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The modeling cycle

(1) data collection, data cleaning and data pre-processing (> 80% of total time)
(2) selection of model class (data or algorithmic modeling culture, Breiman 2001)
(3) choice of objective function

(4) 'solving’ a (non-convex) optimization problem

(5) model validation lss function (view 2)

(6) possibly go back to (1)
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> 'solving’ involves:

L

choice of algorithm
choice of stopping criterion, step size, etc.
choice of seed (starting value)




Car insurance frequency example

> str(freMTPL2freq) #source R package CASdatasets

"data.frame ': 678013 obs. of 12 wvariables:

$ IDpol num 1 3 5 10 11 13 15 17 18 21

$ ClaimNb cnmum 1111111111

$ Exposure : num 0.1 0.77 0.75 0.09 0.84 0.52 0.45 0.27 0.71 0.15

$ Area : Factor w/ 6 levels "A","B","C","D" ,..: 4 422255332

$ VehPower : int 5567766777

$ VehAge :int 0020022000

$ DrivAge : int 55 55 52 46 46 38 38 33 33 41

$ BonusMalus: int 50 50 50 50 50 50 50 68 68 50

$ VehBrand : Factor w/ 11 levels "B1","B10","Bl11" ,..: 4 4 4 4 4 4 4 4 4 4

$ VehGas : Factor w/ 2 levels "Diesel” ,”"Regular”: 2211122111

$ Density cint 1217 1217 54 76 76 3003 3003 137 137 60

$ Region : Factor w/ 22 levels "R11",”R21","R22" ,..: 18 18 3 15 15 8 8 20 20 12

observed frequencies per regional groups observed frequency per driver's age groups observed frequency per car brand groups

driver's age groups car brand groups



Generalized linear models (GLMs)

e Determine fromdata D = {(Y1,®1),...,(Y,, x,)} an unknown regression function

e Selection of model class: Poisson GLM with canonical (log-)link:
x — pgV(x) = exp(B,xz) = exp [304-253'%'
J

~MLE
e Estimate regression parameter 3 with maximum likelihood 3 by minimizing
the corresponding deviance loss (objective function)

B — Lp(B).



Example: car insurance Poisson frequencies

After pre-processing the covariates a:

+# in-sample out-of-sample

param. | loss (in 1072) loss (in 10™?)
homogeneous (1 = const.) 1 32.935 33.861
Model GLM (Poisson) 48 31.257 32.149

Note for low frequency examples of, say, 5%: we have in the true model £p ~ 30.3 - 102,

e This convex optimization problem has a unique optimal solution.

e The solution satisfies the balance property (under the canonical link choice)

n

z”: Y, = Z eXP<BMLE> ;).
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From GLMs to neural networks

e Example of a GLM (with log-link = exponential output activation):
x — pgM(x) = exp(B,x).
e Choose network of depth d € N with network parameter 6 = (01.4,0411):

x = pp(®) = exp (fayr, ),

with neural network function (covariate pre-processing x > z)

r — z = z(dﬂ)(a:) = (z(d)o---oz(l)) ().

elzd



Neural network with embeddings

e Network of depth d € N with network parameter 6

T — Uy () = exp(lgr1,2) = exp (g1, 2 Do oz (g
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e Gradient descent method (GDM) provides 0 w.r.t. deviance loss 6§ Lp(0).

e Exercise early stopping of GDM because MLE over-fits (in-sample).



Remarks on the neural network approach

+ Use embedding layers for categorical variables.

+ Typically, the neural network outperforms the GLM approach in terms of
out-of-sample prediction accuracy.

— Resulting prices are not unique, but depend on seeds.
— The neural network does not build on improving the GLM.

— The neural network fails to have the balance property.



Combined Actuarial Neural Network: part |

e Choose regression function with parameter (3, 6)

T MCANN(CB) = €Xp + (Od+1, z@Wo...0z ()
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o GDM provides (3, 6) w.r.t. deviance loss (3,6) — Lp(3,6).



Combined Actuarial Neural Network: part ||

e Choose regression function with parameter (3, 6)

i) (@) = exp + (barr, (2P0 020) (@) ).

VehGas

Density

AN

o GDM provides (3,6) w.r.t. deviance loss (3, 6) — Lp(3,6).

~MLE
e [nitialize gradient descent algorithm with 3 and 0.1 = 0!
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out-of-sample loss

31.80 31.85 31.90 31.95 32.00 32.05 32.10

Combined Actuarial Neural Network

DrivAge - VehBrand VehAge - VehGas

|

out-of-sample loss
31.80 31.85 31.90 31.95 32.00 32.05 32.10
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CANN example

car insurance frequencies

+# in-sample out-of-sample

param. loss (in 107%)  loss (in 107?%)
homogeneous (1 = const.) 1 32.935 33.861
Model GLM (Poisson) 48 31.257 32.149
CANN (2-dim. embeddings) 792 (+48) 30.476 31.566

Note for low frequency examples of, say, 5%: we have in the true model £p ~ 30.3 - 102,
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Failure of balance property

balance property over 50 SGD calibrations
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\

average frequencies

Box plot of 50 gradient descent calibrations
Cyan line: balance property
Magenta line: average of 50 gradient descent calibrations

Balance property fails to hold.
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Regularization step for the balance property

e Apply an additional GLM step on the learned representation

r — z= zécllf;)(w) = (z(d) 0---0 z<1)) (x),

keeping the offset and the learned representation z fixed, ...

e ... thatis, calculate MLE @erLlE of 4.1 from regression function
2= z(2) = exp + {Bas1,2) b

e Regularization step is important, in particular, when there is a class imbalance!
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Summary

A GLM is a special case of a neural network.

Neural networks do covariate pre-processing themselves.

‘Sufficiently good’ network regression models are not unique.
Embedding layers for categorical covariates may help improve modeling.
CANN builds the model around a (generalized) linear function.

An additional GLM step allows us to comply with the balance property.

CANN allows us to identify missing structure in GLMs (more) explicitly.

Thank you!
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