory bank using the first
memory line,
send the at least one second word to at least one processing unit, and
access a third address from the first memory bank using a second memory line in

the first bank.

83

WO 2019/025864

140a

¢

Memory

PCT/IB2018/000995

140b

Memory

Processor Subunit

FIG. 1

1/31

0

100

WO 2019/025864

250a

PCT/IB2018/000995

250b

200

Memory Memory
j;240
T 1 | 210
! |
| Cache Yr\\‘/
‘ :
I
230a \| Cache 2306\\/ Cache :
[f
! l
220a \! Processor || Processor 220c 220e Processor || Processor | | 220g
| Subunit || Subunit ‘\J/\ A\“/ Subunit || Subunit [N
"I Processor || Processor Processor || Processor
220b \!I 220d 220f L/ 220h
' Subunit Subunit \»/N ,\”/ Subunit Subunit |
| I
[!
2306\\F/ Cache 230&“\,/ Cache !
f i
220{\4/ Processor Processor\/f\z20k ZZOHT\V/ Processor | | Processor : 5200
Subunit Subunit Subunit Subunit |
I
; Processor | | Processor Processor || Processor | |
220 \! 2201 220n 220
f\%/ Subunit Subunit \J[\zo /\h/ Subunit Subunit N P
L o e |
Memory Memory
250c 250d

FIG. 2

2/31

PCT/IB2018/000995

WO 2019/025864

Ve 'Old

19}j0J3u0) Yueg

0s¢

|043u0D josau0)
pue 21807 || pue 21307
douelsu] || sdueisu)
Alowa || Adoway

13jjo41u0) dueg

N

N\

- 101u0) jo41u0)
_SNQ pue 21807 || pue 21307
aosuelsu| || 9oueisu)
vomm\/ Aowspy || Alows
~
qo0T€

1sOH

13]j043u0) dueg

N

|041U0) |[0J1U0)
! pue d1307 || pue 21307
[
_
_/ 2ouelsu| || soueisul
wommkx Aowsy || Atowad N
_
I~
0TE
[
S0¢

00¢

Jajjojuo) yuegq

-] 1043u0) |043U0)
nomm/\ pue 21307 || pue 21307
| duelsul || douelsu)
nomm/\ Aowsy || AMowsin
~_/
e01¢E

3/31

PCT/IB2018/000995

WO 2019/025864

|
| 0
1
A 09¢ IuNgnS 10ssa201qd |
nommkﬁ. 1uNQNS 10Ssa20.d } \ yungng d
|
! 909¢
[3 poge
_ \/@mm o
|
!
_/ aoueisu] || adueisu) aouejsu| || soueisug
;omm/\ Aowsy || Alowan Aowsy || Aowsn
|
et
| pPO9E 309€ ~_/
" U L ore
_
|
I

,00€

d€ "Sid

e e e . e . — . o ———— . ————— S e e —— e — — o —

~ 1ungns 10ssa3044

2oueisu|
Aowan

2ouelsu|
Alows N

N\

HuNgng 10ssadoud

| ouesul
Qomq Aowsin

aJuelsu|
Alowa

g

AN
<
Q
o
o

4/31

PCT/IB2018/000995

WO 2019/025864

ynsay

J03eI2UDD
ssauppy

(IETIETE|
105592014

[0J3U0D

0sv o¢f

e pe
Jolejauso SUEIVET |

SSa4ppy 10SS920.d

|o41u0)

~_

01547
~
0Ly

¥ 'Old

puewwo)

Jojelauan
SSa4ppy

IEINETE|
10s5320.4

|0J3U0)

5/31

PCT/IB2018/000995

WO 2019/025864

)nsay

[1°D
9le|nwndoy-Ajdiynipg \/\omm

oS

aouelsu| Asowain

S 'Ol

ale|nwnday-Aldiyniy \/\omm

1193

A

ovs

2ouelsu| AJoWDN

21ejhwnady
-Aidininy

(192
\ll
91e|nwinday-Ajdiniy /(omm

ors

aauelsu| Alowa

6/31

PCT/IB2018/000995

WO 2019/025864

Y
uswd
4\/ $10}e43)300Y } 3
105592044
049

|
i
| N
|

S\m/q\ om@/\ oy

aouelsu] Alows iy

7/31

PCT/IB2018/000995

WO 2019/025864

Yyoss

V. 'SOld

105L

_omm

yoeL

}UNQNS J0SS3204d

yozL
yueg AlowsN

pocL
sjueg Alowap

N~
30s.

