
Towards Integrated Data Center Design

Avrilia Floratou
IBM Almaden

Research Center
aflorat@us.ibm.com

Frank Bertsch
University of

Wisconsin–Madison
bertsch@cs.wisc.edu

Jignesh M. Patel
University of

Wisconsin–Madison
jignesh@cs.wisc.edu

Georgios Laskaris
Duke

University
georgios.laskaris@duke.edu

ABSTRACT
Data center design is a tedious and expensive process. Re-
cently, this process has become even more challenging as
users of cloud services expect to have guaranteed levels of
availability, durability and performance. A new challenge for
the service providers is to find the most cost-effective data
center design and configuration that will accommodate the
users’ expectations, on ever-changing workloads, and con-
stantly evolving hardware and software components. In this
paper, we argue that data center design should become a
systematic process. First, it should be done using an in-
tegrated approach that takes into account both the hard-
ware and the software interdependencies, and their impact
on users’ expectations. Second, it should be performed in a
“wind tunnel”, which uses large-scale simulation to system-
atically explore the impact of a data center configuration
on both the users’ and the service providers’ requirements.
We believe that this is the first step towards systematic data
center design – an exciting area for future research.

1. INTRODUCTION
Data centers are changing fast. User of data centers run-

ning cloud applications are becoming increasingly demand-
ing. These users now expect to have access to specific hard-
ware resources (IOPs, memory capacity, number of CPU
cores, network bandwidth), demand data availability and
durability guarantees defined quantitatively in Service-Level-
Agreements (SLAs) [1,3], and expect to get concrete perfor-
mance guarantees defined in performance-based SLAs (e.g. [13,
14]). Failure to satisfy these user requirements directly trans-
lates into financial loss for the data center/cloud provider.
A natural question to ask in this situation is: “How should
we design the data centers of the future?” In such settings,
the data center provider wants to ask various “What if”
questions, such as what is the cost vs. SLA implication of
choosing one type of hard disk over the other, or using flash
over hard disk storage, or adding more main memory to each
node, or switching to a faster network cards.

Typically, data center designers determine the hardware
setup based on the software that will be deployed, and the
expected workload characteristics. For example, in an en-
vironment where high availability is important, the data is
replicated. The value for the replication factor n is typi-
cally set to a “reasonable” value (e.g. 3 or 5), and storage
is provisioned to accommodate these n copies. However, it
is not clear if this approach is the most cost-effective so-
lution that provides the desired availability level. In some
environments, one can reduce the replication factor to n−1,
thereby decreasing the storage cost and increasing the speed
of the repair process that re-replicates data in case of a hard-
ware failure. Furthermore, the latency of the repair process
can be reduced by using a faster network (hardware), or
by optimizing the repair algorithm (software), or both. For
example, by instantiating parallel repairs on different ma-
chines, one can decrease the probability that the data will
become “unavailable” (i.e. the system has zero up-to-date
copies of the data). Even if this solution may potentially
provide lower availability than n-way replication (depend-
ing on the characteristics of the network or the repair algo-
rithm), the resulting availability level may still satisfy the
SLA. As we will show in the following sections, similar ob-
servations can be made for other design choices too, like data
placement algorithms or replication protocols. These obser-
vations suggest that an iterative approach to data center
design, which determines the software configuration first and
then the hardware setup (or vice versa), may not be always
“optimal” since it ignores important interactions between
these two components. What we need is an integrated

approach that explores the hardware/software interdepen-
dencies during the data center design process.

In this paper, we discuss the following three methods for
integrated data center design: (a) perform what-if analyses
on an actual scaled-down prototype of the data center, (b)
use purely analytical methods to model the data center, and
(c) use a “wind tunnel” to simulate the entire spectrum of
hardware/software co-design space for data center design
(and incremental re-design/upgrade). We show that the first
two approaches have limitations that the third one avoids.

Thus, we envision the creation of a simulation-based data
center wind tunnel that can be used to explore, experiment,
and compare design choices, and to statistically reason about
the guarantees that these design choices can provide.

This paper is an extended version of the workl in [6]. In
the following sections, we present in more detail the three
methods for integrated data center design and discuss their
characteristics. We also discuss the challenges in building

1



Figure 1: Model for data loss with failures.

a “wind tunnel” for data center design. We believe that
these challenges constitute interesting problems that could
be addressed by the research community.

2. INTEGRATED DATA CENTER DESIGN
In this section we discuss three approaches to explore

hardware-software co-design for data center (DC) design.

2.1 What-if Analysis on a Small Data Center
One approach is to actually experiment with different

types of configurations on a small cluster, and perform what-
if analyses on the prototype cluster. This approach has sev-
eral drawbacks.

First, the financial cost to carry out such analyses can be
very high, especially if a large number of hardware configu-
rations must be explored, as the number of hardware con-
figurations is a product of the choices that are available for
each individual hardware component (e.g. different types of
processors, memory, I/O devices, network interfaces, etc.).

Second, this approach requires manual intervention for
each hardware setup, so it can be quite expensive from the
perspective of the manual effort that is needed.

Third, this approach requires a big time and dollar in-
vestment, as the total number of configurations that must
be explored is equal to the product of the hardware and the
software configurations in the design space.

Finally, it is challenging to pick the “correct” prototype
cluster size. The number of nodes in the cluster is a cru-
cial parameter as some behaviors that happen at a larger
scale can’t be easily observed at a smaller scale. For ex-
ample, increased communication latency or correlated hard-
ware failures in an actual large scale cluster are harder to
model/re-produce in a small prototype cluster.

2.2 Analytical Modeling
Analytical modeling has been widely used to study the

behavior of complex systems (e.g., [7]), but such models may
result in poor accuracy in their predictions for DC design for
the following reasons.

Below, we present an example of a cloud data center de-
sign problem that we tried to solve with a Markov chain
approach; we then discuss the simplifications that this ap-
proach makes, and the limitations of this approach.

In this example, we focus on a scenario in which each
customer has n data replicas, distributed across different
machines. Our goal is to estimate the probability of perma-
nently losing a customer’s data due to failures in the storage
layer over a one year period, which we denote as P (year).

We assume that in case of a node failure, one or more
repair processes are responsible for replicating the lost data
replicas to another node. We also assume that any available
replica can be used as a source by only one repair process.

Table 1: Probability of losing data in a one year period.

Replication MTTF Network P(year)

Factor (n) (in hours) Bandwidth

1 1M − 0.87%

1 250K − 3.44%

2 1M 1 GBit 2.04 ∗ 10−6%

2 1M 10 GBit 2.04 ∗ 10−7%

2 250K 1 GBit 3.26 ∗ 10−5%

2 250K 10 GBit 3.26 ∗ 10−6%

3 1M 1 GBit 7.13 ∗ 10−12%

3 1M 10 GBit 6.67 ∗ 10−14%

3 250K 1 GBit 4.56 ∗ 10−10%

3 250K 10 GBit 4.57 ∗ 10−12%

The system’s behavior can be described as a birth-death
process, presented in Figure 1. Each state corresponds to
the number of replicas that are currently available. The
process is described by birth rates mi, 1 ≤ i ≤ n − 1 and
death rates ki, 1 ≤ i ≤ n. If k = 1/MTTF is the failure rate
of the storage subsystem of a machine and m = 1/MTTR
is the repair rate, where MTTR (mean time to repair) is
the mean time to re-replicate the data stored on a failed
machine, then the values of the birth and death rates are:

mi =

 m ∗ i if 1 ≤ i ≤ bn/2c

m ∗ (n− i) if bn/2c+ 1 ≤ i ≤ n− 1
(1)

ki = k ∗ i, 1 ≤ i ≤ n (2)

If we let Y be the random variable that described the
time to data loss (state 0), then by solving the equations
produced for the above Markov process, we can compute the
cumulative distribution function of Y , denoted as F . The
details of the solution are ommitted due to lack of space.
The probability that a customer will lose data by time td is
given by F (td). For example, using F , we can easily compute
the probability that a customer will lose all the data replicas
in a period of one year.

Table 1 shows our results. Here, we show results with
a MTTF of 1M hours, which is the typical value that is
claimed by the hard disk manufacturers. However, it has
been argued that the manufacturers have exaggerated this
number, and that the real number should be far lower [16].
Hence, we also show results for an MTTF value of 250K
hours. We also assume that the mean time to repair a cus-
tomer’s replica is equal to half of the disk capacity (1TB in
this example) divided by the network bandwidth. This is
because we expect on average that half of the failed replicas
have to be copied before the replica in question is actually
repaired.

