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Abstract
Background The process of epithelial-mesenchymal transition (EMT) may promote fibrosis in ovarian tissue related 
to polycystic ovary syndrome (PCOS), thus affecting ovarian function and hormonal balance.

Objective This study aimed to explore key genes associated with EMT in PCOS and their potential molecular 
regulatory mechanisms, exclusively from the perspective of transcriptomics and single-cell RNA sequencing (scRNA-
seq), combined with Mendelian Randomization (MR) analysis.

Methods The dataset for PCOS and EMT-related genes (EMT-RGs) were sourced from public databases. The key genes 
in this study were identified via differential expression analysis, MR, and evaluation of expression levels. Enrichment 
analysis and a series of functional analyses were conducted on these genes to further elucidate their potential 
mechanisms. Subsequently, using scRNA-seq data and validation of the expression of key genes, key cell group in 
PCOS were identified, followed by pseudo-time and cell communication analyses to provide deeper insights.

Results Three key genes, NUCB2 [odds ratio (OR) = 0.8634, 95% confidence interval (CI): 0.8145–0.9152, P < 0.0001], 
PGF (OR = 0.8393, 95% CI: 0.7185–0.9805, P < 0.05), and CRIM1 (OR = 0.7539, 95% CI: 0.6556-0.670, P < 0.0001), were 
identified as having a unidirectional causal association with PCOS and were associated with a reduced risk of PCOS. 
In public datasets, NUCB2 exhibited significantly increased expression in PCOS samples, while PGF and CRIM1 
showed the opposite trends. These three genes were enriched in pathways related to cellular functions, metabolic 
processes, and the operation of the nervous system, and they were co-expressed in smooth muscle. Additionally, 
five cell clusters were annotated, among which fibroblasts were identified as key cells due to their highest expression 
of all three key genes. Further analysis revealed a bifurcation event occurring during the mid-development stage of 
fibroblasts, with PCOS samples displaying a higher abundance of fibroblasts. In PCOS samples, fibroblasts exhibited 
more extensive communication with secretory epithelial cells, indicating a more complex intercellular interaction 
within this condition.
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Introduction
Polycystic ovary syndrome (PCOS) represents the most 
prevalent endocrinopathy affecting adolescent females 
and women of reproductive age, with global prevalence 
rates varying from 6 to 21%, depending on the country 
and diagnostic criteria used [1]. Common treatments 
include lifestyle changes, physical activity, and medica-
tion such as combined oral contraceptives, metformin, 
and clomiphene [2, 3]. PCOS is characterized by hyper-
androgenism, ovulatory dysfunction, and polycystic 
ovarian morphology, often accompanied by insulin resis-
tance and obesity [4]. Additionally, PCOS increases the 
risk of several complications, including endometrial can-
cer, pregnancy complications (e.g., gestational diabetes 
and preeclampsia), cardiovascular diseases, type 2 diabe-
tes mellitus, metabolic syndrome, depression, and anxi-
ety [5]. Current evidence suggests a complex interaction 
between genetic, hormonal, and environmental factors in 
PCOS, though the precise etiology and pathology remain 
incompletely understood [6].

Epithelial-mesenchymal transition (EMT) is a crucial 
biological process where epithelial cells transition to a 
mesenchymal phenotype, gaining enhanced migratory 
and invasive properties [7]. This process is fundamental 
in embryogenesis, tissue repair, and fibrosis [8]. Recent 
studies have begun to explore the connection between 
EMT and PCOS. Evidence suggests EMT may contribute 
to the pathogenesis of PCOS by promoting the transfor-
mation of epithelial ovarian cells into mesenchymal cells, 
thereby enhancing fibrosis and disrupting normal ovar-
ian function [7]. In PCOS, an imbalance in EMT-regu-
lating factors such as TGF-β and inflammatory cytokines 
may contribute to excessive fibrotic tissue formation in 
the ovaries, leading to impaired ovarian function and fol-
liculogenesis [7, 9]. A study has revealed that ALG2 plays 
a critical role in ovarian functions by showing downregu-
lation under hypoxic conditions and inhibiting EMT and 
stemness of ovarian granulosa cells through suppressing 
the Wnt/β-catenin signaling pathway [10]. Disrupted reg-
ulation of EMT and MAPK signaling pathways may result 
in impaired endometrial cell homeostasis and functional-
ity, thereby reducing the reproductive potential of PCOS 
patients [11, 12]. Research indicates that hyperandrogen-
ism in PCOS can exacerbate EMT processes, further 
contributing to ovarian dysfunction and the characteris-
tic polycystic ovarian morphology [13]. Despite numer-
ous studies investigating various molecular mechanisms 

in PCOS patients, the expression of EMT-related regula-
tors in PCOS have not been extensively explored.

Mendelian randomization (MR) is a method that 
utilizes genetic variants as instrumental variables to 
assess causal relationships between risk factors and dis-
eases [14]. This approach typically leverages data from 
genome-wide association studies (GWAS). MR helps 
determine causality by minimizing confounding and 
reverse causation biases, making it a robust tool com-
pared to traditional observational studies [15]. Numerous 
MR studies have shown that immune cells, gut micro-
biota [16], age at menarche (> 15 years), age at meno-
pause, obesity, testosterone levels, fasting insulin levels, 
and depression appear to play causal roles in the etiol-
ogy of PCOS [17–19]. Additionally, studies have found 
that PCOS can act as a risk factor for other diseases and 
is causally associated with an increased risk of breast 
cancer and chronic kidney disease [19, 20]. MR effec-
tively controls for confounding factors, making it crucial 
for identifying the causal relationship between differen-
tially expressed EMT-related genes (DE-EMT-RGs) and 
PCOS. This method enhances the reliability of results 
and offers valuable insights into the underlying mecha-
nisms of PCOS [19].

Single-cell RNA sequencing (scRNA-seq) is an 
advanced technology that enables high-throughput, 
multidimensional analysis at the individual cell level. 
Unlike traditional RNA sequencing, which averages tran-
script levels across a cell population, scRNA-seq pro-
vides complete transcriptional profiles of individual cells 
[21]. This allows for detailed analysis of intracellular and 
intercellular interactions, identification of cellular het-
erogeneity, discovery of new cell types, and detection of 
dynamic changes in cell states. The improved resolution 
of scRNA-seq facilitates the identification of potential 
therapeutic targets and characterizes cellular and molec-
ular profiles of disease [22]. Study has utilized scRNA-seq 
technology to analyze the mechanisms of PCOS-related 
hyperandrogenism and predict potential therapeutic tar-
gets [23]. Additionally, single-cell sequencing combined 
with transcriptome analysis has revealed that abnormal 
mitochondrial function in oocytes at the germinal vesi-
cle stage may contribute to decreased oocyte quality in 
patients with PCOS [24]. Combining single-cell sequenc-
ing with Mendelian randomization enables high-resolu-
tion analysis of gene expression at the single-cell level, 
reduces confounding factors and reverse causality bias, 

Conclusion This study identified three EMT-RGs: NUCB2, PGF, and CRIM1, which were associated with a reduced risk 
of PCOS, with fibroblast identified as a key cell group in the disease’s pathology. This provides new insights for PCOS 
research.
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and more accurately identifies causal mechanisms of dis-
eases and predicts potential therapeutic targets.

In this study, we integrated transcriptome data of 
PCOS from public databases with single-cell sequencing 
data and employed Mendelian randomization analysis to 
identify key EMT-related genes that are causally associ-
ated with PCOS. This approach provided novel insights 
into the relationship between PCOS and EMT, as well as 
the underlying regulatory mechanisms.

Methods
Data source
To obtain transcriptome datasets related to Polycys-
tic Ovary Syndrome (PCOS), two separate datasets 
were retrieved from the Gene Expression Omnibus 
(GEO) database ( h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v / g d s): 
GSE155489 and GSE168404. Dataset GSE155489, based 
on the GPL20795 platform, included samples from 5 
PCOS patients and 5 normal control granulosa cells, 
and was designated as the training set [25]. On the other 
hand, dataset GSE168404, based on the GPL16791 plat-
form, comprised samples from 5 PCOS patients and 5 
normal control granulosa cells, serving as the validation 
set [26].

Additionally, a single-cell RNA sequencing (scRNA-
seq) dataset was selected from an early published article 
and was available at  h t t p  s : /  / z e n  o d  o . o  r g /  r e c o  r d  / 7 9 4 2 9 6 8 
[23], comprising 20 ovarian tissue samples from 5 PCOS 
patients and 5 controls. Notably, the dataset was derived 
from whole ovarian tissues, containing a heterogeneous 
cell population, including theca cells, fibroblasts, immune 
cells, and secretory epithelial cells, reflecting the complex 
ovarian microenvironment.

Moreover, 1,185 EMT-RGs were obtained from the 
dbEMT 2 database ( h t t p  : / /  d b e m  t .  b i o  i n f  o - m i  n z  h a o  . o r  g / 
d o  w n  l o a d . c g i), providing a comprehensive resource for 
exploring the role of EMT in PCOS pathophysiology.

Selection and enrichment analysis of differentially 
expressed genes (DEGs) and differentially expressed EMT-
RGs (DE-EMT-RGs)
Differential expression analysis was conducted between 
PCOS and control samples in the training dataset using 
the DESeq2 package (v 1.34.0) [27] to screen for DEGs 
(|log2FC| ≥ 0.5 and P < 0.05). Visualization was performed 
using the ggplot2 (v 3.3.5) [28] and pheatmap packages (v 
1.0.12) [29] to create volcano plot and heatmap, respec-
tively. Subsequently, these DEGs were intersected with 
1,185 EMT-RGs from an existing database via ggvenn 
package (v 1.7.3) [30] to identify DE-EMT-RGs specific to 
this study. Further analysis was conducted on these DEGs 
and DE-EMT-RGs, utilizing the clusterProfiler package 
(v 4.6.0) [31] for Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment 

analyses. The GO analysis encompassed three categories: 
Biological Process (BP), Cellular Component (CC), and 
Molecular Function (MF). Visualization of the enrich-
ment analysis was achieved using ggplot2. Following 
that, in order to further explore the relationships of DE-
EMT-RGs at the protein level, these DE-EMT-RGs were 
input into a search tool for the retrieval of interacting 
genes (STRING) database (http://string-db.org) with a 
set interaction score of greater than 0.7. The protein-pro-
tein interaction (PPI) network was then visualized using 
Cytoscape software (v 3.9.1) [32].

Identification of causal exposure factors associated with 
PCOS through Mendelian randomization (MR) analysis
To investigate the causal link between DE-EMT-RGs and 
PCOS, we employed MR analysis leveraging data from 
two distinct datasets: the ‘DE-EMT-RGs’ dataset and the 
‘PCOS’ dataset (finngen_R9_E4_PCOS), as exposure fac-
tors and outcome variable respectively. The Expression 
Quantitative Trait Loci (eQTL) data for ‘DE-EMT-RGs’ 
as well as the ‘PCOS’ dataset (finngen_R9_E4_PCOS) uti-
lized genome-wide association study (GWAS) identifiers 
from the FinnGen database ( h t t p  s : /  / w w w  . fi   n n  g e n  . fi  /  e n  / a 
c c e s s _ r e s u l t s). A successful MR analysis hinged on three 
critical prerequisites: (1) the presence of a robust and sig-
nificant association between the instrumental variables 
(IVs) and the exposure, (2) the independence of the IVs 
from any confounding variables, and (3) the specificity of 
IVs affecting the outcome solely through the exposure.

Utilizing the TwoSampleMR package (v 0.5.8) [33], 
our MR study commenced with the extract_instru-
ments function, which identified single nucleotide poly-
morphisms (SNPs) closely linked to the exposure factor, 
marked by a significance threshold (P < 5 × 10− 6). We 
excluded any SNPs in linkage disequilibrium (LD) (using 
a 10,000  kb window and a threshold of R2 < 0.001) and 
those strongly associated with the outcome. Afterward, 
the mv_harmonise_data function was enlisted to ensure 
coherence in effect alleles and sizes across the datasets, 
selectively filtering and refining the SNPs to fulfill the 
stringent criteria essential for a valid MR analysis. This 
thorough approach reinforced the robustness of our find-
ings, aiming to conclusively illuminate any causal con-
nections between DE-EMT-RGs and PCOS. MR analysis 
was conducted by employing mr function in combination 
with five algorithms: MR-Egger [34], Weighted median 
[35], Inverse variance weighted (IVW) [36], Simple mode 
[33] and Weighted mode [37]. In this study, the IVW 
method served as the primary reference for interpret-
ing the results of the MR analysis (P < 0.05). Odds Ratio 
(OR) > 1 suggested that the exposure factor was a risk fac-
tor for the outcome variable, whereas OR < 1 indicated 
that the exposure factor was a protective factor for the 
outcome variable.

https://www.ncbi.nlm.nih.gov/gds
https://zenodo.org/record/7942968
http://dbemt.bioinfo-minzhao.org/download.cgi
http://dbemt.bioinfo-minzhao.org/download.cgi
http://string-db.org
https://www.finngen.fi/en/access_results
https://www.finngen.fi/en/access_results
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Recognition of key genes with causal association to PCOS
Thereafter, we evaluated the expression levels of exposure 
factors with causal association to PCOS in both the train-
ing and validation datasets. Genes that exhibited signifi-
cant differences and consistent expression trends across 
these datasets were defined as key genes in this study 
(P < 0.05). For these genes, scatter plots, forest plots, and 
funnel plots were created to visualize the MR results. To 
ascertain the robustness of the MR findings, a compre-
hensive suite of sensitivity analyses was conducted. The 
assessment began with an evaluation of heterogeneity 
using Cochran’s Q test via the mr_heterogeneity function; 
a P-value greater than 0.05 indicated an absence of sig-
nificant heterogeneity [38]. Subsequent analysis included 
testing for horizontal pleiotropy, which might indicate 
potential confounders. This was performed using both 
the mr_pleiotropy_test and Mrpresso functions, where a 
P-value greater than 0.05 suggested no noticeable pleiot-
ropy [39]. Additionally, the Leave-One-Out (LOO) sen-
sitivity analysis was implemented, whereby individual 
SNPs were iteratively removed to verify the stability of 
the results when excluding specific variants [40]. To fur-
ther ensure the reliability of the causal inference, the Stei-
ger directional test was applied to address the possibility 
of reverse causation. Confirmation of the causal associa-
tion was strengthened when the correct_causal_direction 
outcome was identified as TRUE and the Steiger P-value 
was lower than 0.05 [41].

Functional and annotation analyses
In an effort to further explore the signaling pathways 
enriched with key genes, in the training dataset, the 
psych package (v 2.2.9) [42] was utilized to perform 
Spearman correlation analysis between each key gene 
and all other genes in the samples. The genes were then 
sorted based on log2FC. Using the clusterProfiler pack-
age and KEGG gene sets from the Molecular Signatures 
Database (MSigDB) ( h t t p  s : /  / w w w  . g  s e a  - m s  i g d b  . o  r g / g s 
e a / m s i g d b), Gene Set Enrichment Analysis (GSEA) was 
conducted [|Normalized Enrichment Score NES)|>1 
and adj. P < 0.05]. Moreover, Gene Set Variation Analy-
sis (GSVA) was performed to scrutinize differences in 
enriched pathways between PCOS and control samples. 
Initially, the pathway scores for PCOS samples were cal-
culated in the training set using the GSVA package (v 
1.42.0) [43]. Next, the PCOS samples were stratified into 
high and low expression groups according to the median 
expression levels of key genes. Differences in the GSVA 
scores between these groups were then analyzed using 
the limma package (v 3.50.1) [44] (P < 0.05).

Comprehensive analysis of key genes: subcellular 
localization, chromosomal positions, functional 
associations, and differential expression across immune 
cells and tissues
Differential expression of key genes across various 
immune cells could significantly impact their functional-
ity. Consequently, using the Human Protein Atlas (HPA) 
database ( h t t p  s : /  / w w w  . p  r o t e i n a t l a s . o r g /), the expression 
of these key genes in 18 different immune cell types was 
analyzed. This comprehensive analysis aimed to eluci-
date the distinct roles these genes played in immune cell 
regulation and their broader implications in immunol-
ogy. After that, to investigate the subcellular localiza-
tions of key genes, we employed the Hum-mPLoc 3.0 ( 
h t t p  : / /  w w w .  c s  b i o  . s j  t u . e  d u  . c n  / b i  o i n f  / H  u m - m P L o c 3 /), 
a tool designed to analyze the subcellular localization 
of proteins encoded by these genes. In addition, to elu-
cidate the specific chromosomal locations of these key 
genes, the RCircos package (v 1.2.2) [45] was utilized, 
and this software aided in visualizing the chromosomal 
positions of genes, providing valuable insights into their 
genomic arrangement. Then, to explore potential genes 
associated with the function of our key genes, we turned 
to the GeneMANIA database  (   h t t p : / / w w w . g e n e m a n i a . o 
r g     ) . This powerful resource offered predictions on genes 
that may be functionally similar or related, enriching our 
understanding of gene networks. Eventually, to ascertain 
the mRNA expression patterns of the key genes across 
various organs and tissues, we used the BioGPS data-
base (http://biogps.org). This platform facilitated the  v i s 
u a l i z a t i o n and analysis of gene expression data, enabling 
us to explore the differential expression of these genes in 
diverse biological contexts.

Construction of regulatory network
Subsequent analyses aimed to elucidate the molecu-
lar regulatory mechanisms of key genes by constructing 
regulatory networks. Initially, potential miRNAs regu-
lating key genes were predicted using the Starbase data-
base (https://rnasysu.com/encori/), selecting those with 
a clipExpNum greater than 20. Further predictions were 
made using the miRDB database (https://mirdb.org/), 
applying a threshold of Target Score greater than 60. The 
intersection of miRNAs from both databases yielded the 
final set of miRNAs. The corresponding lncRNAs for 
these final miRNAs were then determined using the Star-
Base database, followed by the construction of a lncRNA-
miRNA-mRNA network. Concurrently, transcription 
factors (TFs) targeting the key genes were obtained from 
the ChIP-X Enrichment Analysis 3 (ChEA3) database ( 
h t t p  s : /  / m a a  y a  n l a  b . c  l o u d  / c  h e a 3 /), with the selection 
criterion being a Rank less than 200. This information 
facilitated the creation of a TF-mRNA network. Visual-
ization of the results was accomplished using Cytoscape 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://www.proteinatlas.org/
http://www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/
http://www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/
http://www.genemania.org
http://www.genemania.org
http://biogps.org
https://rnasysu.com/encori/
https://mirdb.org/
https://maayanlab.cloud/chea3/
https://maayanlab.cloud/chea3/
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software. In addition, the SIGNOR database  (   h t t p s : / / s i g n 
o r . u n i r o m a 2 . i t /     ) was employed for annotating proteins of 
the key genes, allowing for the construction of a key gene 
signal information network that focused on exploring the 
signal transduction relationships of the key genes.

Potential drug targets and molecular docking studies for 
the treatment of PCOS
A series of analyses were conducted on potential drugs 
targeting key genes for the treatment of PCOS. In the 
beginning, the Drug-Gene Interaction database (DGIdb) 
( h t t p  : / /  d g i d  b .  g e n  o m e  . w u s  t l  . e d u /) was used to predict 
potential drugs targeting key genes. Afterward, to further 
analyze these predictions, we employed AlphaFold v2.0 
(https://alphafold.ebi.ac.uk/) as an artificial intelligence 
tool to predict the 3D structures of the key genes. The 
amino acid sequences of the key genes were downloaded 
from the UniProt-KB database  (   h t t p : / / w w w . u n i p r o t . o r g /     
) . The structural integrity of the 3D models was assessed 
using the Local Distance Difference Test (LDDT) scores 
from the AlphaFold database, with scores above 90 indi-
cating excellent stereochemical performance of the key 
gene models.

Next, molecular docking studies were established, spe-
cifically the 3D structures of target drugs were retrieved 
and downloaded in SDF format from the PubChem data-
base ( h t t p  s : /  / p u b  c h  e m .  n c b  i . n l  m .  n i h . g o v /). Likewise, the 
3D structures of the key gene proteins were retrieved and 
downloaded in PDB format from the UniProt database 
(https://www.uniprot.org/). Molecular docking was then 
executed on the CB-DOCK2 database ( h t t p  : / /  c a d d  . l  a b s  
h a r  e . c n  / c  b - d o c k 2 / i n d e x . p h p). The results for five  d i ff  e r e 
n t active sites (CurPocket_ID) were presented, including 
Vina docking scores, cavity volumes, spatial center coor-
dinates, and the sizes of the docking regions. The Vina 
scores indicated the binding affinity of small molecules 
at these sites, with binding energies less than − 5 kJ/mol 
suggesting strong binding capabilities.

ScRNA-seq analysis
The comprehensive analysis of the scRNA-seq dataset 
was analyzed by Seurat package (v 4.1.0) [46]. Origi-
nally, a meticulous data quality control (QC) process was 
implemented on the acquired samples from 5 patients 
with PCOS and 5 control individuals within the scRNA-
seq dataset. The objective was to excise any low-quality 
data attributable to cellular deterioration or unsuccessful 
library preparations. The established exclusionary crite-
ria encompassed the elimination of genes with detect-
able expression in less than 200 cells, the removal of cells 
exhibiting a nFeature_RNA (the count of distinct genes) 
in excess of 8000, a nCount_RNA (total gene expression 
counts) surpassing 80,000, as well as discarding cells with 
a mitochondrial gene expression percentage (percent. 

mt) of 10% or higher. Subsequently, leveraging the Jack-
StrawPlot and JackStraw functions, we diligently pin-
pointed statistically robust principal components (PCs). 
These components served as a foundation for dimen-
sionality reduction through principal component analy-
sis (PCA). Following this reduction, we embarked on an 
unsupervised clustering analysis of the cells employing 
the FindNeighbors and FindClusters functions, setting 
the resolution parameter to 1. The clustering results were 
then depicted using the uniform manifold approximation 
and projection (UMAP) for visual representation. In the 
final phase of our analysis, cell clusters were annotated by 
referencing the distinct marker genes catalogued in the 
CellMarker2 database ( h t t p  : / /  b i o -  b i  g d a  t a .  h r b m  u .  e d u . c 
n / C e l l M a r k e r /), and the distribution of marker genes in 
each cell cluster was displayed.

Identifying key cells and constructing cell communication 
and pseudo-time analyses
After annotating multiple cell clusters, we constructed 
a series of analyses to further investigate at the cellular 
level. At the outset, we explored key cells in PCOS by 
assessing the expression of key genes within these clus-
ters. Cell clusters exhibiting the highest expression lev-
els of these key genes were defined as key cells for this 
study. Subsequently, to further explore the differen-
tiation trajectories and evolutionary paths of these key 
cells during development, the reduceDimension func-
tion in the Monocle3 package (v 2.26.0) [47] combined 
with the DDRTree algorithm was utilized to perform 
dimensionality reduction. This step simplified the com-
plex relationships between cells, making it more suitable 
for visualization and further analysis. Next, we used the 
order Cells function to sort the key cells based on the 
reduced dimensionality data, inferring their pseudotime 
trajectories in biological processes. Ultimately, for the 
identified cell clusters, we conducted communication 
analysis using the CellChat package (v 1.5.0) [48]. This 
involved calculating the communication likelihood at the 
signaling pathway level by computing all ligand-receptor 
interactions associated with each pathway and construct-
ing ligand-receptor networks. To better infer the node 
sizes and edge weights in the networks across different 
groups, we calculated the maximum number of interac-
tions and interaction weights for each cell in both control 
and PCOS samples.

Statistical analysis
All analyses were executed in R software (v 4.2.2). Dif-
ferences between groups were analyzed by the Wilcoxon 
test. P < 0.05 was considered statistically significant.

https://signor.uniroma2.it/
https://signor.uniroma2.it/
http://dgidb.genome.wustl.edu/
https://alphafold.ebi.ac.uk/
http://www.uniprot.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.uniprot.org/
http://cadd.labshare.cn/cb-dock2/index.php
http://cadd.labshare.cn/cb-dock2/index.php
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
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Results
Identification of 215 DE-EMT-RGs enriched in multiple 
functions and pathways
Based on differential expression analysis between PCOS 
and control samples in the training dataset, 3,114 DEGs 
were gained, including 1,559 upregulated genes and 
1,555 downregulated genes (Fig. 1a). Subsequent enrich-
ment analysis of the DEGs characterized 240 GO terms, 

comprising 166 BP, 66 CC, and 8 MF. These terms were 
related to metabolic processes, cell adhesion, and signal-
ing, as well as the structure and function of organelles. In 
the KEGG pathway analysis, 80 pathways were enriched, 
covering amino acid metabolism, energy production, 
disease mechanisms, and signaling pathways (Fig.  1b). 
Intersection between these 3,114 DEGs and 1,185 EMT-
RGs resulted in 215 DE-EMT-RGs (Fig. 1c). Enrichment 

Fig. 1 Identification and enrichment analysis of differential genes. (a-1,2) Volcano plot of differential gene analysis. Red dots represent upregulated 
genes, blue dots represent downregulated genes, and grey dots represent genes with no significant difference or smallfold changes. (b-1,2) GO and KEGG 
Enrichment Analysis of Differentially Expressed Genes (DEGs). (c) Venn map to obtain a total of 215 candidate genes shared by EMT-RGs and DEGs. (d-1,2) 
Enrichment pathway network using the key KEGG results. (e) PPI network constructed using the 215 DE-EMT-RGs
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analysis of these genes highlighted 1,749 GO entries, 
including 1,665 BPs, 42 CCs, and 42 MFs, mainly deal-
ing with cell migration and adhesion, signaling pathways, 
and mechanisms of gene expression regulation. These 
were closely associated with physiological and pathologi-
cal processes such as cancer metastasis, wound healing, 
and tissue remodeling. The KEGG analysis identified 124 
pathways that span across aspects like cancer biology, 
metabolic diseases, cell signaling, cell fate determination, 
and cell stress responses, revealing crucial insights on 
molecular regulation of cell and tissue behavior, pivotal 
for understanding human health, disease, and therapeutic 
interventions (Fig. 1d). Furthermore, a PPI network con-
structed using the 215 DE-EMT-RGs included 95 nodes 
with 40 edges, an average node degree of 0.884, and an 
average local clustering coefficient of 0.271 (Fig.  1e). 
Notably, proteins such as KRAS, FN1, CD44, MAPK8, 
NFKB1, and CXCL8 showed high interaction scores, 
indicating significant roles in the network’s functionality.

Key genes NUCB2, PGF, and CRIM1 as protective factors for 
PCOS
Subsequently, we took 215 DE-EMT-RGs as exposure 
factors and PCOS as the outcome variable, aiming to 
identify genes that had a causal association with PCOS. 
After selecting IVs, the IVW method revealed 55 expo-
sure factors that were significantly causally associated 
with PCOS (P < 0.05) (Supplementary Table 1). Further 
expression validation analysis was conducted to refine 
the screening. In both the training and validation sets, 
the expressions of these 55 genes were examined (Fig. 
S1). Unfortunately, expression data for CXCL8 was not 
found in the validation set, hence expressions of only 
54 genes were presented in that set. The results showed 
that only NUCB2, PGF, and CRIM1 had consistent and 
significantly different expression trends in the two train-
ing sets (P < 0.05), with NUCB2 exhibiting a notably 
lower expression trend in PCOS samples (P < 0.05), while 
PGF and CRIM1 showed the opposite (P < 0.05). Inter-
estingly, in the MR analysis, NUCB2 (OR = 0.8634, 95% 
confidence interval (CI): 0.8145–0.9152, P < 0.0001), 
PGF (OR = 0.8393, 95% CI: 0.7185–0.9805, P < 0.05), and 
CRIM1 (OR = 0.7539, 95% CI: 0.6556-0.670, P < 0.0001) 
all emerged as protective factors for PCOS. The underly-
ing mechanisms of these relationships warranted further 
discussion.

The scatter plots depicted a striking negative correla-
tion between three genes and PCOS, underlining their 
role as protective factors against PCOS, devoid of con-
founding variables (Fig. 2a). Meanwhile, the forest plots 
demonstrated that these genes exerted a positive influ-
ence on PCOS protection, with fixed effects showing a 
value less than zero, implying that these genes might also 
decrease the probability of developing PCOS (Fig.  2b). 

The methodological integrity of the study was corrobo-
rated by the funnel plot, which confirmed compliance 
with the second axiom of MR (Fig. 2c).

Additionally, we conducted a sensitivity analysis to 
further confirm the reliability of the MR analysis. Spe-
cifically, the absence of heterogeneity in the sample was 
indicated by the results of Cochran’s Q test (P > 0.05) 
(Supplementary Table 2), and the horizontal pleiotropy 
test and Mrpresso further demonstrated that there was 
no horizontal pleiotropy in the MR study (mr_heteroge-
neity and Mrpresso P > 0.05) (Supplementary Table 3). 
Following the systematic removal of individual SNPs, the 
impact attributed to the residual SNPs on the outcome 
variables remained notably stable, thereby reaffirming the 
robustness of the Mendelian Randomization analysis out-
comes (Fig. 2d). At last, the Steiger test was conducted, 
further substantiating the unidirectional causal associa-
tion between NUCB2, PGF, and CRIM1 and PCOS (cor-
rect_causal_direction = TRUE and steiger_p val < 0.05) 
(Supplementary Table 4).

Deciphering the role of key genes and pathways in PCOS 
pathogenesis
Further analysis, utilizing the combination of GSEA and 
GSVA, aimed to explore some signaling pathways in key 
genes as well as between PCOS and control samples. 
Particularly, three key genes were commonly enriched 
in the “Parkinson’s disease” and “proteasome” pathways. 
Additionally, PGF and CRIM1 were also co-enriched in 
pathways such as “glycolysis gluconeogenesis”, “ribo-
some”, and “axon guidance” (Fig.  3a-c). These pathways 
were intricately linked to cellular function, metabolic 
processes, and neural system operations, suggesting that 
these key genes could potentially impact the onset and 
progression of PCOS by modulating these critical bio-
logical processes.

GSVA results highlighted notable differences between 
PCOS and control samples in several GO terms, includ-
ing “reactome ionotropic activity of kainate receptors”, 
“reactome presynaptic depolarization and calcium chan-
nel opening”, “reactome metabolism of polyamines”, and 
“reactome ABC transporter disorders” (Fig.  3d). In the 
KEGG analysis, pathways such as “glycosphingolipid bio-
synthesis ganglio series”, “ribosome”, “circadian rhythm in 
mammals”, and “protein export” showed significant varia-
tion, underscoring potential areas for further investiga-
tion in the pathophysiology of PCOS (Fig. 3e).

Expression, localization, and interaction of NUCB2, CRIM1, 
and PGF in immune response and organ-specific gene 
networks
A suite of analyses was carried out to deepen our under-
standing of key genes. The initial stage involved assess-
ing the expression levels of these genes across 18 
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Fig. 2 Screening and identification of key genes. (a) Scatter Plot Analysis of the Expression Patterns of NUCB2, PGF, and CRIM1 Genes. (b) Forest Plot 
Analysis of the Association between PCOS and the Genes NUCB2, PGF, and CRIM1. (c) Analysis of Funnel Plots for the Genes NUCB2, PGF, and CRIM1 Genes. 
(d) Leave-One-Out Sensitivity Analysis of the Association between PCOS and the Genes NUCB2, PGF, and CRIM1
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immune cell types, revealing a notably higher expres-
sion of NUCB2 in these cells, peaking in Plasmacytoid 
Dendritic cells (Fig. 4a). In a similar patterning, CRIM1 
also demonstrated maximal expression in Plasmacytoid 

Dendritic cells, whereas PGF didn’t exhibit any promi-
nent expression traits (Fig.  4b, c). Further investigation 
into the subcellular localization of these genes uncovered 
their dominant cellular residence. Remarkably, CRIM1’s 

Fig. 3 Acquisition of key pathways. (a) KEGG Pathway Enrichment Analysis of the NUCB2 Gene. (b) KEGG Pathway Enrichment Analysis of the PGF Gene. 
(c) KEGG Pathway Enrichment Analysis of the CRIM1 Gene. (d) Key Pathway GSVA Scores in PCOS and Control Samples. (e) KEGG Pathway Enrichment 
Analysis of the Pathophysiology of PCOS
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Fig. 4 Expression and localization of key Genes in immune response and organ-specific gene networks. (a) Expression Levels of Key Genes in Immuno-
cells with Low Specificity. (b) Expression Levels of Key Genes in Non-Specific Immune Cells. (c) Expression Levels of Key Genes in Highly Specific Immune 
Cells.(d) Subcellular localization of key genes. (e) Chromosomal localization of key genes. (f) The Gene-Gene Interaction (GGI) network. (g) mRNA expres-
sion profiles of NUCB2, PGF, and CRIM1 genes in diverse organs and tissues
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mRNA primarily occupied the nucleus, NUCB2’s mRNA 
was predominantly distributed across the cytoplasm, 
endoplasmic reticulum, and nucleus, and PGF’s mRNA 
was mainly found in the cytoplasm (Fig.  4d). Chromo-
somal localization studies pinpointed the positions of 
these genes, with CRIM1 anchored on chromosome 2, 
NUCB2 on chromosome 11, and PGF on chromosome 14 
(Fig. 4e). Additionally, characterization of the Gene-Gene 
Interaction (GGI) network highlighted 20 genes tied to 
the functions of the trio (Fig.  4f ). Nevertheless, specific 
functions related to NUCB2 and CRIM1 remained elu-
sive, whereas PGF was implicated in several functions, 
including the regulation of endothelial cell proliferation, 
positive regulation of epithelial cell proliferation, and 
other related proliferative processes. Acknowledging the 
intrinsic link between a gene’s function and its locational 
context, we leveraged the BioGPS database to map the 
mRNA expression profiles of these key genes across vari-
ous organs and tissues. The resulting organ/tissue-gene 
network vividly illustrated the expression of these genes 
in the top 10 organs or tissues, laying out a network of 
30 edges connecting the genes to 25 different organs 
or tissues (Fig.  4g). Noticeably, all three genes were co-
expressed in smooth muscle, with PGF and CRIM1 also 
sharing expression sites in bronchial epithelial cells, the 
thyroid, and the placenta, offering a refined glimpse into 
the spatial dynamics of gene activity.

Elucidating the complex regulatory networks of key genes
Further investigation focused on elucidating the molec-
ular regulatory mechanisms of key genes through the 
construction of regulatory networks. Within the Star-
base database, a selection of 41 miRNAs along with 284 
interaction pairs were pinpointed as potential regulators 
of key genes. The miRDB database yielded an additional 
214 miRNAs and 217 interaction pairs. By intersecting 
these findings, we identified a core set of 51 miRNAs 
and their corresponding 51 interaction pairs. Predictions 
from the StarBase database included 41 miRNAs associ-
ated with 17 lncRNAs, comprising a total of 157 interac-
tion pairs. This culminated in the assembly of an intricate 
lncRNA-miRNA-mRNA network for visualization, fea-
turing 2 mRNAs (PGF and CRIM1), 41 miRNAs, and 
17 lncRNAs, orchestrating a network with 157 complex 
interaction dynamics (Fig.  5a). For instance, it was sug-
gested that XIST could modulate CRIM1 via hsa-miR-
16-5p, while MALAT1 might influence PGF through 
hsa-miR-449a. Moreover, through the ChEA3 database, 
three TFs (MTF1, STAT3, and GCM1) were identified as 
potential regulators of PGF (Fig.  5b), further expanding 
our understanding of its regulatory landscape. The analy-
sis of signal transduction relationships among key genes 
reveals that only the PGF protein was enriched within 

the signaling network (Fig. 5c). This finding suggested a 
potential link to Aflibercept’s mechanism of action.

Exploring potential drug targets in key genes
Following drug prediction analysis, it was discovered that 
Aflibercept might serve as an inhibitor or binding agent 
for PGF, with Conbercept also potentially acting as an 
inhibitor of PGF (Fig. 6a). However, no evidence has been 
found to suggest a direct interaction between Hydrochlo-
rothiazide and NUCB2, or that TB-403 directly inter-
acts with PGF. Additionally, the further study presented 
protein models for three key genes, enabling a detailed 
visual inspection of their structural conformations. The 
3D model for NUCB2 showcased an exceptionally high 
level of accuracy, with the majority of regions achieving 
a pLDDT score greater than 90, confirming the predicted 
structure’s considerable reliability (Fig.  6b). In the case 
of PGF, while some regions achieved similarly high reli-
ability with pLDDT scores exceeding 90, other regions 
scored less than 70 in pLDDT, suggesting that although 
some sections of the 3D model were dependable, oth-
ers might be less predictable due to inherent structural 
flexibility or intricacy (Fig.  6c). For CRIM1, the bulk of 
the structure scored within a high confidence interval of 
90 > pLDDT > 70, which indicated a generally high level 
of precision and that the majority of the structural pre-
dictions for this region were trustworthy (Fig.  6d). In 
our molecular docking analysis, we ultimately obtained 
the 3D structures corresponding to both NUCB2 and 
HYDROCHLOROTHIAZIDE. The binding energy 
between NUCB2 and HYDROCHLOROTHIAZIDE was 
− 6.7 kJ/mol. Within the complex, there were numerous 
instances, such as R188, K148, and D286, forming hydro-
gen bonds with HYDROCHLOROTHIAZIDE (Fig. 6e).

Identification of fibroblasts as a key cell group
After conducting QC on scRNA-seq data from 10 sam-
ples, we successfully identified a total of 22,018 cells (Fig. 
S2). Subsequent to the essential data processing steps, 
we pinpointed 2,000 highly variable genes for in-depth 
analysis (Fig. S3). Through PCA, which revealed no out-
liers or anomalous cells, we selected the PCs top 50 for 
further investigative procedures (Fig. S4). This led to 
the identification of 13 distinct cell clusters (Fig.  7a, b), 
with each cluster’s marker gene expression levels illus-
trated (Fig.  7c). We successfully annotated five of these 
cell clusters, specifically identifying them as theca cells, 
dendritic cells, secretory epithelial cells, immune cells, 
and fibroblasts (Fig.  7d). The utilization of bubble plot 
underscored the marker genes’ remarkable specificity, 
allowing us to confidently name the cells based on these 
marker genes (Fig. 7e). Following this, the expression of 
key genes within these cell clusters was further evalu-
ated (Fig. 7f, g). It was observed that NUCB2 and CRIM1 
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exhibited higher levels of expression within the clusters. 
Fibroblasts, due to their highest expression of all three 
key genes, were defined as the key cells in this study.

Trajectories of fibroblast maturation and heterogeneity in 
PCOS
Following the identification of key cells, fibroblasts, 
pseudo-time trajectory inference was conducted. We 
determined the starting point of the fibroblast trajectory, 
indicating that as cells moved away from this starting 
point, they underwent maturation during their develop-
mental process (Fig.  8a). It was clearly observable that 
at both early and middle stages of cell development, 
the number of fibroblasts significantly surpassed their 

quantity in the later stages of development. Notably, a 
bifurcation occurred in the mid-development stage, typi-
cally signifying that at this developmental point, a single 
cell population began diverging into different cellular 
states or fates, indicating the emergence of heterogene-
ity within the original cell population. This heterogeneity 
was sufficient to guide cells along divergent developmen-
tal trajectories. Moreover, we further divided fibroblasts 
into six clusters, with each cluster representing a collec-
tion of cells that share similar phenotypic or functional 
characteristics (Fig.  8b). It could be seen that clusters 0 
and 4 predominantly distributed during the early and 
late stages of cell development, while clusters 1 and 6 
mainly distributed during the mid-stage, with clusters 5 

Fig. 5 Regulatory networks of key genes. (a) lncRNA-miRNA-mRNA interaction network. (b) MTF1, STAT3, and GCM1 as potential regulators of PGF. (c) 
Signal transduction among key genes
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and 7 being relatively scarce. We also showcased the tra-
jectory graphs of fibroblasts in different samples, which 
clearly demonstrated that PCOS samples exhibited a 
higher abundance of fibroblasts (Fig.  8c). This might 
indicate enhanced tissue remodeling activity within the 
ovaries, potentially leading to cyst development and 

other structural changes associated with PCOS. Fibro-
blasts could contribute to characteristic manifestations of 
PCOS, such as ovarian fibrosis, altered folliculogenesis, 
and chronic inflammation. Furthermore, we visualized 
the expression changes of key genes along the develop-
mental trajectory of fibroblasts (Fig.  8d). Observations 

Fig. 6 Potential drug targets in key genes. (a) Drug prediction analysis for NUCB2, PGF, and CRIM1 genes. (b) 3D structure prediction model for the pro-
tein encoded by the NUCB2 gene. (c) 3D structure prediction model for the protein encoded by the PGF gene. (d) 3D structure prediction model for the 
protein encoded by the CRIM1 gene. (e) 3D structure prediction model for the protein encoded by the NUCB2 and HYDROCHLOROTHIAZIDE
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Fig. 7 Identification of key cell. (a) Quality control (QC) process of key cells. (b) Identified Cell Clusters Along Pseudotime Trajectories in Biological Pro-
cesses.(c) Gene expression levels. (d) Annotation of five cell clusters. (e) Bubble plot of related marker genes. (f) Analysis of key gene expression in cell 
clusters. (g) Expression levels of key genes across five cellular clusters
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revealed that as fibroblasts matured, NUCB2 expression 
initially increased then decreased, CRIM1 expression 
showed an initial increase followed by a decrease and 
then an increase again, while, consistent with previous 
findings identifying key cells, PGF expression remained 
low and stable throughout.

Communication analysis of cell clusters
To shed light on the intercellular interactions between 
different cell clusters in both PCOS and control sam-
ples, we delved into analyzing the cell communica-
tion network. It’s evident that there existed a level of 

communication among the five identified cell clusters 
(Fig.  9a-d). To be specific, in the PCOS samples, the 
quantity and intensity of communication between secre-
tory epithelial cells and fibroblasts were heightened, 
whereas in the control samples, it’s the fibroblasts and 
immune cells that showcased a greater extent of com-
munication both in number and significance. Moreover, 
the analysis revealed that in PCOS samples, the number 
of ligand-receptor interaction words between fibroblasts 
and other cells falls short compared to that in control 
samples. This diminished strength in cell-to-cell com-
munication might be intricately linked to the myriad of 

Fig. 8 Trajectories of fibroblast maturation and heterogeneity. (a) Pseudo-Time trajectory inference of fibroblasts. (b) Pseudo-Time trajectory inference 
analysis of six fibroblast cellular clusters. (c) The trajectory graphs of fibroblasts in different samples. (d) Expression dynamics of key genes during fibroblast 
development
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pathological characteristics attributed to PCOS, poten-
tially compromising the crucial roles of fibroblasts in 
processes such as ovarian tissue remodeling, inflamma-
tory responses, and follicle development. Consequently, 
this could lead to the manifestation of reproductive dis-
orders and hormonal imbalances observed in individuals 
with PCOS.

Discussion
PCOS is a common endocrine disorder affecting female 
reproduction, with its specific etiology and pathogen-
esis remaining unclear [49]. EMT, the process in which 
epithelial cells transition to a mesenchymal phenotype, 
is closely linked to PCOS, although the specific mecha-
nisms underlying this relationship remain unclear [8]. 
This study utilized transcriptome and scRNA-seq data-
sets to identify DEGs and DE-EMT-RGs in PCOS, con-
ducting enrichment analyses and employing MR to 
explore causal relationships. The findings revealed that 

Fig. 9 Communication networks among cellular clusters. (a) Communication networks between secretory epithelial cell clusters and fibroblast cell clus-
ters.(b) Communication networks between Immune cell clusters and fibroblast cell clusters. (c)Communication networks of a single cell cluster with four 
other cell clusters.(d)Ligand-receptor interactions between fibroblasts and other cell types
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key genes NUCB2, PGF, and CRIM1 are protective fac-
tors against PCOS and showed specific expression pat-
terns across immune cells and organ tissues. Aflibercept 
and Conbercept were identified as potential inhibitors of 
PGF. scRNA-seq analysis showed that fibroblasts are key 
cells in PCOS. These results provide insights into poten-
tial therapeutic targets and molecular mechanisms.

Currently, there are few reports on the role of NUCB2 
in the pathogenesis of PCOS. Nucleobindin-2, encoded 
by NUCB2, is a multifunctional calcium-binding protein 
that plays a role in various physiological and pathological 
processes, such as regulating insulin secretion and being 
involved in neurodegenerative diseases [50]. Our results 
showed that NUCB2 was significantly downregulated in 
granulosa cells of PCOS patients, and its role as a protec-
tive factor for PCOS was confirmed by MR analysis. Sim-
ilarly, a study found that the expression level of NUCB2 
was significantly reduced in the obese subtype of PCOS 
patients, suggesting that it may play a role in PCOS-
related metabolic abnormalities [50]. Another study 
found that the NUCB2 knockout mouse model exhibited 
insulin resistance, hyperglycemia, and obesity pheno-
types, which are clinical features of PCOS [51], further 
supporting the possibility that NUCB2 may influence the 
development of PCOS by regulating insulin sensitivity.

Placental Growth Factor (PGF), an angiogenic factor 
belonging to the VEGF family, is mainly involved in the 
regulation of angiogenesis and the promotion of tropho-
blast proliferation and migration. Currently, there are few 
reports on the role of PGF in the pathogenesis of PCOS. 
Our results showed that PGF was significantly upregu-
lated in the granulosa cells of PCOS patients. Similarly, 
one study found that PGF was highly expressed in the 
ovarian tissues of PCOS patients, suggesting that it may 
be associated with hyperandrogenemia and elevated 
gonadotropin levels in PCOS [52].

In this study, we discovered for the first time that 
CRIM1 is significantly upregulated in PCOS and acts 
as a protective factor against the disease. CRIM1 is an 
important extracellular matrix (ECM) regulator that 
affects cell proliferation, differentiation, and migration, 
mainly through interaction with the bone morphogenetic 
protein (BMP) signaling pathway. Previous studies have 
demonstrated that CRIM1 plays a critical role in regulat-
ing placental development, organogenesis, angiogenesis, 
and is implicated in kidney disease and cancer [53].

The pathway analysis through three key genes mainly 
involved proteasome pathway, glycolysis and gluco-
neogenesis pathway, the ribosome pathway, and the 
axon guidance pathway. All pathways identified were 
important to PCOS. Multiple studies have identified 
significant abnormalities in the glycolysis and gluco-
neogenesis pathways in PCOS. Multiomics analysis of 
granulosa cells revealed differential gene expression 

within these metabolic pathways, highlighting their criti-
cal regulatory roles in steroid biosynthesis and metabolic 
signaling [26]. Concurrently, research on the metabolic 
characteristics of hepatic exosomes in PCOS mice dem-
onstrated distinct age-related differences in substrate 
utilization for gluconeogenesis, suggesting that these 
metabolic changes are closely linked to insulin resis-
tance and the progression of PCOS [54]. Studies have 
found that SYVN1 promotes the degradation of Drp1 in 
granulosa cells through the proteasome-dependent path-
way, thereby inhibiting apoptosis and mitochondrial fis-
sion. This highlights the function of SYVN1 in polycystic 
ovary syndrome and provides insights into potential clin-
ical treatment target [55]. A study that sequenced plasma 
exosomal miRNAs in PCOS patients identified five key 
miRNAs (miR-126-3p, miR-146a-5p, miR-20b-5p, miR-
106a-5p, and miR-18a-3p). These miRNAs are involved 
in axon guidance and are related to the menstrual cycle, 
prefollicle numbers, and hormone levels [56].