cqmw/(\

pPoEL
}uUNgNS J10Ss320.4d

30¢L
u_c_._n_sm 10SS9230.4d

=

80z, yueg Aows iy

207, Mueg Alows N

20¢€L

HUNQNS 105532044

J05L

JOEL
}UNQNS 105532044

~_/

0L

40z, jueg Alows i\

q0¢L
sueg AJowsip

qogL

HuNQgng 10ss320.4

poSss

90¢L
1UNQgNS J0SS3204d

907/ ueg Auowa

eQz/ ueg AJows N

B0EL
1uNQgns 10ssa204d

q0s.

~~
0TL

00L

8/31

700’

WO 2019/025864

PCT/IB2018/000995

710
/\J

9/31

FIG. 7B

PCT/IB2018/000995

WO 2019/025864

JL "Old

J0SL

pogL
}uNgns J0ssadold

fosz
N
]
T yoeL 30¢L
1 HunNgng J0ssad0ldd 1 HunNgns 10ssadold
~
é«V\ 307/
yozL
A
sueg Alowa 8072 dueg Aowan
40T queg Alows 307/ ueg Alows
NZ
/\s@ 805.
JovL W

0¢€L

}uUNgNS J0Ssa20.4d

10SL

j

POSL

J0€L
HuUNQNS 105592044

poc¢s
yuegq Alowa

q0¢L
yueg Alowa

L

qo0eL

~/
q0/.L

09,

}uNgns J0ssadoJdd

90€L
1uUNQNgS 10s$320.d

~_|

0L

307/ jueg AlowdA

eQZ/ Mueg Alowan

B0tL

Hungng 10ssa204d

q0sL

~/
eQ/LL

10/31

PCT/IB2018/000995

WO 2019/025864

d/l ‘Oid

yoeL
1uUNQgNS 10SS330.d

gogL
HuUNQgng 10ssa20.4d

305,

rltJ

q0/L
/\/

4yozL
yueg Alowsp

S0z Nueg Aulowa iy

J0z/ yueg Aoway

*qmw/<\

poeL
ungng 10ssad0.d

907/ dueg Alows N

0¢€L

Hungng 10ssad0.d

pPOSL

joeL
}uNQgns 105592044

yos.s

poZL
yueg AJows N

90¢gL
uNQgnNS 10Ss3004(

207/ Jueg Alowsin

qocL
jueg Alowa

q0¢L

05L

~/
20LL

0LL

}uNgns J0ssa20.d

eQz/ jueg Alows N

e0tL

HUNQNS J0SS3204d

q0sL

~
e0LL

11/31

WO 2019/025864 PCT/IB2018/000995

800

/

ASSIGN TASKS ASSOCIATED WITH A
SERIES OF INSTRUCTIONS TO
DIFFERENT PROCESSOR SUBUNITS
810

v
GENERATE TASKS TO TRANSFER DATA
BETWEEN PAIRS OF THE PROCESSOR
SUBUNITS
820

Y

GROUP THE ASSIGNED AND GENERATED
TASKS INTO GROUPS OF SUB-SERIES
INSTRUCTIONS
830

\ 4

GENERATE MACHINE CODE
CORRESPONDING TO EACH GROUP OF
SUB-SERIES INSTRUCTIONS
840

Y

ASSIGN THE GENERATED MACHINE CODE
TO A CORRESPONDING PROCESSOR
SUBUNIT
850

FIG. 8

12/31

WO 2019/025864

Row
Decoder
910

PCT/IB2018/000995
900
[
° 960
[J
Mat Mat e o o Mat
940-1 940-2 950 940-x
/\/
Mat Mat e o o Mat
930-1 930-2 930-x
Amplifier 920

FIG.9

13/31

WO 2019/025864

PCT/IB2018/000995
1000
1030-1 1030-2 1030-3
1020-x
/ o o o K
1050
° °
° °
° °
1020-2 \ /
N e o o
1020-1 1040
_/\
e o o
e o o
~ —~_/
1010-1 1010-2 1010-x

