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Abstract 

Ovarian cancer (OC) is the third most common malignant tumor of women and is accompanied by an alteration 
of systemic metabolism. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great 
potential for OC diagnosis. EVs, nanosized extracellular vesicles found in the blood, have been proposed as promis-
ing biomarkers for liquid biopsies. In this study we recruited 37 OC patients, 22 benign ovarian tumor (BE) patients, 
and 46 clinically healthy control patients (CON). Plasma EVs were purified from blood samples and sensitive ther-
mal separation probe-based mass spectrometry analysis using a global untargeted metabolic profiling strategy 
was employed to characterize the metabolite fingerprints. Uniform manifold approximation and projection (UMAP) 
analysis demonstrated a distinct separation of EVs among the three groups. We screened for diagnostic biomark-
ers from plasma EV metabolites using seven machine learning algorithms, including artificial neural network (ANN), 
decision tree (DT), K nearest neighbor (KNN), logistics regression (LR), Naïve Bayes (NB), random forest (RF), and sup-
port vector machine (SVM). For the OC-CON comparison, the highest AUC values were found for RF (0.91), ANN 
(0.90) and NB (0.90), with the F1-scores of 0.88, 0.83, and 0.76 respectively. For the OC-BE comparison, SVM (0.94), RF 
(0.86), and KNN (0.86) gave the highest AUCs, with F1-scores of 0.80, 0.80, and 0.91 respectively. A total of 19 and 158 
metabolic features exhibited significant differences (FC = 1.5, q < 0.01) in the OC vs BE and OC vs CON comparisons, 
respectively. Notably, the quantities of 9-octadecenamide and 1,4-methanobenzocyclodecene were significantly 
elevated, while maltol showed a significant reduction in the OC group compared to the BE group. When comparing 
the OC group to the CON group, the concentrations of 4-amino-furazan-3-carboxylic acid 2-hydroxy-4-methoxyben-
zaldehyde, N-phenylethyl, and 4-morpholineethanamine were significantly elevated, while the remaining metabolites, 
including hydrazine and pyridine sulfonamide, were reduced, in the OC group. The metabolites showing different 
abundancies are associated with cancer-related mutations, immune responses, and metabolic reprogramming. We 
demonstrate that the RF algorithm, combined with sensitive thermal separation probe-based mass spectrometry 
analysis of plasma EVs, can effectively identify OC patients with good accuracy. Thus, our study has shortlisted a set 
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of potential biomarkers in plasma EVs, and the proposed approach could serve as a routine prescreening tool for ovar-
ian cancer.
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Introduction
Ovarian cancer
According to the World Health Organization (WHO), 
in 2018, ovarian cancer (OC) ranked as the second most 
common malignancy among gynecological diseases, 
following cervical cancer, with an estimated 184,799 
fatalities, which constitute approximately 6.6% of all 
cancer-related deaths. Due to its asymptomatic early 
stages [4], often OC is not diagnosed until it reaches an 
advanced stage, leading to a high fatality rate, earning it 
the moniker “silent killer” [25]. Indeed, OC is the deadli-
est malignant tumor of all female reproductive diseases 
[5]. Thus, it is necessary to understand the pathophysiol-
ogy of OC and discover a more robust diagnostics tool. 
Liquid biopsy, as a non-invasive technique for cancer 
diagnosis, represents a novel and promising approach to 
cancer detection and monitoring [23].

Extracellular vesicles (EVs)
The definitive diagnostic approach for cancer patients 
remains biopsies. Although there have been notable 
advances in the utilization of circulating tumor cells and 
circulating tumor DNA for diagnosing OC, issues remain 
for its early detection and disease progression monitoring 
[6]. Furthermore, the same issues apply to currently avail-
able clinical biomarkers. As a minimally invasive method, 
liquid biopsy offers the advantage of early diagnosis and 
real-time therapeutic response monitoring. This tech-
nique, which captures and detects tumor-related bio-
markers in body fluids, shows significant promise for 
diagnostic application.

Extracellular vesicles (EVs), characterized by a phos-
pholipid bilayer structure, are secreted by most cells and 
have potential as liquid biopsy biomarkers. They can be 
isolated from a variety of bodily fluids, including blood. 
Studies have revealed that the intracellular trafficking of 
EV cargo depends not only on the endocytic pathway 
but also on the biosynthetic secretory pathway for their 
release. This suggests that the contents of EVs can reflect 
the pathological and physiological states of the parental 
cells or source organs [18, 21, 26, 28]. EVs derived from 
OC tissue carry many tumor-related biomarkers, such 
as proteins, lipids, and nucleic acids, that are associated 
with disease progression. It has been demonstrated that 
EVs derived from OC patients’ plasma exhibit higher 
concentrations of TGFβ1 and melanoma-associated 

antigen 3 (MAGE3) [17] than EVs from patients with 
benign disease, providing evidence of their potential as 
biomarkers for differentiating benign and malignant OC 
diseases. Furthermore, investigations have found an asso-
ciation of EV biomarkers with tumor stage and prognosis 
[20], indicating their potential roles in cancer diagnosis. 
Despite increasing research on OC EVs, there is a lack of 
studies investigating metabolomics-based biomarkers.

The application of metabolomics to OC
Metabolic alterations occur downstream of genetic and 
proteomic regulation. Conversely, metabolic dysregu-
lation can lead to gene overexpression or silencing [1], 
which ultimately impacts metabolites. Therefore, the 
metabolome, the most proximate phenotype among 
all ‘omes’, provides valuable insights into the biological 
responses to both internal and external perturbations, 
including growth, disease, genetic modifications, and 
environmental effects. In this context, analysis of meta-
bolic patterns is an attractive strategy for monitoring 
dynamic changes in biological states.

Most studies use nuclear magnetic resonance (NMR) 
and gas or liquid chromatography combined with mass 
spectrometry (GC–MS or LC–MS) as analytical platforms 
for metabolic profiling. MS has higher sensitivity than 
NMR and is undoubtably the preferred choice for analyz-
ing trace amounts of EV samples. GC exhibits a signifi-
cant advantage over LC in terms of database completeness 
and is less prone to matrix effects and ion suppression by 
co-eluting compounds [10, 19], resulting in greater chro-
matographic resolution. However, there are some issues 
with the detection of polar, thermolabile, and non-volatile 
metabolites which require chemical derivatization prior 
to analysis [22]. The Agilent G4381A ChromatoProbe (a 
Thermal Separation Probe,TSP can be mounted on Agi-
lent standard shunt/no-shunt or multi-mode injection 
ports in conjunction with the GC–MS system to quickly 
separate and identify metabolites in complex samples. 
This setup not only enables direct detection of metabo-
lites but is also faster for scarce sample preparation and 
has higher sensitivity for trace metabolites, making it an 
effective solution for chemical derivatization.

Although there have been previous metabolomics stud-
ies on OC, there has been a lack of investigation of the 
EV metabolome related to OC. Therefore, we hypoth-
esize that metabolites isolated from EVs in the blood of 
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OC patients can be utilized to differentiate these patients 
from healthy individuals. In the present study, we 
employed a sensitive TSP-based mass spectrometry anal-
ysis and combined it with machine learning algorithms to 
identify metabolite changes among plasma EVs obtained 
from OC patients, patients with benign ovarian tumor 
(BE) and clinically healthy control (CON) patients.

Experimental section
Study design and participants
The clinical study was conducted in accordance with the 
Declaration of Helsinki and approved by the Research 
Ethics Committee of the Second Affiliated Hospital of 
Chongqing Medical University (Chongqing, China). 
All participants were recruited from the Second Affili-
ated Hospital of Chongqing Medical University and 
provided informed consent prior to participation in the 
trial from July 2020 to December 2021. The patients 
were recruited according to the following inclusion and 
exclusion criteria: 1) Participants with severe chronic 
diseases such as hypertension, infectious disease, dia-
betes, metabolic disorders, or a diagnosis of malignancy 

other than ovarian cancer were excluded from this study 
to minimize recruitment bias; 2) the clinically healthy 
control patients (n = 46) included women with uterine 
fibroids or endometrioma without any ovarian lesion; 
3) the benign ovarian tumor group (n = 22) included 
women with teratoma and ovarian cyst, and 4) the ovar-
ian cancer group (n = 37) were included based on levels 
of preoperative serum markers, including Carbohydrate 
Antigen (CA125 > 35 U/mL) and Human Epididymis 
Protein (HE4 > 70 pmol/L in pre-menopausal patients, 
or HE4 > 140 pmol/L in post-menopausal patients), and 
the imaging modality of sonography for evaluation of 
an adnexal mass. Details of the clinical samples and par-
ticipants, including the age, BMI, tumor site, histological 
type, and stage of ovary cancer, are provided in Table 1.

Blood collection
Peripheral blood samples (5 mL) were collected in EDTA 
tubes and delivered to the laboratory in an insulated ice 
box within 2 h. The samples were centrifuged at 1,000 g 
for 10 min to remove the blood cells and the supernatant 
plasma was stored at -80 °C until EV isolation.

Table 1  Clinical characteristics of study participants

P value: significance was calculated by non-parametric Kruskal–Wallis H test, OV Ovary Cancer, FIGO stage stage of International Federation of Gynecology and 
Obstetrics, N/A No statistics are required for this variable

Variable Total (N = 105) Ovarian Cancer (N = 37) Benign (N = 22) Normal control (N = 46) P Value

Age (years) < 0.001

  N 105 37 22 46

  Mean ± SD 46.7 ± 13.8 53.4 ± 12.8 37.4 ± 11.7 41.2 ± 12.1

  Min–Max 18.0–74.0 20.0–74.0 20.0–70.0 18.0–68.0

  Median(Q1-Q3) 46.0(32.0–54.0) 53.0(47.0–66.0) 36.0(28.0–44.5) 38.5(31.3–51.0)

BMI (kg/m2) 0.618

  N 105 37 22 46

  Mean ± SD 22.5 ± 2.9 22.2 ± 2.7 22.5 ± 2.4 22.8 ± 3.2

  Min–Max 16.0–30.0 17.5–27.9 18.4–28.2 16.0–30.0

  Median(Q1-Q3) 22.4(20.3–24.1) 21.8(20.2–24.1) 22.6(21.2–23.4) 22.4(20.3–25.5)

OV
  Serous (%) 33(89.2) 33(89.2) N/A N/A

  Mucinous (%) 2(5.4) 2(5.4) N/A N/A

  Endometrioid (%) 1(2.7) 1(2.7) N/A N/A

  Others (%) 1(2.7) 1(2.7) N/A N/A

FIGO stage N/A N/A

  IA(%) 1(2.7) 1(2.7) N/A N/A

  IC(%) 8(21.6) 8(21.6) N/A N/A

  IIB(%) 1(2.7) 1(2.7) N/A N/A

  III(%) 2(5.4) 2(5.4) N/A N/A

  IIIA(%) 2(5.4) 2(5.4) N/A N/A

  IIIC(%) 20(54) 20(54) N/A N/A

  IV(%) 2(5.4) 2(5.4) N/A N/A

  IVB(%) 1(2.7) 1(2.7) N/A N/A
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Isolation of EVs from plasma
To isolate the plasma EVs, we followed a modified dif-
ferential ultracentrifugation method based on a previ-
ously described procedure [16]. PBS was filtered through 
a 0.22 μm PVDF filter before all EV isolation and char-
acterization experiments. The resulting plasma samples 
were centrifuged at 5,000 g (4  °C) for 30 min to further 
eliminate cell debris. Next, the supernatant was diluted 
with PBS to a total of 12 mL and centrifuged at 100,000 
g (4 °C) for 90 min to isolate total EV pellets, which were 
resuspended in 12 ml PBS for centrifugation again at 
100,000 g (4 °C) for 90 min. The EVs were aliquoted and 
stored at -80℃ prior to verification of the isolated EVs 
and metabolomic analysis.

Transmission electron microscopy (TEM) analysis of EVs
Aliquots (4 μL) of EVs were dropped onto the carbon 
film copper grid and air-dried inside a fume hood over-
night for TEM analysis to observe the morphology and 
ultrastructure of EVs. The grids were examined with a 
Hitachi-7500 transmission electron microscope (Hitachi, 
Tokyo, Japan) at an acceleration voltage of 80 kV.

Nanoparticle tracking analysis (NTA) of EVs
NTA analysis was performed to analyze the EV particle 
size and density distribution, as described previously 
[3]. Briefly, fresh EV samples (50 μL) were diluted in 
fresh phosphate-buffered saline (PBS) to a concentration 
between 1 × 107—1 × 109 particles/mL, and vortexed for 
1 min to resuspend aggregated pellets. The level of the 
camera capturing EVs videos with the NanoSight NS300 
was set to 14. The optimal detection threshold was set 
to maximize the number of particles while ensuring that 
10–100 red crosses were counted, with less than 10% 
not associated with distinct particles, and the blue cross 
count was restricted to 5. For each measurement, three 
1-min runs were captured under the following condi-
tions: cell temperature was maintained at 25  °C and the 
syringe speed was 40 µl/s. Then, the videos were analyzed 
using NanoSight NTA version 3.2 software (Malvern 
Panalytical Ltd., Malvern, UK). The resulting data were 
displayed in the form of a curve where the abscissa and 
the ordinate values represented the EV particle size and 
concentration respectively.

Western blot (WB) analysis of EVs
WB analysis followed a previously published method 
[16]. Briefly, portions (50 μL) of EV samples were lysed 
in lysis buffer (RIPA cracking solution, P0013B, Beyo-
time, China), with the addition of a protease inhibitor 
cocktail and PMSF. The released protein was centrifuged 

at 12,000 × g at 4℃ for 10 min, and then the supernatant 
was heated at 100℃ for 15 min with shaking. Primary 
antibodies were transferred onto the PVDF membrane 
(P0012A, Beyotime, China) from a 12% sodium dode-
cyl sulphate polyacrylamide gel (P0012A, Beyotime, 
China) and blocking with 8% BSA (4240GR005, Bio-
Froxx, Germany), and the membrane was incubated 
at 4°C overnight. The primary antibodies used were 
CD63 (GR3212162-23, Abcam, 1:1000) and TSG101 
(GR299332-32, Abcam, 1:5000). After washed with TBST 
solution three times, the membrane was incubated with 
horseradish peroxidase-conjugated secondary antibody 
(E030320, EARTHOX, USA) at room temperature for 
1 h. Protein bands were visualized after electrophoretic 
separation with the GeneGnome XRQ analysis system 
(Syngene, UK).

Bicinchoninic acid (BCA) analysis
Protein concentration of EVs was measured with a BCA 
assay (P0012, Beyotime, China), and a protein standard 
curve according to the manufacturer’s instructions, and 
used to adjust the loading concentration of EV samples 
for GC–MS analysis.

Thermal separation probe (TSP) and GC‑inlet
The TSP (Agilent, US) extraction approach was imple-
mented to measure trace amounts of metabolites in 
plasma EV samples with a single extraction step. EV 
samples (60 µL, 108–10 particles per mL) were trans-
ferred to micro-vials (MicroV TSProbe Vial: 32 mm × 12 
mm, Agilent, USA) and dried in a SpeedVac for 3 h. The 
micro-vials were inserted directly into the GC inlet with 
temperature programming (Multimode inlet, Agilent, 
USA) using the TSP apparatus.

Gas chromatography‑mass spectrometry (GC–MS) analysis
An Agilent 5977A GC/MSD was used to detect trace 
metabolites in EV samples. Based on the resulting chro-
matogram, the GC resolution for the identified peaks 
ranged from 1 to 5,000. The GC-inlet was set at in the 
splitless mode with a flow rate of 1 mL/min helium car-
rier, and the inlet temperature initially at 120℃ and held 
for 6 s, then ramped the inlet temperature to 275℃ at a 
rate of 100 ℃. The volatile compounds were then sepa-
rated on a DB-FFAP capillary column (30 m × 250 μm 
id × 0.25 μm, Agilent, CA, USA) and detected by mass 
spectrometry (Agilent 7890B-5977A) with electron 
impact ionization via electron emission at 70 eV. The 
GC–MS parameters were set following a previously pub-
lished protocol [11]. The temperature was set at 250  °C, 
230 °C, and 150 °C for the auxiliary, MS quadrupole, and 
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MS source respectively. The mass range was detected 
between 30 μm to 550 μm in trace ion detection mode, 
the threshold was 150, and the scan speed was set at 2.8 
scans/sec. The oven temperature program was as follows: 
(1) 70 °C hold for 2 min; (2) increase to 150 °C at 50 °C/
min then hold for 3 min; (3) increase to 190 °C at 15 °C/
min then hold for 5 min; and (4) reach 240 °C at 20 °C/
min then hold for 5 min. The whole process took 21.77 
min.

Quality control
To minimize the batch variability, an equal volume of 
EVs derived from the plasma from the OC, BE, and CON 
groups was pooled together to prepare the quality con-
trol (QC) samples, and blank samples comprised empty 
micro-vials solely containing an internal standard. For 
each sample batch analysis, the first three samples ana-
lyzed were blanks, and then the QC samples were incor-
porated as the first, middle, and last EV sample for the 
GC–MS batch.

Metabolite identification, quantification and normalization
The chromatographic peaks were deconvoluted and 
identified using Automated Mass Spectral Deconvolu-
tion & Identification System software. The metabolites 
were identified if they matched both the in-house MFC 
library spectra > 90% and their respective GC retention 
time within a 30-s window. The identification of remain-
ing compounds used a commercial NIST mass spectral 
library.

The relative concentration of metabolites was calcu-
lated using the MassOmics R-based script from the peak 
height of the most abundant fragmented iron mass within 
a predetermined retention time. The background con-
tamination and any carryover from the previous analysis 
was subtracted using blank samples. The relative concen-
tration of identified compounds was first normalized to 
the internal standard (d4-alanine). Median centering of 
QC samples was implemented to adjust for batch effects. 
Dilution correction was achieved using the albumen con-
centration measured with the BCA assay.

Machine learning development and classification
Since different machine learning models may predict 
or rank different classification results, seven machine 
learning methods were performed to build the most 
appropriate binary classifier for identifying the cat-
egory of samples. Classifiers included artificial neural 
network (ANN), decision tree (DT), K nearest neigh-
bor (KNN), logistics regression (LR), Naïve Bayes 
(NB), random forest (RF), and support vector machine 

(SVM). First, identified metabolites were corrected 
with a data rectification procedure encompassing 
standard internal, QC samples, and protein concentra-
tion. Subsequently, the metabolite data were randomly 
split into the training and testing datasets in a ratio 
of 75:25 by Stratified Random Sampling. Each dataset 
was scaled independently by a z-score normalization 
algorithm to rescale each metabolite feature. Accord-
ing to the feature importance information, the sig-
nificant features subset was selected by the random 
forest-recursive feature elimination algorithm (RF-RFE) 
method with the training dataset. The seven supervised 
machine learning models with the selected metabolite 
features were trained to build efficient classifiers using 
the R-library packages, including Caret (v6.0–90), neu-
ralnet (v1.44.2), e1071 (v1.7–9), kknn (v1.3.1), and C50 
(v0.1.5). The hyper-parameter settings are shown in 
Table  2. To further validate the model, the validation 
dataset was employed to evaluate model performance. 
Confusion matrix and receiver operator characteristic 
(ROC) curves were used to evaluate the performance 
of classifiers and provided a calculating foundation of 
metrics including accuracy, recall (sensitivity), speci-
ficity, precision (positive predictive value), negative 
predictive value, and F1 value, which were defined as 
follows:

Overall experimental design of this study
A schematic diagram of the study approaches and main 
findings is presented in Fig. 1. Plasma EVs were purified 
from blood samples obtained from both ovarian cancer 
(OC) patients and non-malignant patients using ultra-
centrifugation. The global untargeted metabolite finger-
print of plasma-derived EVs was characterized using a 
sensitive thermal separation probe (TSP)-based mass 

Accuracy = (TP+ TN)/(TP+ FP+ TN+ FN);

Recall = TP /(TP + FN);

Specificity = TN /(TN + FP);

Precision = TP /(TP + FP);

Negative predictive value = TN /(TN + FN);

F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall).

TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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spectrometry analysis. To screen potential diagnos-
tic biomarkers for ovarian cancer, we employed seven 
machine learning algorithms, namely Artificial Neural 
Network (ANN), Decision Tree (DT), k-Nearest Neigh-
bors (KNN), Logistic Regression (LR), Naive Bayes 
(NB), Random Forest (RF), and Support Vector Machine 
(SVM). Together with the integration of machine learn-
ing modelling, this enabled us to pinpoint plasma EV 
metabolites intricately related to various cancer pheno-
types, encompassing cancer-related mutations, immune 
responses, and metabolic reprogramming.

Statistical analysis
The non-parametric Kruskal–Wallis H test was per-
formed to evaluate the differences in the clinical char-
acteristics of three groups: OC, BE, and CON patients. 
Uniform manifold approximation and projection 
(UMAP) was plotted to illustrate the overall relationship 
between the three groups using the UMAP R-package. 
The ROC curve was implemented to determine the pre-
dictability of the classifier using the POCR R-package. 
The Upset diagram and heatmap were constructed 
using UpSetR and ggplot2 R-packages respectively. Our 
Pathway Activity Profiling (PAPi) algorithm was used 
to predict and compare the relative activity of different 
metabolic pathways in the OC group and the CON group 
based on metabolite profiling results. This programme 

connects to the KEGG online database (http://​www.​kegg.​
com) and uses the number of metabolites identified from 
each pathway and their relative abundances to predict 
which metabolic pathway is likely to be active in the EV, 
and chord plots connecting metabolites and their par-
ticipating metabolic pathways were reconstructed via the 
GOplot R-package. Significant differences in metabolic 
pathway activities were determined by P-values < 0.05 
and corresponding FDR values < 0.2 using the q-value 
R-package.

Ethical approval
The clinical study was conducted in accordance with the 
Declaration of Helsinki. The studies involving human 
participants were reviewed and approved by the Research 
Ethics Committee of the Second Affiliated Hospital of 
Chongqing Medical University, China (202,164). The par-
ticipants provided their written informed consent to par-
ticipate in this study.

Results and discussion
Clinical characteristics of study participants
Plasma EVs obtained from participants with ovarian can-
cer (OC, n = 37), benign tumor (BE, n = 22), and clini-
cally healthy control patients (CON, n = 46) were isolated 
in order to identify potential biomarker candidates. The 
clinical characteristics of the patients are summarized in 
Table 1. The P-value for age was less than 0.001, indicating 

Table 2  The hyper-parameter settings of the machine learning models

- parameters were set as default * the optimal value was automatically tuned by R software

Models Parameters Parameter ranges Optimal parameters

ANN hidden;
linear.output

hidden:c(1,1,1) ~ c(10,10,10);
linear.output:FALSE;
learningrate: 0.001 ~ 0.050

hidden = c(10,7,4);
linear.output = FALSE
learningrate = 0.013

DT method;
metric;
trControl
tuneGrid

method: “C5.0”;
metric: “ROC”;
trControl: trainControl(method = “cv”, 
selectionFunction = “oneSE”)
tuneGrid* = expand.grid(.model = “tree”,.trials = c(1,2,3,4,5, 
6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25, 
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40))

method = “C5.0”;
metric = “ROC”;
trControl = trainControl(method = “cv”,selectionFunction = “oneSE”)
tuneGrid* = expand.grid(.model = “tree”,.trials = c(1,2,3,4,5,6,7,8,9,10, 
11,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,33, 
34,35,36,37,38,39,40))

KNN kernel Kernel: “triweight”;
k: 1 ~ 30;
d: 1 ~ 10

kernel = “triweight”;
k = 15;
d = 2

LR maxit maxit: 1 ~ 100 maxit = 50

NB - - -

RF method;
selectionFunction;
metric;
trControl

method: “rf”;
selectionFunction: “oneSE”;
metric: “Kappa”;
trControl:trainControl(method = “cv”,selection 
Function = “oneSE”)

method = “rf”;
selectionFunction = “oneSE”;
metric = “Kappa”;
trControl = trainControl(method = “cv”,selectionFunction = “oneSE”)

SVM method;
tuneLength;
trControl

method: “svmRadial”;
tuneLength: 1 ~ 50;
trControl:trainControl(method = “cv”, selection 
Function = “oneSE”)

method = “svmRadial”;
tuneLength = 12;
trControl = trainControl(method = “cv”,selection 
Function = “oneSE”,classProbs = TRUE)

http://www.kegg.com
http://www.kegg.com
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a statistically significant age difference among the par-
ticipant groups. Conversely, there was no statistically sig-
nificant difference in terms of BMI (P-value = 0.618). The 
majority of OC cases (89.2%) were classified as high-grade 
serous. Among patients with malignant tumors, there were 
9, 1, 24, and 3 patients in stages I, II, II, and IV respectively.

Isolation and evolution of EVs
The EVs derived from the OC, BE, and CON partici-
pants were isolated from 5 mL of plasma using dif-
ferential ultracentrifugation. TEM, NTA and western 

blotting were used to validate the quality of the isolated 
EVs from plasma (Fig. 2). TEM showed that the vesicles 
were spherical membrane structure with a size range of 
50–150 nm (Fig. 2A). In addition, the NTA size distribu-
tion showed that the median diameter of EVs was 126.5 
nm (range: 100—500 nm), which is consistent with other 
studies [7] (Fig. 2B). The NTA also revealed a nanoparti-
cle concentration of 1.45 × 109 particles/mL. Based on the 
formula below, the derived from OC tissue concentration 
of EVs in the original plasma sample was estimated to be 
1.16 × 109 EVs/mL.

Fig. 1  Schematic diagram of study approaches and main findings. RF model combined with TSP mass spectrometry analysis of plasma EVs 
demonstrated a remarkable capability to identify OC patients accurately. Notably, metabolites contributing to this discrimination included 
hydrazine, maltol, 4-morpholineethanamine, and methyl stearate. These identified metabolites are associated with cancer phenotypes, such 
as cancer-related mutations, immune responses, and metabolic reprogramming
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The membrane proteins CD63 and TSG101 (com-
mon EV markers) were highly enriched in EVs from 
patients detected by western blotting (Fig.  2C). Due 
to the utilization of all EV samples from the plasma 
of OC patients, analysis of negative EV markers such 
as GM130 and GRP94 was not performed in the WB 
experiment.

Overall changes in metabolite profiles
Alterations in cellular metabolism have been reported 
in numerous human cancers and are thought to reflect 
the metabolic demands related to cancer development 
[29]. In this study we performed comprehensive meta-
bolic profiling of plasma EV samples collected from 105 
women diagnosed either with OC, BE, or CON. Uniform 
manifold approximation and projection (UMAP) was 

Final exosomes concentration =
NTA result

exosome size of each detected NTA sample

×
exosome size of each plasma sample

plasma sample size

=
1.45× 109

50µL
×

200µL

5mL
= 1.16× 109/mL

employed utilizing 388 chromatographic peaks identified 
in EVs. The results demonstrated a distinct separation 
of EVs among the three groups, as depicted in Fig.  3A. 
Furthermore, we undertook pairwise comparisons of the 
metabolite profiles detected in the OC, BE, and CON 
groups. A total of 19 and 158 metabolites exhibited sig-
nificant differences in abundance (FC = 1.5, q < 0.01) in 
the comparisons between OC vs BE and OC vs CON, 
respectively (Fig.  3B). These differences were visual-
ized through a heat map and volcano plots in Fig.  4A-
C. In the comparison between the OC and BE groups, 
the quantities of 9-octadecenamide and 1,4-metha-
nobenzocyclodecene were significantly elevated in OC 
group, while maltol showed a significant reduction. The 
concentrations of 4-amino-furazan-3-carboxylic acid 
2-hydroxy-4-methoxybenzaldehyde, N-phenylethyl, and 
4-morpholineethanamine were significantly higher in the 
OC group than in the CON group, while the remaining 
metabolites, including hydrazine and pyridine sulfona-
mide, were lower. Several of the identified metabolites 
have been previously implicated in cancer pathogen-
esis. For instance, Spencer and Kisby demonstrated that 

Fig. 2  The characterization of EVs. A Representative electron microscopy micrograph of EVs isolated from plasma (indicated by arrows), bar = 200 
nm. B NTA analysis to determine the size distribution and number of EVs. C Western blotting validated EVs through CD63 and TSG101
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hydrazine induces DNA damage, which consequently 
leads to mutations and unregulated mitosis [24]. Simi-
larly, another study reported that maltol substantially 
inhibited tumor growth through the enhancement of 
immune function, induction of apoptosis, and inhibition 
of angiogenesis [14]. Our findings are consistent with 
those of Bachmayr et al. [2], who observed alterations in 
the blood metabolites of OC patients; specifically, reduc-
tions in lipids and amino acids were directly associated 
with tumor metabolism and facilitated cellular prolifera-
tion and growth [2]. Collectively, these metabolites show-
ing differential abundancies are linked to cancer-related 
mutations, immune responses, and metabolic repro-
gramming, thus indicating their potential utility as diag-
nostic biomarkers for OC.

Metabolic pathway enrichment analysis
To gain further insights into the biological role of the 
identified metabolites, we conducted a pathway enrich-
ment analysis using the KEGG metabolic network data-
base (Fig.  5A). The results of the predicted pathway 
analysis revealed that only the butanoate metabolism 
pathway was upregulated in EVs derived from the OC 
group. In contrast, nearly all other metabolic pathways, 
including carbohydrate metabolism, lipid amino acid 
metabolism, cofactor metabolism, vitamin metabo-
lism, and xenobiotic biodegradation, were found to 
be downregulated in the OC group. Furthermore, the 
metabolites with differential abundance were then 
mapped to 17 significant metabolic pathways includ-
ing glycolysis, gluconeogenesis, and the metabolism 

of glyoxylate, dicarboxylate, butanoate, glutathione, 
glycerophospholipid, pyruvate, glycine, serine, threo-
nine, tyrosine, phenylalanine, tryptophan, nicotinate, 
nicotinamide, propanoate, ubiquinone, and bile acids 
as illustrated by the Sankey diagram in Fig.  5B. Other 
studies have found similar metabolic alterations in OC. 
For example, Zhong et  al. observed an upregulation of 
glutathione metabolism in women diagnosed with this 
malignancy [29]. Elevated glutathione metabolism has 
been shown to accompany tumor growth, presumably 
to counteract the increased oxidative stress arising from 
accelerated metabolic rates [9, 12, 29]. In addition, Den-
kert et al. revealed elevated levels of amino acid interme-
diates, such as glycine, in OC tissues [8]. The increase in 
amino acid metabolism suggests that substantial pools of 
intermediate nutrients are being mobilized for molecu-
lar assembly in cancer cells. Research by Xu et al. dem-
onstrated that butyrate promotes cancer cell apoptosis 
by acting as a SIRT3 inhibitor. The authors showed that 
butyrate-induced acetylation of Pyruvate Dehydroge-
nase E1 Subunit Alpha 1 (PDHA1) alleviated the inhibi-
tory phosphorylation of PDHA1 at serine 293, thereby 
facilitating the flow of glycolytic intermediates into the 
tricarboxylic acid (TCA) cycle and reversing the War-
burg effect. Meanwhile, high levels of acetylation induced 
by butyrate inactivated complex I of the electron trans-
port chain, preventing its use as an intermediate in the 
TCA cycle. These metabolic stresses promote apoptosis 
in high-glucose cancer cells. The findings reported by 
Xu et  al. further support the upregulation of butyrate 
observed in the OC group in this study. In conclusion, 