Recent studies have highlighted the upregulation of 
critical ribosomal proteins such as Rps21 and Rpl36 in 
the oocytes of PCOS mice. This upregulation indicates a 
disruption in the protein synthesis machinery, essential 
for proper follicle development, thereby potentially con-
tributing to PCOS pathophysiology by impairing oocyte 
quality and maturation [57]. Additionally, research has 
revealed that the ribosome pathway in PCOS is modu-
lated by complex transcriptional regulatory networks 
involving specific transcription factors and miRNAs, 
altering ribosomal gene expression. This dysregulation 
impacts key cellular processes, contributing to the meta-
bolic and reproductive abnormalities characteristic of 
PCOS, such as insulin resistance, increased androgen 
production, and disrupted folliculogenesis [58]. These 
findings underscore the significant role of ribosomal gene 
regulation in PCOS pathogenesis and suggest that tar-
geting these pathways could offer promising therapeutic 
interventions.

NUCB2 and CRIM1 are highly expressed in plasma-
cytoid dendritic cells. Furthermore, the three key genes 
are co-expressed in smooth muscle.Their gene interac-
tions suggest a role in regulating cell proliferation. Recent 
studies have identified a significant role for plasmacytoid 
dendritic cells (pDCs) in PCOS, particularly regarding 
insulin resistance, follicle development, and hyperan-
drogenism. pDCs exacerbate insulin resistance in PCOS 
by producing pro-inflammatory cytokines such as IFN-α, 
disrupting insulin signaling pathways [59]. This inflam-
matory milieu impairs folliculogenesis, contributing to 
the anovulation characteristic of PCOS [59]. Addition-
ally, hyperandrogenism alters pDC activity, increasing 
inflammatory cytokine production and creating a feed-
back loop that intensifies both inflammation and andro-
gen excess [60]. Targeting pDCs may, therefore, offer 
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novel therapeutic strategies to reduce inflammation and 
improve metabolic and reproductive outcomes in PCOS.

The construction of molecular regulatory networks 
for key genes NUCB2, PGF, and CRIM1 has revealed 
intricate interactions involving miRNAs, lncRNAs, and 
transcription factors. Specifically, a network consisting 
of 51 miRNAs and 17 lncRNAs was identified. Studies 
have demonstrated that exosomal miR-30c-5p derived 
from adipocytes activates signal transduction pathways 
in human ovarian microvascular endothelial cells. Con-
sequently, this leads to the promotion of ovarian angio-
genesis through the upregulation of the STAT3/VEGFA 
pathway by targeting SOCS3, thus contributing to the 
onset of symptoms associated with polycystic ovary syn-
drome [61]. Furthermore, investigations have revealed 
that the p-JAK2/p-STAT3 signaling cascade plays a regu-
latory role in follicular development in rodent models of 
polycystic ovary syndrome [62].

Drug prediction analysis has identified Aflibercept 
and Conbercept as inhibitors targeting PGF, a key gene 
in PCOS. A systematic review has demonstrated that 
Aflibercept is an effective treatment for age-related mac-
ular degeneration [63]. Animal studies show that Afliber-
cept significantly inhibits PGF and vascular endothelial 
growth factor-A, preventing vascular leakage and cho-
roidal neovascularization [64]. Furthermore, PGF levels 
in the follicular fluid of women with PCOS were found 
to be 1.5 times higher, with bioavailability significantly 
increased by 2-fold compared to non-PCOS controls 
[52]. Aflibercept may inhibit PGF’s role in promoting 
endothelial and epithelial cell proliferation, potentially 
mitigating the angiogenesis and inflammation character-
istic of PCOS.In our molecular docking analysis, we have, 
for the first time, demonstrated the 3D structure of the 
interaction between hydrochlorothiazide and NUCB2. 
MR analysis suggests that NUCB2 acts as a protective 
factor in PCOS. This finding indicates that hydrochloro-
thiazide may exert therapeutic effects on PCOS through 
NUCB2 and its related pathways.

Our comprehensive single-cell, pseudotime, and cell 
communication analyses in PCOS identified fibroblasts 
as key cells showing distinct gene expression profiles 
with higher expressions of NUCB2, PGF, and CRIM1. 
Pseudotime trajectories indicated significant cellular dif-
ferentiation and heterogeneity, suggesting an enhanced 
tissue remodeling activity that could contribute to ovar-
ian fibrosis and altered folliculogenesis. Furthermore, 
altered cell communication patterns were observed, with 
increased interactions between secretory epithelial cells 
and fibroblasts in PCOS, potentially influencing ovarian 
tissue remodeling and inflammatory responses. Recent 
research highlights the significant role of fibroblasts in 
PCOS pathophysiology, particularly in insulin resistance, 
hyperandrogenism, and follicle development. Studies 

show that fibroblasts from PCOS patients have altered 
insulin receptor signaling, characterized by increased 
serine phosphorylation and decreased insulin-stimulated 
autophosphorylation, contributing to insulin resistance 
[65, 66]. Additionally, TGF-β modulates the expression 
of PCOS candidate genes in fetal ovarian fibroblasts, sug-
gesting a mechanism through which fibroblasts influence 
ovarian function and PCOS development [67]. Further-
more, endometrial stromal fibroblasts in PCOS exhibit 
impaired progesterone responses, leading to aberrant 
decidualization and altered cytokine profiles, poten-
tially affecting implantation and elevating the risk of 
endometrial pathologies [68]. These findings underscore 
the critical involvement of fibroblasts in the molecular 
and cellular mechanisms underlying PCOS, providing 
insights into potential therapeutic targets.

Our study has identified NUCB2, PGF, and CRIM1 as 
key genes in PCOS. Mendelian Randomization analysis 
has confirmed these genes as protective factors. Single-
cell analysis highlighted fibroblasts as pivotal cells signifi-
cantly involved in tissue remodeling and inflammation 
in PCOS. While our findings provide valuable insights, 
further experimental validation, and clinical studies are 
needed to confirm these mechanisms and evaluate the 
therapeutic potential of the predicted drugs.

Conclusion
Our study has significantly advanced the understanding 
of PCOS by elucidating the relationship between PCOS 
and epithelial-mesenchymal transition (EMT). We iden-
tified NUCB2, PGF, and CRIM1 as key genes involved 
in crucial pathways such as glycolysis, gluconeogenesis, 
and the proteasome pathway. Mendelian Randomization 
analysis confirmed these genes as protective factors, sug-
gesting their potential as therapeutic targets. Single-cell 
analysis highlighted the pivotal role of fibroblasts in tis-
sue remodeling and inflammation in PCOS. Importantly, 
our findings underscore the significant involvement of 
these genes in EMT-related processes, linking EMT 
mechanisms directly to PCOS pathophysiology. This 
connection opens new avenues for therapeutic strategies 
targeting EMT to manage PCOS more effectively. Future 
research should focus on experimental validation of these 
findings and the development of clinical applications to 
leverage EMT mechanisms for novel PCOS treatments.
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