diff --git a/sklearn/tests/test_multioutput.py b/sklearn/tests/test_multioutput.py index 4deca21f55cd6..4010fa77657f6 100644 --- a/sklearn/tests/test_multioutput.py +++ b/sklearn/tests/test_multioutput.py @@ -34,7 +34,7 @@ def test_multi_target_regression(): - X, y = datasets.make_regression(n_targets=3) + X, y = datasets.make_regression(n_targets=3, random_state=0) X_train, y_train = X[:50], y[:50] X_test, y_test = X[50:], y[50:] @@ -52,7 +52,7 @@ def test_multi_target_regression(): def test_multi_target_regression_partial_fit(): - X, y = datasets.make_regression(n_targets=3) + X, y = datasets.make_regression(n_targets=3, random_state=0) X_train, y_train = X[:50], y[:50] X_test, y_test = X[50:], y[50:] @@ -76,7 +76,7 @@ def test_multi_target_regression_partial_fit(): def test_multi_target_regression_one_target(): # Test multi target regression raises - X, y = datasets.make_regression(n_targets=1) + X, y = datasets.make_regression(n_targets=1, random_state=0) rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) msg = "at least two dimensions" with pytest.raises(ValueError, match=msg): @@ -84,7 +84,7 @@ def test_multi_target_regression_one_target(): def test_multi_target_sparse_regression(): - X, y = datasets.make_regression(n_targets=3) + X, y = datasets.make_regression(n_targets=3, random_state=0) X_train, y_train = X[:50], y[:50] X_test = X[50:] @@ -601,7 +601,7 @@ def fit(self, X, y, sample_weight=None, **fit_params): ), ( MultiOutputRegressor(DummyRegressorWithFitParams()), - datasets.make_regression(n_targets=3), + datasets.make_regression(n_targets=3, random_state=0), ), ], ) @@ -616,7 +616,7 @@ def test_multioutput_estimator_with_fit_params(estimator, dataset): def test_regressor_chain_w_fit_params(): # Make sure fit_params are properly propagated to the sub-estimators rng = np.random.RandomState(0) - X, y = datasets.make_regression(n_targets=3) + X, y = datasets.make_regression(n_targets=3, random_state=0) weight = rng.rand(y.shape[0]) class MySGD(SGDRegressor):