FIG. 10

14/31

PCT/IB2018/000995

WO 2019/025864

11

‘Ol

0CT1T 4op033Q uwnjo) Jjueg

srérr
208TT $Po23Q
: : YooTT
: : ° Japoda(g
e o o m m o 30911 306TT
~ : ° 1apodag 21807
20LTT | [1X-906TT} 220611 |[[T-006TT JO9TT
P 1eN * °*l ew 1N 18p02aQ
H H T
~—_
nﬁmW\ 20€TT 20VTT
q08TT Lp0o3d
. ; 909T1
: m ° 19p023Q
e o o m m L PO9T1 qosTt
' ' o Japod3ag 807
A [1%-G06TT! z-qo06tt |[[T-a06TT 50911
0.1t PN * °* aew 1N 19p093(
H H T
~_/ —
ﬁmW\ GOETT ~ qovIT
e0gTT $HP02a(
' . 209TT
' ° 13p023(Q
~
. o oSBT w/\ﬁjm: . g09TT e0STT
' ' o Japoda(g 23807
~_/|[1X-2061T} z-e0611 | [[T-206TT €091T
BOLTT I ® ° ew 1N 19p023Q
HEl H T
~/ —
~_ BOETT eOvIT
SANARS

00TT

oT11
Japodaq
Moy jueg

15/31

PCT/IB2018/000995

WO 2019/025864

0TCT
13]j04u0)
Aowapy

¢l 'Oid

{ q0SZT 49p0IaQ WN|oD
. q0€ZT q0zZT
: ; ° 19podaq || J01ea0dWO)
°c e ' ' o moy pue sasn4
~/|[1x-909¢T: 2-909zT |[T-909¢T
aovet i gy i ® °® 1122 1122
M w BOSZT 49p0292Q wnjo)
. " . e0ETT e0zZT
\./x
€ser |8 W/\/ ° 19p02aq || J03eidWO)
o o o H ! 1921
' " o Moy pue sasn4
~|[1x-e092ZT! z-e09¢T |[T-e097T
LA | I CO T R 1122 1122

0o¢t

16/31

PCT/IB2018/000995

WO 2019/025864

€L 'Old

(Z'2) $0S1

80¢l, 90¢€}
........... D, W,
01607 ssauisng m m 01607 Alows |y m
C R R R R
| ¥olg | .. | ool i odooig i yoilg o ol a8
- Aowspy ! 1 fowspy 1! Aowsp 1t Aowspy ti o Alowsiy) L B!
L § L A A A Joe
[] u] [] = " C "
: : : : : e
FoTTEESEE -~ T TmEsssssSs -~ i =~ roTTEEE ST -~ roTTmT TS -~ “ _\/_ "
1) 1 I Vi 1N Vo !
,odpoilg 4 1 ol i) oppolg i doilg pr o Yol 4 g !
- fowspy ! v fowspy 1! Aowspy 1 Aowsiy 1 Alowa “m s |
N . N N N A AP
roTETESE - -~ pTmEmmEmSssss= -~ rpoTEmTmEEESEES -~ TS ESESS e -~ s ToEEEEEE =~ “)
1 \] Vi I I oo
i oyooig i1 doig il dpolg i yooilg i polg by P
1 Alowspy m v flowspy 11 Aowspy 1 Alowespy i Alowepy 1} P!
\ ; \ I A I ;oY
e T [T ,MM--- ;N:
\ (e‘'e) OSL 20EL

clel

17/31

PCT/IB2018/000995

WO 2019/025864

¥l "Old

ObEb—~ S)
1 J
PEELNC slio
gogl—|
T —
I i
YOVI™S_ eleq ssalppy /07t

o
(=
-—

18/31

PCT/IB2018/000995

WO 2019/025864

gl 'Old

o —— - - - ———

"\
m sbay
t

" . = -

19/31

PCT/IB2018/000995

WO 2019/025864

91 "Old

(a)zo9l
- S — s
\ pwo/~ 94O
H \ ﬁ H sosngq_/~ V4oL

_ m “(\\ (e)209l

(@)¥091 (9091 (e)091
444X0 < 444X0 200X0 < 444X0 L0OXQ < 444X0

(@)zo9l
- - N\ - ejep/ 819t
UEO/\I 9191
(0)2091 M\)@NOQ
JJ (V

(@)¥091
Z00X0 < 444X0 444X0 < 444X0 1L00X0 < 44-4X0

20/31

PCT/IB2018/000995

Ll "Old

1
i
i
1
J
)
L}

\
~

L L L T

(e)og/L

o

g|dweg &

21/31

WO 2019/025864

(e)gz/ll
(e)20.Ll m
\ '

B S |

| SU——
asnjiiuy asnjiuy asnjjuy
U a S

(@zzLlL u (a)zeLy (e)zzll

WO 2019/025864

f 1808
Switch Boxes
(SB)

PCT/IB2018/000995

o

-~

=~
Il
CB
H]I
SB

D._
g|cB

Logic Unit
(LU)

1802 —\\
I/0 Blocks —p» [}

~
\

1804
1806

22/31

FIG. 18

PCT/IB2018/000995

WO 2019/025864

()zosl

(0)zos1

61 'Old

0061

(e)z061

23/31

PCT/IB2018/000995

WO 2019/025864

0¢ "Old

s)00|q Buipuodsaliod
3y} 0} PajosUUO0D SN Bulyd)ms puodss
Buneanoe Ag syoo|q Buipuodsaliod ay) bulgeus]

8002 ~_

syo0|q 2160] Ayney ay} ajeoijdnp jey} syo0|g juepunpal
Jo Ayjeanid ayy ul s)00}q Buipuodsaiios Buluiusiaq

9002 ~_

$)00|q 2160} Ajjne} a8y} 0} pajoaUU0D SHNaID Bulyoums
1841} Buizeaioe Aq sxo0|q 2160} Ayney bulqesiq

002 ~_|

s)nsal Buysa) ay} uo paseq s)o0|q
Juepunpal Ajne} pue s)o0|q o160| Ayney BuiAyuapi

A

diyo Alowswi ay} ul s¥o0|q Juepunpal
Jo Ajjeanid e pue s320|q 2160] jo Ajijeanid e Bunse]

000¢

24/31

PCT/IB2018/000995

WO 2019/025864

¢alqe|iene
$)00|q uepUNpal
jeuonippy

1< "Old

Jolo uinjay

A

ON

wr_‘Nn/\

%00|q Juepunpal o}
al Buiuuni ubissy

A

0zLZ $ONO88p SIX00Iq
SOA 9112 juepunpay
14374 N\ Y20|g Juepunpal e 189

»

ON

¥00|q 21B0] aAi308sep BY)

Buneosijdas 20|g uepUNpal € }08[9S

*

0LLZ ™_{>001q 2160] snosyep 10} q| |eba|i aneaT]

o
—
N

el ~

SSA 9012

¢,2NJO943p S|
%00]q 21607

¥0L¢ ™\ _»001q 2160 & 1501

8012 ~_J 320|q 2160| 0}

Q| Buiuuni ubissy

ON

A

4

al 1eba|1 ue Buiubisse syo0|q Juepunpal pue 2160 ||e s|gesiq

25/31

PCT/IB2018/000995

WO 2019/025864

¢¢ 9Old

...... n.l.\.A.c.v_ovN\N.---- ---A.m.v_m.v.m.m.-hu\.wm.m_.w.----R.N.F.WN
m lojels}odd _.-.“ Jojels|add 20 O_DO __ .-Q@NCM_\/_ "
IN101e10[000V} -+ | Li01esd) <“”v_ 19 01607 !} uopeanByuoo)
4444
¢ eleq—~
: 3 i 444
—<* 1. : : SN g1z
. ejonuop Aowely ! (g
022 .mm.q.gwoﬁv_/.\.meu;.m.%ﬂ.__w@.mw Ol _z0zz
L yoolg) !
n/\" Alows|y m" Aiows|y "7\.
u
......... A..V_SNN.:: -:A.m.v@.rw.m.-\w\:ﬁ_mm:---nﬂ.m.rmm
“ 10}ela|add _...“ J0}elaladd 00 O_OO ““ ._mmm_(_m_\/_ "
INiojese) <” | Liojei) <unv_ 189507 e inByu0o,
e
..... selonuo) Klowsyy ! (v

ejeq Jppy pliD) | EEa JPPY PWDT

v0cc m 3o0i9 “ 3o0|g 20¢c¢
N fowspy 1! 7\.

-
}
J
'
L}
}
)
[}
1
)
1
1
1
1
I
|
t
¢
J
)
[}
'
[}
L}
1
1
I—

Aowspy 0077

26/31

PCT/IB2018/000995

WO 2019/025864

— (P)goez

€¢ 'Old

—)soge

\.\@w%m

— (B)goee

0v4q 6¥4 819 L¥d 9¥9

Ove o¥e gye Live Ore

Sva v €94 CPq L Y9

Gve vve cye cve Lye

0€q 6¢4d 8¢9 /€9 929

0ce 6Ce 8Ee LEB gLe

G€q #€d £€e9 ¢eq ieq

GEe e EE. CLE |

0¢9 624 8¢9 £29 929

0ce 6¢e 8¢k Lce 9ce

Gc4 ¥ea €29 ¢zq Led

GZe yZe €Ce CCE LB

0la6iaglg 19 9lq

0leglegle /Ll glE

Silariaciqciqlliq

Gleviegleclel|e

00d 609 809 409 809

\ J

0o®e 60e 80€e 0B 90E

\ J

S09 ¥04 €04 <09 109

\. J

G0E voe coe ¢oe Loe

\. J

jonuon Alowsy

00¢cc

Hun OVIN

27/31

PCT/IB2018/000995

WO 2019/025864

¥¢ "Old

_ (@)zovz _ (e)zove
TTELoCLO LD
019 6092 802 202 902| |S0° #0° €02 202 L0°

_ (p)zove _ (9)zovz _ (a)zove _ (e)zove
A 4) () (A
0€9 6E0 8C2 /€D 9€0
LZO LED DED BCO 82| | LC0 9ZO GO #22 €22 | 222 Lg2 800 202 Q02| | G092 09 €09 202 LO°

(g

(v

28/31

PCT/IB2018/000995

WO 2019/025864

g¢ "Old

)SE}
ay] Yum siojelajaooe jo dnoib sy} buiejelio)

%

N_‘mN./\

syueq Alowsaw awes ay}
ur Ajlenuenbas passaooe ale ey} SpJom BULA

%

01SC ™

syueq Alowsww Jualaylp ul Ajsnosueynuis
pass200E 9q 0} PasU Jey} SpJom BuAA

%

809C ™|

yse)} ay} ajnosxs
0} Aressaoau $8|9A0 Jo Jaquunu e Buluiwieleqg

A

905¢ ™~

ySE) 98U} 8)nNoaxa 0} passaode Alsnosueynuwis
8 0} PoaU Jey} SPIOM JO Jaquinu sy} suluislag

%

yse) ay}
wioyiad 0 siojesa|aooe jo dnoib ayy BuiApuapi

%

}senbal yse)} e aneoay

|

29/31

PCT/IB2018/000995

WO 2019/025864

Ja)sibal [eussjul ayepdn

o

[ACT4 H H

suun Buissasoid

0} Aejap |eubig
A

wv@NH

SSIppE Y} YIm
pa}eloosSe aul| peoT

Y
QFGNH

ON

909¢

9¢ 'Old

ejep Jwisuel |

SomH ﬁ

yueq Aowsuw
Wwiolj eyep analey

NrmmH

¢aul|
papeo] e Ul jueq

uondwaexa lo Jolls pussg

i ssaippe
JuS1ayIp e 10} papeo)
aull 8y} s|

Aowsuw 8y} s|

SOA

Jas1Ba1 [eussiul Aianp

A

H 092

Ssalppe Ue aAleoay

¢09¢ H

009¢

SOA

J/orow

30/31

PCT/IB2018/000995

WO 2019/025864

LZ "Old

yueq Alowaw

T\ 1811} 8U) WOl piom pliy; e jse9) je buipesy
A
gL/z yueq s} ay} 03} aulj Alowsw puodss
T\ e Buiuado ‘Buissasoid ay) Jo pus sy} spJemo
4
91.¢
—~_{]ueq Aiowsw puodss ay) wolj eyep Buissaooid
7y

yueq Aiowsw puooss
2y} WoJj pJom puooss e }ses| je Buipesy

+

)ueg puodas e 0} aulj Alowsw puodss
e Buluado ‘Buissasoid ay} Jo pus 8y} splemo}

+

yueq Alowsw }sii 8y} woyyj ejep Buissasolid

+

804 ™~

yueq Alowsw
1SJ1} B Wou) pJom 1Sy B Jses)| je Buipesy

A

9042 ~_|

syueq Alowsw jo Ayjeln|d e ul Aisnosueynuwils
passaooe aq 0} papasau SPIOM BUILIAg

%

$0. ~_

Ajsnosua)nwis
paiinbai spiom Jo 1aquinu e Bujuiwisla(

%

¢0/.¢ ~

uonelndwos auo jse) je Buunbal ‘pawlopsd
2q 0] ¥se} e Jo uoljesipul ue BuINiSO9Y

004¢

31/31

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings

