diff --git a/sklearn/linear_model/passive_aggressive.py b/sklearn/linear_model/passive_aggressive.py index c2434b0d37f79..f17185e6a187a 100644 --- a/sklearn/linear_model/passive_aggressive.py +++ b/sklearn/linear_model/passive_aggressive.py @@ -61,7 +61,7 @@ class PassiveAggressiveClassifier(BaseSGDClassifier): verbose : integer, optional The verbosity level - loss : string, optional + loss : string, optional (default="hinge") The loss function to be used: hinge: equivalent to PA-I in the reference paper. squared_hinge: equivalent to PA-II in the reference paper. @@ -80,7 +80,7 @@ class PassiveAggressiveClassifier(BaseSGDClassifier): generator; If None, the random number generator is the RandomState instance used by `np.random`. - warm_start : bool, optional + warm_start : bool, optional (default=False) When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary `. @@ -90,7 +90,7 @@ class PassiveAggressiveClassifier(BaseSGDClassifier): because of the way the data is shuffled. class_weight : dict, {class_label: weight} or "balanced" or None, optional - Preset for the class_weight fit parameter. + Preset for the class_weight fit parameter. (default=None) Weights associated with classes. If not given, all classes are supposed to have weight one. @@ -102,7 +102,7 @@ class PassiveAggressiveClassifier(BaseSGDClassifier): .. versionadded:: 0.17 parameter *class_weight* to automatically weight samples. - average : bool or int, optional + average : bool or int, optional (default=False) When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches @@ -306,10 +306,10 @@ class PassiveAggressiveRegressor(BaseSGDRegressor): shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. - verbose : integer, optional + verbose : integer, optional (default=0) The verbosity level - loss : string, optional + loss : string, optional (default='epsilon_insensitive') The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference @@ -326,7 +326,7 @@ class PassiveAggressiveRegressor(BaseSGDRegressor): generator; If None, the random number generator is the RandomState instance used by `np.random`. - warm_start : bool, optional + warm_start : bool, optional (default=False) When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary `. @@ -335,7 +335,7 @@ class PassiveAggressiveRegressor(BaseSGDRegressor): result in a different solution than when calling fit a single time because of the way the data is shuffled. - average : bool or int, optional + average : bool or int, optional (default=False) When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches