
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

Biskup et al. Journal of Ovarian Research           (2025) 18:29 
https://doi.org/10.1186/s13048-025-01609-2

Journal of Ovarian Research

*Correspondence:
Edyta Biskup
edyta.urszula.biskup-schmoller@regionh.dk
1Department of Pathology, Herlev Hospital, University of Copenhagen, 
Herlev, Denmark
2Department of Gynaecology, Juliane Marie Centre, Rigshospitalet, 
University of Copenhagen, Copenhagen, Denmark

Abstract
Introduction  Early diagnosis of ovarian cancer, using cost-effective and non-invasive methods remains an unmet 
medical need, largely due to unspecific symptoms of the disease.

Objective  Our goal was to identify differentially methylated CpG loci between cervical swabs obtained from patients 
diagnosed with benign ovarian disease and with malignant pelvic mass.

Methodology  Using Infinium EPICv2 array, we interrogated methylation profiles of 77 cervical swabs. The study 
cohort was then divided into a training and testing set to develop a diagnostic signature. We applied several 
strategies to pinpoint CpG sites able to differentiate cervical swabs obtained from ovarian cancer patients and 
patients with benign ovarian disease.

Results and conclusions  None of the statistical methods applied identified CpG loci capable of diagnosing 
ovarian cancer with sufficient specificity and sensitivity. We conclude that methylation differences observed do 
not adequately distinguish between benign and malignant ovarian disease. The variations attributable to clinical 
conditions are likely obscured by the differences in cell composition, which is the primary source of sample 
heterogeneity. Therefore, we suggest that diagnostic tools should not rely on local methylation profile of the cervix 
but rather focus on detecting cancer-specific sequences transferred from the tumor site and present in cervical swabs.

Non-technical summary  Ovarian cancer is difficult to detect early, and we aimed to explore whether DNA 
methylation in cervical swabs could serve as a diagnostic tool. However, our study found that methylation patterns 
in these samples do not reliably distinguish between benign and malignant conditions, likely due to variations in cell 
composition. We recommend future research focus on detecting tumor-specific DNA sequences in cervical swabs 
instead.
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Introduction
Identifying biomarkers that would support early detec-
tion of ovarian cancer (OC) is still an unmet medical 
need, as most OC cases are diagnosed at late stages, 
where 5-year survival is approx. 30%. So far, no bio-
marker has been proven optimal for screening. This can 
be ascribed to unspecified early symptoms and lack of 
specific biomarkers [1].

Malignant ovarian tumors derive in over 90% cases 
from the epithelium and can be divided into two types 
based on their grade. Type I tumors, including low-grade 
serous tumors, mucinous, endometrioid, and clear cell 
carcinomas, progress relatively slowly. In contrast, Type 
II tumors, such as high-grade serous ovarian carcinoma 
(HGSOC), exhibit a more aggressive phenotype. HGSOC 
is also the most prevalent subtype [2].

OC may originate in the ovary itself or from neighbor-
ing structures, usually the distal fallopian tube [3]. In 
approximately 8% OC cases malignant neoplasms have 
an extraovarian origin, most commonly metastasizing 
from colorectum, stomach, breast and uterus [4].

Previously, we successfully identified 21 DNA posi-
tions which methylation levels differed between benign/
borderline tumors and HGSOC [4]. However, this type of 
material can only be obtained during surgical interven-
tion and the latter is only performed if the presence of 
pelvic mass has already been detected. Thus, ovarian tis-
sue samples, albeit a source of information about tumor 
biology and underlying disease mechanisms, cannot pos-
sibly be used for early diagnosis. At the same time, using 
surrogate material, such as cervical swabs, is an attrac-
tive option, as this type of material is easily available and 
can be obtained in a non-invasive way. Notably, cervical 
swabs are already routinely collected for cervical cancer 
screening and provide an existing framework that could 
potentially be adapted for early OC diagnosis [5].

Several studies suggested possible use of cervical swabs 
for early diagnosis of OC, either focusing on detection 
of DNA mutations [6–11] or DNA methylation [12, 13]. 
All these studies build on an assumption that tumor cells 
shed from the ovaries down the reproductive tract to the 
cervical canal, and there the tumor DNA can be detected 
in a minimally invasive manner. Barrett et al. postulated 
that the DNA methylome of cervical cells differ between 
OC patients and healthy controls, and those changes are 
not driven by the presence of tumor DNA, but rather 
by an epigenetic differentiation defect [14]. They also 
devised a signature, named WID-OC index, which would 
allow identifying woman in the risk of cancer, based 
on methylation levels of 14,000 CpGs. Here, we evalu-
ated if the extent of differences in the DNA methylomes 
between OC patients and women with benign ovarian 
disease would enable a design of a diagnostic panel, uti-
lizing cervical swabs for early detection of OC. Our study 

builds on the assumption by Barrett and colleagues, ana-
lyzing the full methylation landscape of cervical swabs, 
while considering the hypothesis that differences in these 
profiles are not caused by tumor DNA shed from the 
ovaries.

Methods
Patient samples
We used two types of samples: 72 (70) ovarian tissue 
samples, which served as a reference and were used for 
comparative purposes, and 92 (77) cervical swabs; num-
bers in brackets refer to the number of samples which 
passed quality check and were used for the analyses. 
Samples from 14 patients were present in both groups.

The same ovarian tissue sample cohort has also been 
used in our previous study, where it has been character-
ized in detail with respect to cell composition [15]. It also 
partly overlaps with the cohort used for identification of 
CpG sites specific for HGSOC [4]. Both cohorts (tissue 
and swabs) consisted of samples collected from patients 
admitted to Gynecologic Clinic at Rigshospitalet (Copen-
hagen, Denmark) included in the Pelvic Mass/GOVEC 
study. Each cohort contained three types of samples: (i) 
benign/borderline (ii) HGSOC (iii) “other”, which was a 
mixed group containing OC subtypes other than HGSOC 
and ovarian malignancies of extraovarian origin. Patient 
clinical characteristics can be found in Table 1).

Methylation analysis
Tissue samples were processed as described previously, 
including DNA isolation, bisulfite conversion and CpG 
sites interrogation using Infinium EPICv1 array (based on 
human genome 19; hg19 and containing 865859 probes) 
[4, 15].

Cervical swabs were processed as follows. All fractions 
from the same patient retrieved from The Danish Can-
cerBiobank were pooled together and pelleted by cen-
trifugation. Total DNA was extracted using with QIAamp 
DNA Mini kit (QIAGEN GmbH, Hilden, Germany) 
and quantified by a Qubit® 2.0 Fluorometer with Qubit™ 
dsDNA HS Assay. DNA was bisulfite converted (250 
ng per sample) using EZ DNA methylation kit (Zymo 
Research, Irvine, CA).

Then, samples were subjected to methylation analysis 
on Infinium EPICv2 array (based on hg38, containing 
930075 probes). Methylation analysis of cervical swabs 
was processed analogously to tissue samples. Briefly, raw 
data as.idat files were parsed into R using minfi package 
[16] and processed as described by [17]. Normalization 
was conducted using functional normalization algorithm 
(preprocessFunnorm) [18]. Quality assessment was based 
on the median signal intensity of both methylated and 
unmethylated probes [16]. Samples with median log2 
values below 10.5 were discarded/removed due to low 
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quality (altogether 15 out of 92; see Table 1). Low qual-
ity probes and probes localizing to common SNPs were 
filtered out [17].

We used both, beta values and M-values, depend-
ing on the type of analysis. Beta values have more intui-
tive biological interpretation as they can be understood 
as percentage methylation of a given CpG site. On the 
other hand, Du et al. recommend using M-values for 
most statistical analysis, as M-value method has better 
detection power. It is especially true for the low and high 
methylation ranges, where beta-values are significantly 
compressed [19]. Thus, we used beta values for analysis 
of the relation between samples (principal component 
analysis; PCA), for sample deconvolution and to calculate 
WID-OC. M-values were used for differential methyla-
tion analysis to pinpoint CpG sites which differ between 
groups.

Cell type composition
To estimate proportions of various cell types in biologi-
cal samples, we used MethylCIBERSORT [20, 21] with 
extended OC signature as described earlier [15].

Devising a diagnostic signature
Following sample processing and probe filtration, for 
each of the 77 cervical samples we obtained informa-
tion about methylation levels for 852,588 CpG sites. This 
number was too high to build a robust diagnostic model. 
Thus, we used several approaches to shortlist the targets/
CpG sites and design a model.

