From Generalized Linear Models to Neural Networks, and Back

Mario V. Wüthrich RiskLab, ETH Zurich

April 22, 2020 One World Actuarial Research Seminar

References

• From generalized linear models to neural networks, and back SSRN Manuscript 3491790, March 2020

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3491790

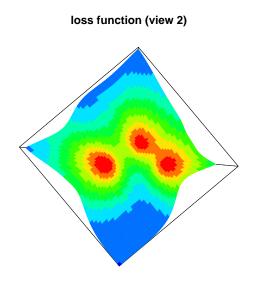
- ➤ This topic originates from the seminal paper:
- Generalized linear models
 Nelder, J.A., Wedderburn, R.W.M. (1972)

 Journal of the Royal Statistical Society, Series A (General) 135/3, 370-384
- ▶ For more (historical) references: see our SSRN Manuscript.

The modeling cycle

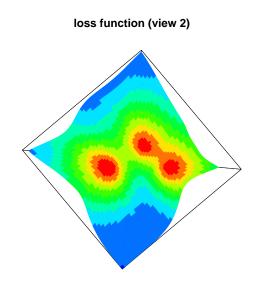
- (1) data collection, data cleaning and data pre-processing ($\geq 80\%$ of total time)
- (2) selection of model class (data or algorithmic modeling culture, Breiman 2001)
- (3) choice of objective function
- (4) 'solving' a (non-convex) optimization problem
- (5) model validation
- (6) possibly go back to (1)
 - > 'solving' involves:

choice of algorithm choice of stopping criterion, step size, etc. choice of seed (starting value)



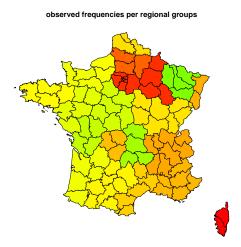
The modeling cycle

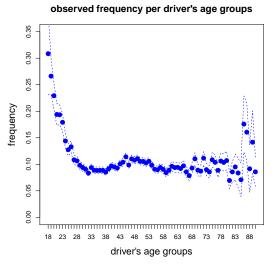
- (1) data collection, data cleaning and data pre-processing ($\geq 80\%$ of total time)
- (2) selection of model class (data or algorithmic modeling culture, Breiman 2001)
- (3) choice of objective function
- (4) 'solving' a (non-convex) optimization problem
- (5) model validation
- (6) possibly go back to (1)
 - > 'solving' involves:
 - ★ choice of algorithm
 - * choice of stopping criterion, step size, etc.
 - ★ choice of seed (starting value)

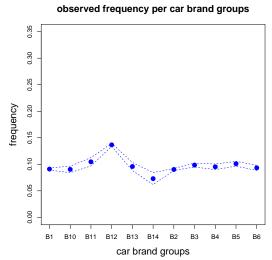


Car insurance frequency example

```
> str(freMTPL2freg) #source R package CASdatasets
'data.frame': 678013 obs. of 12 variables:
           : num 1 3 5 10 11 13 15 17 18 21 ...
 $ IDpol
             : num 1 1 1 1 1 1 1 1 1 1 ...
 $ ClaimNb
 $ Exposure : num 0.1 0.77 0.75 0.09 0.84 0.52 0.45 0.27 0.71 0.15 ...
             : Factor w/ 6 levels "A", "B", "C", "D", ...: 4 4 2 2 2 5 5 3 3 2 ....
 $ Area
 $ VehPower : int 5 5 6 7 7 6 6 7 7 7 ...
 $ VehAge : int 0 0 2 0 0 2 2 0 0 0 ...
 $ DrivAge
             : int 55 55 52 46 46 38 38 33 33 41 ...
 $ BonusMalus: int 50 50 50 50 50 50 68 68 50 ...
 $ VehBrand : Factor w/ 11 levels "B1", "B10", "B11", ...: 4 4 4 4 4 4 4 4 4 ...
 $ VehGas : Factor w/ 2 levels "Diesel", "Regular": 2 2 1 1 1 2 2 1 1 1 ...
 $ Density : int 1217 1217 54 76 76 3003 3003 137 137 60 ...
             : Factor w/ 22 levels "R11", "R21", "R22", ...: 18 18 3 15 15 8 8 20 20 12 ...
 $ Region
```







Generalized linear models (GLMs)

• Determine from data $\mathcal{D} = \{(Y_1, \boldsymbol{x}_1), \dots, (Y_n, \boldsymbol{x}_n)\}$ an unknown regression function

$$\boldsymbol{x} \mapsto \mu(\boldsymbol{x}) = \mathbb{E}[Y].$$

Selection of model class: Poisson GLM with canonical (log-)link:

$$m{x} \mapsto \mu_{m{eta}}^{\mathrm{GLM}}(m{x}) = \exp{\langle m{eta}, m{x} \rangle} = \exp{\left\{ eta_0 + \sum_j \beta_j x_j \right\}}.$$

• Estimate regression parameter β with maximum likelihood $\hat{\beta}^{\text{MLE}}$ by minimizing the corresponding deviance loss (objective function)

$$\boldsymbol{\beta} \mapsto \mathcal{L}_{\mathcal{D}}(\boldsymbol{\beta}).$$

Example: car insurance Poisson frequencies

After pre-processing the covariates x:

	#	in-sample	out-of-sample
	param.	loss (in 10^{-2})	loss (in 10^{-2})
homogeneous ($\mu \equiv \text{const.}$)	1	32.935	33.861
Model GLM (Poisson)	48	31.257	32.149

Note for low frequency examples of, say, 5%: we have in the true model $\mathcal{L}_{\mathcal{D}} \approx 30.3 \cdot 10^{-2}$.

- This convex optimization problem has a unique optimal solution.
- The solution satisfies the balance property (under the canonical link choice)

$$\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \exp\langle \widehat{\boldsymbol{\beta}}^{\text{MLE}}, \boldsymbol{x}_i \rangle.$$

From GLMs to neural networks

• Example of a GLM (with log-link \Rightarrow exponential output activation):

$$\boldsymbol{x} \mapsto \mu_{\boldsymbol{\beta}}^{\mathrm{GLM}}(\boldsymbol{x}) = \exp\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle.$$

• Choose network of depth $d \in \mathbb{N}$ with network parameter $\theta = (\theta_{1:d}, \theta_{d+1})$:

$$\boldsymbol{x} \mapsto \mu_{\theta}^{\mathrm{NN}}(\boldsymbol{x}) = \exp \langle \theta_{d+1}, \boldsymbol{z} \rangle,$$

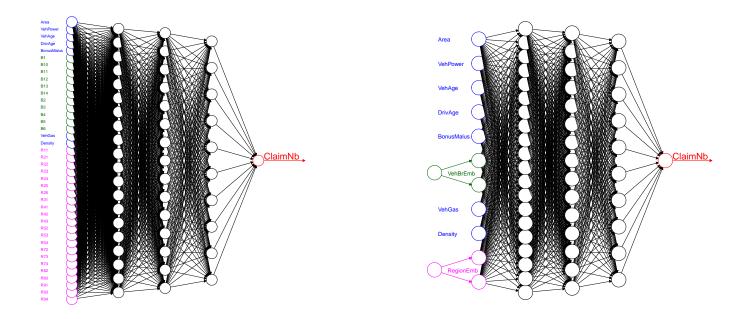
with neural network function (covariate pre-processing $oldsymbol{x} \mapsto oldsymbol{z})$

$$oldsymbol{x} \; \mapsto \; oldsymbol{z} \; = \; oldsymbol{z}_{ heta_{1:d}}^{(d:1)}(oldsymbol{x}) \; = \; \left(oldsymbol{z}^{(d)} \circ \cdots \circ oldsymbol{z}^{(1)}
ight)(oldsymbol{x}).$$

Neural network with embeddings

• Network of depth $d \in \mathbb{N}$ with network parameter θ

$$m{x} \mapsto \mu_{ heta}^{ ext{NN}}(m{x}) = \exp \left\langle heta_{d+1}, m{z} \right\rangle = \exp \left\langle heta_{d+1}, \left(m{z}^{(d)} \circ \cdots \circ m{z}^{(1)} \right) (m{x}) \right\rangle.$$



- Gradient descent method (GDM) provides $\widehat{\theta}$ w.r.t. deviance loss $\theta \mapsto \mathcal{L}_{\mathcal{D}}(\theta)$.
- Exercise early stopping of GDM because MLE over-fits (in-sample).

Remarks on the neural network approach

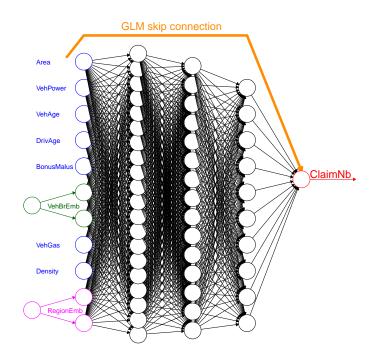
- + Use embedding layers for categorical variables.
- + Typically, the neural network outperforms the GLM approach in terms of out-of-sample prediction accuracy.

- Resulting prices are not unique, but depend on seeds.
- The neural network does not build on improving the GLM.
- The neural network fails to have the balance property.

Combined Actuarial Neural Network: part I

• Choose regression function with parameter (β, θ)

$$\boldsymbol{x} \mapsto \mu_{(\boldsymbol{\beta},\theta)}^{\mathrm{CANN}}(\boldsymbol{x}) = \exp\left\{\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle + \langle \theta_{d+1}, \left(\boldsymbol{z}^{(d)} \circ \cdots \circ \boldsymbol{z}^{(1)}\right) (\boldsymbol{x}) \rangle\right\}.$$

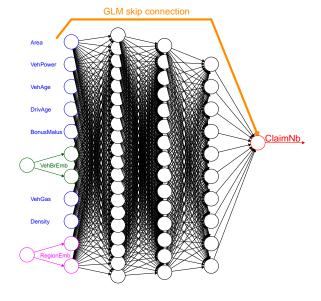


• GDM provides $(\widehat{\beta}, \widehat{\theta})$ w.r.t. deviance loss $(\beta, \theta) \mapsto \mathcal{L}_{\mathcal{D}}(\beta, \theta)$.