This example, already shows the usefulness of this analysis
style for the service providers that aim to guarantee a cer-
tain level of durability to each customer. In fact, analytical
models are a very useful tool to relatively compare different
design choices, as in the example presented above. However,
in cloud environments, the accuracy of the model prediction
is also very important. This is because every deviance from
users’ requirements may result in a SLA violation, which
translates into financial loss for the service provider. There
are two reasons why analytical modeling may result in poor
accuracy in their predictions.

2



First, the (popular) simple M/M/1 and M/M/c models
assume that the times to failure and the times to repair
are exponentially distributed. However, exponential distri-
butions do not always accurately represent actual distri-
butions encountered in real systems. For example, exper-
imental studies have shown that the hard disk drive failure
distribution typically follows the Weibull or Gamma dis-
tribution [16]. Moreover, exponential failure distributions
are not appropriate for more advanced storage systems (e.g.
RAID systems that are comprised of both hard disks and
SSDs). Repair times have also been shown to follow the
lognormal distribution [17]. The more complex G/G/1 and
G/G/C models, which capture more general distributions
don’t have a closed-form solution. As previous studies have
mentioned [12], these more complex models can be approx-
imated but their accuracy is often inadequate.

Second, it is hard to capture all the parameters in the de-
sign space with an analytical model. For example, captur-
ing the failure behavior of both the storage and the network
layer as well as the repair behavior of the system, using a
Markov Model is challenging. Typically the failure behavior
of the network components (NIC cards, network switches)
is ignored to in order to make the problem tractable. Cap-
turing such complex behaviors accurately with an analytical
model is challenging. Capturing the combination of each and
every behavior in the design space is even more challenging.

Finally, using analytical models requires deep understand-
ing of the related mathematical concepts, which are not
widespread in practice, making it challenging to use this ap-
proach in practice. To fix this problem, we hope that more
schools will offer courses in quantitative systems modeling –
sadly it appears that there are fewer schools that offer these
courses in CS departments than a decade ago. We note
that analytical models are crucial to better understanding
and validating simulation models before the simulator can
be used to answer a broader class of what-if questions, and
we advocate using analytical models in that role.

2.3 Simulation-based Wind Tunnel
Our proposal to tackle the problem of integrated data

center design, is to make use of a simulation-based “wind
tunnel”. We believe that this is the first step towards sys-
tematic data center design – a rich area of research with
potentially high-impact on our industry.

In a wind tunnel the behavior of all the components (hard-
ware, software) under consideration is simulated, with the
goal of exploring the behavior of a more complex model.
Note that in this case, we are not restricted to exponen-
tial distributions as in many analytical models, but we can
incorporate any type of distribution.

The simulation-based wind tunnel avoids the hassle of
purchasing and repetitively deploying the hardware and soft-
ware, until we explore all the possible design ideas. Thus, it
is a more economical way to investigate DC design choices
than using a “sample” DC. At the same time is not re-
stricted, by the size of the “sample” DC.

We note that this philosophy already has some propo-
nents, though in a narrow domain (e.g., [12] for hardware,
and [10,19] for Hadoop parameter selection). What is miss-
ing is a general and extensible method that provides a com-
prehensive framework to evaluate the combination of both
hardware (storage, CPU, networking and memory compo-
nents) and software (e.g., replication policy, changes in net-

work priority schemes in SDNs, parameter tuning) design
choices. Such a framework is essential to allow holistic and
comprehensive evaluation of the entire space of data center
design alternatives for end-to-end what-if analyses.

3. WIND TUNNEL USE CASES
In this section we discuss some of the potential DC design

problems that the wind tunnel can tackle.
Performance SLAs: To satisfy performance SLAs, work-

load characterization is needed in order to quantify the im-
pact on existing workloads when a new workload is added on
a machine. Existing work in prediction modeling for certain
classes of database workloads [13], has shown that it is possi-
ble to build accurate models for a given DBMS by identifying
and carefully modeling the key characteristics (e.g., CPU,
Disk I/O, network, etc.) of the system under test. This
observation, encourages us to believe that simulation can be
used as a “cheap” way to explore interactions between work-
loads as long as the key resources are simulated. Our plan is
to investigate how much detail the models must capture in
order to produce accurate workload predictions and to also
validate the predictions on real workloads/environments.