Splitting samples into training and testing groups
To check which of the models would be stable, we vali-
dated them in independent cohorts. Benign/borderline 
and HGSOC samples were randomly divided into train-
ing and testing set, in a ratio 7:3, to obtain altogether ten 
training– test combinations, separately in the tissue and 
cervical swab cohorts. Tumor samples categorized as 
“Other” were added to the testing cohort, in order to see 
how robust the predictive algorithms would be towards 
cancers of different histology. Borderline samples, along 
with benign cases, constituted the control group. Border-
line tumors are characterized by low malignant potential 
and, epigenetically, they more closely resemble benign 
samples than HGSOC samples [4]. However, they often 
require surgical intervention. Therefore, if the proposed 
method proves effective, developing a separate protocol 
specifically for identifying borderline tumors as a distinct 
category should be considered.

Strategies for candidate selection
This type of analysis was done using M-values. The fol-
lowing strategies were used for shortlisting methylation 
targets to be then included in a multivariate model:

 	– Based on the three-step algorithm. This process 
consisted of three steps: (i) applying a univariate 
linear regression with an empirical Bayes approach 
[22] to all probes that passed quality control, (ii) 
submitting the selected probes to a general linear 
model for further shortlisting via logistic regression, 
and (iii) applying a LASSO-penalized model for 
multivariate linear regression to the shortlisted 
predictors as described in [4].

 	– Based on variance. We compared variance between 
benign/borderline and HGSOC groups using 
Bartlett’s test, selected CpG sites with FDR < 0.05 
(different variance CpGs, DVC) and further 
identified CpG sites for which the ratio of variance 
between HGSOC and benign samples was at least 50. 
These targets were used to construct a multivariate 
regression model.

Estimating signature performance
Performance of a given signature, devised using a training 
set, was then evaluated in a testing set. Briefly, an index 
(Y) for each sample from the testing set was calculated 

Table 1  Clinicopathological features. Data was retrieved from 
the Danish Gynecological Cancer database (DGCD; www.
dgcg.dk/) register. Other– OC subtypes other than HGSOC and 
cases when the malignant mass is present in ovaries, but with 
extraovarian primary site. Numbers in brackets refer to the actual 
number of samples used in the analyses, in case some of the 
samples failed quality check
Ovarian tissue samples

Benign/borderline HGSOC Other
No. of cases N = 19 (17) N = 37 N = 16
Median age in years 
(range)

57.53
(20.5–86.2)

65.7
(41.1–
84.1)

61.6
(31.9–
83.4)

FIGO Stage
  I 4 (3) 1 1
  II 1 6 4
  III 1 30 4
  IV 3
  NA 13 (12) 4
Cervical swabs

Benign/borderline HGSOC Other
No. of cases 38 (34) 29 (24) 25 

(19)
Median age in years 
(range)

61.8
(19.7–90.3)

66.4
(45.8–
90.3)

72.6
(50.9–
81.5)

FIGO Stage
  I 4 2 4 (2)
  II 1 2 (1)
  III 14 (12) 5
  IV 10 (8) 8 (6)
  NA 34 (30) 2 (1) 6 (5)

http://www.dgcg.dk/
http://www.dgcg.dk/
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using formula of the regression model obtained in the 
training set as follows:

	 Y = β0 + β1M1 + β2M2 + . . . + βiMi

where β0 is the intercept, M1, M2,…, Mi– M-values for 
each CpG included in the model and β1, β2,…, βi– coef-
ficients calculated for each CpG included in the model.

Performance of a model was estimated by (i) calculat-
ing differences between indexes obtained for samples 
from benign/borderline versus HGSOC and/or other 
group and as (ii) the area under the receiver operating 
characteristic curve (ROC-AUC), predicting if a given 
sample from the testing cohort is correctly classified.

Women’s risk IDentification for OC (WID-OC)
WID-OC index was calculated in cervical samples using 
beta values as described by [14], using the code provided 
in github.com/IfWH-DoWC/OC-index.

Statistical analysis
All statistical analyses, including dimensional reduction 
analysis (PCA), running algorithm for differential meth-
ylation analysis, and calculating ROC-AUC, as well as 
plot preparation were performed in R programming lan-
guage (version 4.2).

Results
Initially, we analyzed similarities within the cohort of 
cervical swabs. Previously, we observed that ovarian tis-
sue samples tend to cluster by patient group even before 
implementing any statistical procedures [4]. However, it 
was not the case in cervical swabs (Fig. 1a). PCA analy-
sis of the top 1000 most variable CpG sites revealed no 
such tendency among cervical swabs. Then, we set to 
rule out if it may be due to some technical factors (batch 
effect) overshadowing biological differences. We tested 
whether the samples would cluster by the operator (per-
son responsible for DNA isolation), scan date, BeadChip 
itself or position on the BeadChip, but we observed no 
tendencies, apart from two samples, localized in neigh-
boring positions on the same BeadChip which could have 
been outliers (Fig. b-e). Overall, we did not find likely 
that a batch effect would mask true diagnostic outcome. 
Eventually, we tested whether the samples would group 
by cell type profile and obtained a very clear tendency 
to group according to the proportion of epithelial cells 
to immune cells (Fig.  1f ). A subsequent analysis of cell 
proportions revealed that cell profiles were similar across 
patient groups (Fig. 1g). We also noticed a very low pro-
portion of fraction recognized as cancer cells. Cancer 
cells in amounts exceeding 5% were detected only in 5 
samples, and as expected none of these samples belonged 
to benign group (Fig. 1g).

To identify cancer-specific targets in cervical swabs, 
we adopted a strategy described by [4]. It has previously 
been demonstrated that methylation profiles of OC dif-
fer from healthy controls or even from benign ovarian 
disease [4, 23, 24]. Thus, for comparative purposes, we 
first ran the analysis on a set of ovarian tissue samples. 
This allowed us to demonstrate the statistical methods’ 
ability to detect differences between sample groups and 
illustrate their effectiveness in achieving reliable results 
The benchmarking ovarian set consisted of 70 samples: 
benign/borderline (n = 17), HGSOC (n = 37) and a het-
erogenous group referred to as “Other” which included 
ovarian cancer subtypes other than HGSOC as well as 
cancers which were not primarily ovarian (n = 16). The 
third group (“other”) were there to evaluate robustness of 
the developed signature, but those samples were not used 
for developing the signature itself. Benign and borderline 
cases were included in one category later referred to as 
“benign”.

To start with, we divided the benign and HGSOC sam-
ples (17 + 37 = 54) into training and testing set in the pro-
portions 7:3. Thirty-eight samples were used to construct 
a training set. Sixteen remaining benign/borderline and 
HGSOC samples along with all “Other” samples were 
used for the testing set (16 + 16 = 32; Fig. 2a).

Outcome of each step of the selection strategy can be 
found in Supplementary Table S1. Briefly, the first step 
(univariate linear model) resulted in 140,940 targets 
which methylation levels significantly differed (adjusted 
p-value < 0.05) between benign and HGSOC groups. Of 
those, 31,950 (adj. p-value < 0.05 and logFC >|2|) were 
subjected to univariate logistic regression which further 
identified 6,753 targets. The shortlisted targets were sub-
jected to a LASSO-penalized multivariate logistic regres-
sion, resulting in a model containing 25 targets. Model 
coefficients and intercept were then applied to calculate 
index values for each sample (see Methods). These index 
values were subsequently used to validate the model with 
the testing set. Sensitivity and specificity of the model 
were estimated using ROC-AUC (Supplementary Table 
S1 and Fig. 3a) in three different approaches: benign vs. 
HGSOC, benign vs. all tumor cases together and benign 
vs. “other”. In all cases, the selected 25 targets allowed 
very good discrimination between malignant and benign 
cases. The whole statistical procedure was then repeated 
nine times (for the total of ten splits into training and 
testing cohort), with a comparable outcome (Supplemen-
tary Table S1).

Subsequently, we attempted a similar strategy using 
cervical swabs. Sample cohort was again divided into 
training (n = 41) and testing (n = 36) sets (Fig. 2b). When 
running the algorithm, already the first step had an unex-
pected result: after correcting for multiple comparisons, 
none of the 852,588 targets was significantly different 
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between benign and HGSOC group. Moreover, only 
very few targets showed difference between both groups 
which would exceed logFC >|2|. Thereby we used relaxed 
selection criteria for the following steps and allowed 
7,822 targets for which unadjusted p-value < 0.05 and 
logFC >|0.5|. The resulting model (also consisting of 25 
targets, though not overlapping with those identified in 
the tissue) successfully separated samples from the train-
ing set, but performed very poorly in the independent, 

testing set (AUC around 0.65; Fig. 3b and Supplementary 
Table S2).

To exclude that the results obtained were due to ran-
dom separation into training and testing sets, we ran the 
analysis, like we did for tissue samples, nine times more 
(for the total of ten splits). Results of the repeated analy-
sis were largely similar to the first run (see Supplemen-
tary Table S2).

We also considered a different approach of identify-
ing potential candidates for development of a diagnostic 

Fig. 1  Characteristics of the cervical swabs used in the current study (a-f)– principal component analysis for the top 1000 most variable CpG showing 
grouping of samples depending on different variables; top row from the left: (a) patient group (benign, HGSOC or other), (b) operator (person responsible 
for DNA isolation), (c) scan date; bottom row from the left: (d) BeadChip, (e) position on the BeadChip, (f) cell composition (low_Epi– content of cells rec-
ognized as epithelial, i.e. normal epithelium and cancer together, is below 10%; mid_Epi– between 10 and 20% cells recognized as epithelial; high_Epi– 
over 20% of cells recognized as epithelial) (g)– cell composition as estimated by MethylCIBERSORT across patient groups; black rectancle shows samples 
with high proportion (over 5%) of cancer cells
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signature. We reasoned that while non-neoplastic sam-
ples may exhibit a rather similar, consistent methylation 
landscape, a malignant phenotype may be more heterog-
enous. In such case, cancer-specific methylation would 
manifest as “outliers” or atypically methylated sites, but 
perhaps with low frequency. Such features, even if typi-
cal of cancer, may not be caught by statistical tests like 
t-test. However, they may reflect in sample variance, as 
also postulated by Teschendorff and coworkers ( [25]; see 
Discussion). Therefore, when constructing a multivariate 
model, we adopted another shortlisting strategy, which 
took under consideration differences between variance 
of M-values between benign and malignant samples. 
Briefly, we selected targets where the ratio between vari-
ance of malignant samples to variance of benign samples 
was at least 50. Targets selected this way were then used 
as input for multivariate logistic regression. However, 
obtained models also performed very poorly: in most 
cases no better than a random guess and for some of the 
splits the AUC was even below 0.5 (Fig. 3c and Supple-
mentary Table S3). Perhaps that should not come as a 
surprise, since (unlike in ovarian tissue samples) the dif-
ferences in the variance were only driven by single outli-
ers (Supplementary Fig. S1).

Above findings suggested that identifying targets with 
diagnostic potential using cervical swabs as a surrogate 
material may pose a challenge. We speculated that it 
may be due to other factors, overshadowing differences 

resulting from malignant transformation. PCA analysis 
performed as a part of the technical quality check showed 
that samples did not cluster according to any of the tech-
nical variables. However, they did cluster depending on 
the proportion of the epithelial to immune cells. There-
fore, we divided samples into low (below 10%) and high 
immune content. Interestingly, we were not only able to 
identify differentially methylated probes between both 
groups of samples, but also the developed model could 
be successfully used to predict to which group samples 
from the testing cohort would belong (AUC > 0.95 in all 
10 cases; Fig. 3d and Supplementary Table S4).

Then, we validated the WID-OC index, originally 
developed by Barrett et al. (2022) to identify women at 
risk of ovarian cancer (OC) [14]. This index incorporates 
beta-values from 14,000 CpGs. Due to probe filtering 
(e.g., removal of poorly performing probes, as described 
in Methods) and differences between array platforms 
(EPICv1 vs. EPICv2), we only included 12,284 CpG. 
Using all 77 cervical smear samples, the index differenti-
ated between benign and “other” samples, and between 
benign and all cancers combined, but not between 
benign and HGSOC (Fig. 4a). This suggests that the mean 
index value was elevated due to the “other” group. In a 
real-world scenario, where HGSOC accounts for approx-
imately 70% of cases, this would result in many missed 
diagnoses. Interestingly, the highest AUC was observed 

Fig. 2  Scheme showing the first split of both cohorts into training and testing sets. (a) ovarian cancer tissue samples (b) cervical swabs
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Fig. 3  Identification of CpG sites that enable classification of samples into groups. Graphical illustration of the analyses performed for split 1; green color 
refers to benign samples, yellow– HGSOC, dark red– ”other” group, orange– all tumor samples pooled together (HGSOC + other), light red– samples with 
high epithelial content, dark blue– samples with high immune content (a) ability of the three-step algorithm to classify ovarian tissue samples into be-
nign and malignant; from left to right: performance of the model in the training set shown as index values, performance of the model in the testing set, 
separately for HGSOC and ”other”; performance of the model in the testing set, but showing all tumor samples together (HGSOC + other); performance 
of the model in the testing set for each group shown as ROC-AUC (b) ability of the three-step algorithm to classify cervical swabs into benign and malig-
nant; set of sub-panels analogous to a); (c) ability of the model constructed basing on variance ratio to classify cervical swabs into benign and malignant; 
set of sub-panels analogous to a); (d) ability of the three-step algorithm to classify cervical swabs into high and low epithelial content; from left to right: 
performance of the model in the training set shown as index values, performance of the model in the testing set, performance of the model in the test-
ing set shown as ROC-AUC
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in the “other” group, a heterogeneous set of patients 
(AUC = 0.7).

We also tested performance of WID-OC separately 
in samples with high and low content of immune cells. 
Interestingly, WID-OC performed better in samples with 
high content of immune cells, unlike what the authors 
originally observed [14]. Again, WID-OC performed best 

in samples belonging to the class “other”, with AUC = 0.83 
(Fig. 4b and c).

Eventually, we analyzed similarity between ovarian tis-
sue samples and cervical swabs and performed PCA on 
samples from both cohorts (70 ovarian tissue samples 
and 77 cervical swabs). The picture we saw was highly 
consistent with the above findings (Fig. 5). Ovarian tissue 

Fig. 4  Performance of WID-OC in the study cohort of cervcal swabs. Indexes are calculated as beta values a) performance of WID-OC in the whole cohort, 
irrespective of cell composition; from left to right: differences between WID-OC index between benign versus HGSOC and versus ”other” groups sepa-
rately; benign versus all tumors pooled together (HGSOC + other); performance of WID-OC for each group shown as ROC-AUC b) performance of WID-OC 
in 43 samples with high epithelial content; set of sub-panels analogous to a) c) performance of WID-OC in 34 samples with high immune content; set of 
sub-panels analogous to a)
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Fig. 5  Principal component analysis showing similarity between both cohorts– ovarian tissue samples and cervcal swabs– together. Top 5000 most vari-
able CpGs were used for the analysis. Sample grouping is shown based on (a) patient group (b) cell composition (c) source of material– ovarian tissue 
versus cervical swab
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samples presented a heterogenous group, and even with-
out any filtration or selection criteria, samples from 
patients diagnosed with benign ovarian tumor tended to 
group together (Fig. 5a). At the same time, cervical swabs 
presented a rather compact cluster by themselves, with 
much smaller spread than in case of tissue samples. As 
already seen in Fig. 1a no clustering based on diagnosis 
was visible. Unlike cervical swabs, clustering of ovar-
ian tissue samples was not affected by the proportion of 
immune cells (Fig.  5b). In the analysis presented, how-
ever, samples clearly separated based on the source of 
material (tissue versus swab) (Fig. 5c).

Discussion
An optimal diagnostic screening tool should be afford-
able, practical, and use easily accessible biological mate-
rial. A PCR or sequencing panel with DNA isolated 
from cervical swabs would meet these criteria. Here, 
we exploited the possibility to use cervical swabs for 
early diagnosis of OC. To select promising CpG scandi-
dates, we interrogated methylation profiles of patients 
with malignant and benign pelvic masses using Infinium 
EPICv2 array.

We noticed that cervical swabs were a more challeng-
ing material than frozen tissue samples. A higher num-
ber of cervical swabs failed quality check compared to 
fresh frozen tissue samples (15 out of 92 i.e., 16% and 2 
out of 72 i.e., 2.7% respectively). However, this difference 
may not only result from the quality and integrity of the 
genomic material, but also the DNA input (500 ng versus 
250 ng DNA per sample for tissue samples and cervical 
swabs respectively). Lowering the DNA was necessary, 
because of the overall lower DNA yield obtained from 
cervical swabs. Still, sample quality was in most cases 
sufficient to get the relevant information and our earlier 
study suggests that cervical swabs could be successfully 
interrogated by sequencing panels (manuscript under 
revision).