Combined Actuarial Neural Network: part II

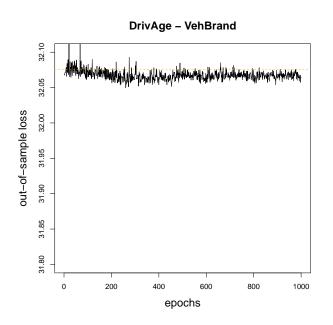
• Choose regression function with parameter (β, θ)

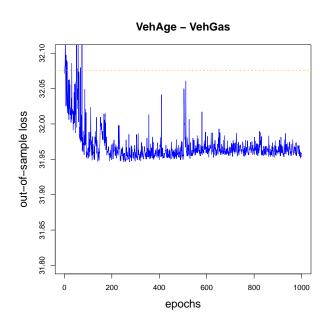
$$\mu_{(\boldsymbol{\beta},\theta)}^{\mathrm{CANN}}(\boldsymbol{x}) = \exp\left\{\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle + \langle \theta_{d+1}, \left(\boldsymbol{z}^{(d)} \circ \cdots \circ \boldsymbol{z}^{(1)}\right) (\boldsymbol{x}) \rangle\right\}.$$



- GDM provides $(\widehat{\beta}, \widehat{\theta})$ w.r.t. deviance loss $(\beta, \theta) \mapsto \mathcal{L}_{\mathcal{D}}(\beta, \theta)$.
- Initialize gradient descent algorithm with $\widehat{\beta}^{\text{MLE}}$ and $\theta_{d+1}=0!$

Combined Actuarial Neural Network



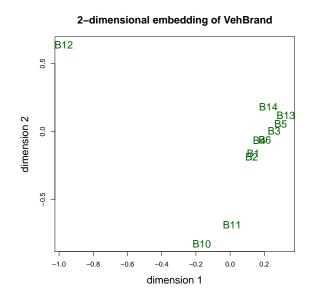


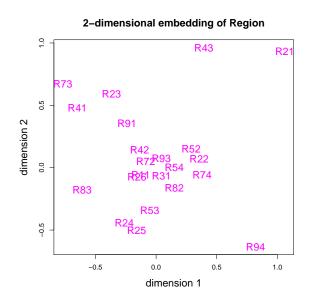
Possible GDM results of the CANN approach.

CANN example: car insurance frequencies

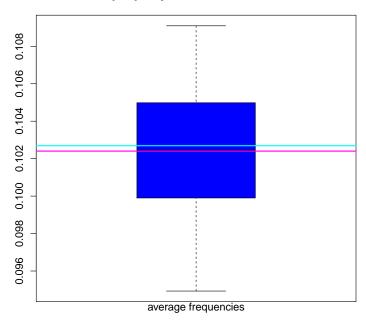
	#	in-sample	out-of-sample
	param.	loss (in 10^{-2})	loss (in 10^{-2})
homogeneous ($\mu \equiv \text{const.}$)	1	32.935	33.861
Model GLM (Poisson)	48	31.257	32.149
CANN (2-dim. embeddings)	792 (+48)	30.476	31.566

Note for low frequency examples of, say, 5%: we have in the true model $\mathcal{L}_{\mathcal{D}} \approx 30.3 \cdot 10^{-2}$.





Failure of balance property



- Box plot of 50 gradient descent calibrations
- Cyan line: balance property
- Magenta line: average of 50 gradient descent calibrations
- Balance property fails to hold.

Regularization step for the balance property

Apply an additional GLM step on the learned representation

$$oldsymbol{x} \; \mapsto \; oldsymbol{z} = oldsymbol{z}_{ heta_{1:d}}^{(d:1)}(oldsymbol{x}) = \left(oldsymbol{z}^{(d)} \circ \cdots \circ oldsymbol{z}^{(1)}
ight)(oldsymbol{x}),$$

keeping the offset $\langle \widehat{\boldsymbol{\beta}}^{\mathrm{MLE}}, \boldsymbol{x} \rangle$ and the learned representation \boldsymbol{z} fixed, ...

• ... that is, calculate MLE $\widehat{\theta}_{d+1}^{\mathrm{MLE}}$ of θ_{d+1} from regression function

$$\boldsymbol{z} = \boldsymbol{z}(\boldsymbol{x}) \mapsto \exp\left\{\langle \widehat{\boldsymbol{\beta}}^{\mathrm{MLE}}, \boldsymbol{x} \rangle + \langle \theta_{d+1}, \boldsymbol{z} \rangle \right\}.$$

Regularization step is important, in particular, when there is a class imbalance!

Summary

- A GLM is a special case of a neural network.
- Neural networks do covariate pre-processing themselves.
- 'Sufficiently good' network regression models are not unique.
- Embedding layers for categorical covariates may help improve modeling.
- CANN builds the model around a (generalized) linear function.
- An additional GLM step allows us to comply with the balance property.
- CANN allows us to identify missing structure in GLMs (more) explicitly.

Thank you!