To the best of our knowledge, a performance prediction
method that takes into account the impact of other clus-
ter events (e.g., hardware failures, control operations) on
workload performance, has not been proposed. Carefully
designed, holistic simulation (aka. the “wind tunnel” that
we propose) can capture the impact of these events on the
performance SLAs, and result in more realistic predictions.

Availability SLAs: Data availability depends on both
the hardware (e.g. hardware failure rate) and the software
(e.g. replication, erasure codes [15]) characteristics. The
wind tunnel is an extensible environment in which various
software and hardware system components can be simulated
together. Thus, it can be used to experiment with various
configurations and collect insights about the impact of each
design choice on the availability SLAs. See Section 4 for the
challenges associated with modeling these components.

Hardware provisioning: Service providers need to ask
questions such as: “Should I invest in storage or memory
in order to satisfy the SLAs of 95% of my customers and
minimize the total operating cost?” These questions can be
described as queries that the wind tunnel can help answer.

4. RESEARCH CHALLENGES
We believe that building a simulation-based wind tunnel

is similar to building a specialized data processing system.
Thus, the database community is the perfect candidate to
address the problem of combining models and data in a wind
tunnel for DC design. Queries to the wind tunnel are design
questions that iterate over a vast design space of DC config-
urations. In this section we discuss the research challenges
in building the wind tunnel.

4.1 Declarative Simulation Processing
Database researchers have already highlighted the benefits

of declarative query processing for computer games [20] and
network services [11]. We believe that declarative methods
can also help in this setting to capture model interactions
and end-user/SLA requirements.

Model interactions: When a new model is added to the
simulator, its interactions with the existing models should

3



be declaratively specified. For example, a model that simu-
lates a data transfer to a machine “conflicts” with a model
that simulates a workload executed on this machine. On the
other hand, the failure model of the hard disk is independent
of the failure model of the network switch. The underlying
simulation engine can then automatically optimize and par-
allelize the query execution based on the user’s declarations.
Capturing the model interactions declaratively can lead to
a modular and extensible wind tunnel design.

Expressing the desired DC constraints: The design
questions can often be complicated: for example, the user
may need to specify a required SLA as a distribution. Posing
such queries declaratively is likely to be preferred over more
imperative styles of querying.

We believe, that exploring the design and implementa-
tion of declarative languages to support the two aspects dis-
cussed above is a valuable area for future research. Perhaps
we could build such a language based on existing declara-
tive languages like Datalog or SQL. We may also need two
separate languages for each component above – one is a spec-
ification language and the other is a query language.

4.2 Simulation at Scale
Simulating multiple components of a DC is likely to be

time-consuming. We may need to borrow techniques used to
scale database queries (query optimization, parallelization)
and apply them in the context of the wind tunnel execution.
One approach is to take the following two-step process.

In the first step (optimization), an order for the simula-
tion runs is specified that would facilitate dismissing certain
simulation runs by simply observing the output of the previ-
ous runs. For example, if a performance SLA cannot be met
with a 10GBit network, then it won’t be met by having a
1GBit network, while all other design parameters remain the
same. Thus, the simulation run with the 10GBit configura-
tion should precede the run with the 1GBit configuration.
Extending this idea to more than one dimensions is an inter-
esting research problem, which is similar to multi-way join
optimization performed by database optimizers, but with
design space configuration parameters and with semantic
information associated with the parameters.

In the following step (parallelization), each simulation run
is parallelized based on the model interactions (perhaps spec-
ified declaratively as discussed above). For example, the af-
fected components during the completion of a data transfer
from one node in a rack to another node in the same rack
are the two nodes, the two disks where the data was stream-
ing to and from, and the switch itself. Work done on other
nodes within the rack is unaffected, and work done between
any nodes not in the rack remains unaffected as well. Paral-
lel execution of events such as this provides an easy way to
scale the simulator. Although, the problem of parallelizing
simulations has been studied before (e.g., [8]), declarative
query processing creates new opportunities and challenges.
The logic specific to the models being simulated must now
be captured when declaring the models and not in the simu-
lation engine itself. As a result, the simulation engine should
be designed to gracefully adjust to various user declarations.
Exploiting whether the existing simulation parallelization
techniques can be abstracted in a way that allows coupling
with a declarative specification language is an interesting
direction for future work.