Our main goal was to check whether the extent of dif-
ferences seen between cervical swabs obtained from 
patients with benign and malignant pelvic mass warrants 
their use as a diagnostic tool. However, when construct-
ing a diagnostic model, we observed that, after correct-
ing for multiple comparisons, none of the CpG sites was 
differentially methylated between cervical swabs taken 
from benign and HGSOC patients. A similar observation 
was previously made by [25]. They postulated that ordi-
nary t-tests and their non-parametric equivalents may 
be underpowered to detect methylation changes in pre-
neoplastic samples or in normal tissue adjacent to can-
cer tissue. However, they argued, a range of CpG sites in 
such samples would show variance different than in their 
normal counterparts [25]. Further, they identified three 
types of such differentially variable CpGs (DVC). In case 

of those belonging to the first type, both the variance and 
the mean methylation level would differ between pheno-
types of interest (e.g., normal and premalignant). In type 
2 and type 3 mean methylation levels between pheno-
types are similar and statistically undistinguishable. How-
ever, in type 2 the differences in variance are driven just 
by few outliers (few samples), usually showing unidirec-
tional changes (hyper- or hypomethylation), while in type 
3 by higher number of samples, showing changes in both 
directions. In our cohort, in cervical swabs, differences in 
variance were driven only by few isolated outliers (type 
2), and in some cases (for example cg22839417) were not 
reproduced in the test cohort. As expected, methylation 
changes driving differential variation in ovarian tissue 
samples, showed higher frequency rate (type 1 and 3). 
Thus, despite changing the strategy of targets selection 
and accounting for the possible low frequency of meth-
ylation changes, we were not able to identify CpG sites 
discriminating between benign and malignant phenotype 
in cervical swabs.

We then checked how a previously published index 
(WID-OC index) would perform in our cohort [14]. 
Albeit we could see that the malignant samples generally 
scored higher than benign, the specificity and sensitivity 
is, according to our findings, not sufficient to use WID-
OC in clinical practice. Moreover, it was built basing on 
as many as 14,000 CpG sites, of which 12,284 overlapped 
with CpG sites present in our dataset.

WID-OC was constructed with an assumption that 
changes between cervical swabs from benign and malig-
nant ovarian patients are not driven by the presence of 
tumor cells, but by the overall differences in the meth-
ylation landscape. In agreement with their findings, we 
also observed that presence of tumor DNA was detect-
able in the cervical swabs only in very few cases (5 out of 
43 malignant cases), as inferred computationally through 
deconvolution of methylation profiles. Moreover, we 
also noticed that the two dominant cell types are epithe-
lial cells and neutrophils, even though we used different 
deconvolution methods, namely HEpiDISH and Methyl-
CIBERSORT, which differed both by the reference panel 
and computational algorithm [20, 26]. The proportion of 
immune cells seem very high in cervical swabs. However, 
it is a question of the proportions of the genetic mate-
rial of certain source rather than cell type proportion per 
mass or per volume. This can be much lower than sug-
gested by the deconvolution results as epithelial cells are 
typically about twice larger than neutrophils.

Analysis of the similarity between the samples (PCA) 
indicated that cervical swabs mainly grouped according 
to cell type composition while tissue samples showed 
a tendency to cluster according to patient group. This 
aligns with the findings of Qi and Teschendorff, who 
identified factors contributing to the main sources of 
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variation among samples. They demonstrated that cell-
type heterogeneity generally has a greater impact than 
sex, age, or ethnicity. However, differences between nor-
mal and cancerous tissues are often linked to substan-
tial global changes in the methylation landscape, which 
account for the top components of variation alongside 
cell-type heterogeneity [27].

Global methylation changes in tumor tissue readily 
distinguish tumor samples from those of patients with 
benign disease; however, these changes are not mirrored 
in the methylation profiles of cervical swabs. This study 
explores an approach for early ovarian cancer detection. 
Of note, among the 29 HGSOC patients included for 
cervical swab analysis, only 3 had stage I or II cancers. 
Despite the high prevalence of advanced-stage cancers 
in the cohort, the study did not identify reliable markers, 
further supporting the conclusion that local methylation 
profiles alone are insufficient for diagnostic purposes.

Conclusions and future perspectives
In the light of the above findings, both the results of dif-
ferential methylation analysis and the PCA, challenges 
related to developing a stable diagnostic signature seem 
understandable. It seems that basing on the overall 
methylation landscape of cervical swabs may not suf-
fice to design tools for early detection of OC. However, 
an approach previously suggested by several groups who 
postulated that cancer DNA can be found in the cervi-
cal swabs, may still be worth pursuing. So far sensitivity 
of OC detection was estimated to be around 40% [5], but 
hopefully, with identifying the right targets and imple-
menting more sensitive methods, this number can be 
increased, allowing detection of cancer-specific motifs 
even in samples with low tumor content. Our study pri-
marily presents negative findings. However, we believe 
these are also important to share, as they help pre-
vent research redundancy, reduce publication bias, and 
guide future studies toward more promising diagnostic 
approaches.
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