Another approach to speed up execution, is to monitor

the simulation progress and abort a simulation run before
it completes, if it is clear from the existing progress that
the design constraint (e.g. a desired SLA) will not be met.
Exploiting this knowledge to refine the order of future con-
figurations is another interesting problem, and similar to
dynamic query optimization.

4.3 Validating the Simulator
Another challenge is how to validate the simulator. Sim-

ple simulations can be validated using analytical models.
The predictions of crucial models can be tested on a small
hardware setup, when ever that is possible. Another way
to validate the simulation results, is to make use of publicly
available datasets that describe the behavior of real clus-
ters. There are a few datasets of this kind that have been
published (e.g., [16]), but we certainly need more data to
be able to study in depth all the problems related to DC
design. In fact, one hope that we have is that a broader
recognition of this area of systematic DC design, will en-
able researchers to invest time in producing datasets from
actual deployments, that can then be used in wind tunnel
simulations. Perhaps, projects like OpenCompute [2], could
expand from their current charter to take on the challenge of
making data from large operational systems available on a
continual basis, especially for newer hardware components.
It would also be useful to get sanitized hardware and soft-
ware logs from actual operational clusters to allow validation
of selected simulations (e.g., response time prediction).

4.4 Managing the Wind Tunnel Data
The data related to the wind tunnel falls into two cate-

gories: (a) data generated by wind tunnel simulations, and
(b) operational log data from DCs used to build data-driven
models for the simulator components.

Akin the situation with simulation data in the sciences,
we expect that a large amount of simulation data (gener-
ated by the process of exploring over large portions of the
DC design space) will be collected over time. This data
can be subjected to deep exploratory analysis. For exam-
ple, users may question whether they have already explored
a configuration scenario “similar” to a target scenario, or
question what is a typical pattern of failures for an specific
configuration(s). Determining how to organize the output
of the simulation data along with the input model data (e.g.
should we use a relational store or a schema-less key-value
store?) to facilitate these kinds of analyses is an interesting
problem. The varied nature of this data makes this problem
challenging [4, 9].

Identifying how to store and process operational log data
from real DCs in order to seed data-driven models (e.g. for
an SSD device type) is an interesting problem. As mentioned
in [9], transformation algorithms that convert log data into
meaningful models (e.g., probability distributions) that can
be used by the wind tunnel, must be developed. The related
data privacy issues must also be addressed.

4.5 Modeling the Hardware Components
Satisfying availability and durability SLAs, requires pre-

cise knowledge of the failure characteristics of each hardware
component. For example, modeling the failure behavior of a
hard disk, requires a good estimate of the distribution that
time between disk replacements follows. Although, hard-
ware manufacturer’s typically enclose the values of the mean

4



Figure 2: Probability of data unavailability

time to failure and the annualized failure rate, these num-
bers do not necessarily reflect the actual disk behavior. In
fact, these numbers tend to overestimate the hardware capa-
bilities [16]. Over the last few years, more hardware failure
studies have been conducted [17, 18], but the entire space
of hardware components (such as I/O controllers, memory
modules, etc), has still not been covered.

Another problem often encountered in large DCs is hard-
ware whose performance deteriorates significantly compared
to its specification [5]. This kind of behavior (e.g, an under-
performing NIC card) are hard to reproduce in practice. We
believe that simulation is an excellent way to study the ef-
fects of these behaviors on the DC operations. Examining
how to model these “failures” across the hardware compo-
nents spectrum is an exciting area of future research.

4.6 Modeling the Software Components
Besides better hardware models, we also need models for

software components. One key challenge in modeling soft-
ware is to decide which software design choices affect the
SLA requirements, and as a result should be simulated.

As an example, we present early results from a simula-
tor that we are building. Here we simulate a cloud setting
in which data is replicated for high availability. Figure 2
shows the probability of having at least one customer’s data
become unavailable as the number of node failures in the
cluster increases, for varying cluster sizes, data placement
algorithms and replication factors. We assume that the ser-
vice operates using a quorum-based protocol. In this case,
if the majority of data replicas of a given customer becomes
unavailable, the customer is not able to operate on the data.
We use the Random (R) and Round Robin (RR) data place-
ment policies to distribute the replicas across the machines.
We use 10, 000 users, two replication factors (n = 3 , n = 5)
and two configurations (N = 10 and N = 30 nodes). The
* symbol denotes both cluster configurations. As the figure
shows, the probability of data unavailability varies across
different configurations. It depends on the cluster size, the
replication factor and the data placement policy. Thus, all
of these parameters must be captured in the simulation in
order to quantify the system’s availability behavior.

Determining which software design choices interact, and
as a whole affect a specific aspect of the system’s behavior,
such as data availability, is challenging. Failure to model
a critical parameter may result in inaccurate simulation re-
sults. An interesting research problem is to systematically
analyze existing complex software systems and determin-
ing which parameters are independent from the others and
which ones interact with others. Although, this categoriza-
tion is needed for accurate DC design with the wind tunnel,
the categorization can be made easier by making use of the

wind tunnel itself! This is because the wind tunnel consti-
tutes a framework in which we can add or remove properties
and get insights on the effect that these produce at a global
scale – thus the wind tunnel can help software engineers
make better design choices.

5. CONCLUSIONS
It is too expensive and sub-optimal to design data centers

using existing methods. As the diversity of the hardware
components ecosystem (e.g., new storage device types, low
powered processors, network speeds) continues to increase,
along with an explosion in software methods (e.g., replica-
tion, data partitioning, distributed query processing), it is
critical that we investigate simulation-based methods to an-
swer holistic “what-if” questions on simulated data center
designs. We proposed building a wind tunnel to address this
problem, and outline various research challenges that must
be addressed to realize this vision.

6. REFERENCES
[1] Amazon ec2 sla. http://aws.amazon.com/ec2-sla/.

[2] Open compute project. http://www.opencompute.org.

[3] Windows azure slas. http://www.windowsazure.com/
en-us/support/legal/sla/.

[4] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A
vision for management of complex models. SIGMOD
Rec., 29(4):55–63, Dec. 2000.

[5] T. Do, M. Hao, T. Leesatapornwongsa,
T. Patana-anake, and H. S. Gunawi. Limplock:
Understanding the impact of limpware on scale-out
cloud systems. In SOCC, 2013.

[6] A. Floratou, F. Bertsch, J. M. Patel, and G. Laskaris.
Towards building wind tunnels for data center design.
PVLDB, 7(9):781–784, 2014.

[7] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan.
Availability in globally distributed storage systems. In
OSDI, pages 61–74, 2010.

[8] R. Fujimoto. Parallel discrete event simulation.
Commun. ACM, 33(10):30–53, 1990.

[9] P. J. Haas, P. P. Maglio, P. G. Selinger, and W. C.
Tan. Data is dead... without what-if models. PVLDB,
4(12):1486–1489, 2011.

[10] H. Herodotou and S. Babu. A what-if engine for
cost-based mapreduce optimization. IEEE Data Eng.
Bull., 36(1):5–14, 2013.

[11] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay,
J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. Declarative networking.
Commun. ACM, 52(11):87–95, Nov. 2009.

[12] D. Meisner, J. Wu, and T. F. Wenisch. Bighouse: A
simulation infrastructure for data center systems. In
ISPASS, pages 35–45, 2012.

[13] B. Mozafari, C. Curino, and S. Madden. Dbseer:
Resource and performance prediction for building a
next generation database cloud. In CIDR, 2013.

[14] V. R. Narasayya, S. Das, M. Syamala,
B. Chandramouli, and S. Chaudhuri. Sqlvm:
Performance isolation in multi-tenant relational
database-as-a-service. In CIDR, 2013.

5



[15] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos,
A. G. Dimakis, R. Vadali, S. Chen, and D. Borthakur.
Xoring elephants: Novel erasure codes for big data.
Proc. VLDB Endow., 6(5):325–336, Mar. 2013.

[16] B. Schroeder and G. A. Gibson. Disk failures in the
real world: What does an mttf of 1,000,000 hours
mean to you? In FAST, pages 1–16, 2007.

[17] B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems. IEEE
Trans. Dependable Sec. Comput., 7(4):337–351, 2010.

[18] K. V. Vishwanath and N. Nagappan. Characterizing
cloud computing hardware reliability. In SoCC, pages
193–204, 2010.

[19] G. Wang, A. R. Butt, P. Pandey, and K. Gupta. A
simulation approach to evaluating design decisions in
mapreduce setups. In MASCOTS, pages 1–11, 2009.

[20] W. White, C. Koch, N. Gupta, J. Gehrke, and
A. Demers. Database research opportunities in
computer games. SIGMOD Rec., 36(3):7–13, Sept.
2007.

6