Fig. 3  UMAP, Upset plot, and Venn diagram of EV samples from study participants. A UMAP clustering of all participant samples colored according 
to the participant group; each point in the plot represents a participant. Red dots represent the benign tumor group (n = 22), green dots indicate 
the control group (n = 46), and blue dots represent samples derived from the ovarian cancer group (n = 39). B Upset plot and Venn diagram 
of metabolites with differential abundance (p < 0.05). The individual or connected dots represent the various intersections of metabolites that were 
either unique to, or shared among, comparisons
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this research provides novel insight into the metabolite 
phenotype of plasma EVs that discriminates OC from BE 
and normal ovarian pathophysiology.

Machine learning algorithms for disease prediction
In order to determine which metabolites can be used 
to discriminate the OC group from the BE and CON 
groups, we used binary classification algorithms includ-
ing artificial neural network (ANN), decision tree (DT), 
K nearest neighbor (KNN), logistics regression (LR), 
Naïve Bayes (NB), random forest (RF), and support vec-
tor machine (SVM). Prior to modelling for the OC-BE and 
the OC-CON comparison groups with 59 and 83 samples 
respectively, each group was shuffled randomly. To avoid 

overfitting, the model was built using split data, 60% of 
the training and 20% of the test set and validation set.

As a result of applying these the algorithms to the 
dataset, a panel of metabolites in the plasma EVs was 
identified from 388 features. This included 1,4-metha-
nobenzocyclodecene, 9-octadecenamide, methyl stearate, 
4-morpholineethanamine, decanoic acid, aminopheny-
lacetylene, lacthydrazide, pentanone, 2,4-ditert butyl-
phenol, phenol, 3,5-dimethoxy, phenpropionic acid and 
silacyclopentane. The contributions of the nominated 
metabolites to the performance of each machine learn-
ing algorithm were ranked (Supplementary Fig.  1). The 
area under the curve (AUC) of biomarker signatures dis-
criminating the OC from the CON and BE groups are 

Fig. 4  Metabolite profiles of the EV samples from study participants. A Heat Map showing the profile of metabolites in plasma EV samples 
and their metabolic classifications. The relative concentration of metabolites in the samples are expressed on a log2 scale. The red block indicates 
that the metabolite level in the divisor array is higher than that in the divisor array, while the blue block indicates that the metabolite level 
in the divisor array is lower than that in the divisor array. Only metabolites with both p-value and q-value less than 0.01 in the logistic regression 
adjusted for age and BMI are displayed. B<C Volcano plot of the metabolites with differential abundance (p < 0.05, FC > 1.5). Red dots indicate 
upregulation and blue dots indicate downregulation
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displayed in Table 3. RF (0.91), and ANN (0.90) and NB 
(0.90) resulted in the highest AUC values with F1-scores 
of 0.88, 0.83, and 0.76, respectively, for the OC-CON 
comparison. Meanwhile, for the OC-CON comparison, 
the RF classifier displayed the best discrimination power 

(AUC value of 0.91) based on the top-ranking features. 
For the OC-BE comparison, SVM (0.94), RF (0.86), and 
KNN (0.86) gave the highest AUC values with F1-scores 
of 0.80, 0.80, and 0.91, respectively. To further assess the 
performance of the top-ranking features, an independent 

Fig. 5  Different metabolic pathways and metabolic networks in ovarian cancer (OC) and clinically healthy control patients (CON) groups. A 
Activities of metabolic pathways in EVs derived from the plasma of the OC and CON groups. Red dots and lines represent the metabolic activities 
in EVs from the CON group that were adjusted to 0. Blue triangles represent metabolic activities in EVs from the OC group relative to the CON 
group. The metabolic activities are expressed on a log2 scale. The triangle size indicates the number of identified metabolites in the pathway. Only 
the metabolic pathways with a significant p-value less than 0.01 (Logistic regression with age as a confounding factor) are plotted. B A Sankey 
diagram displaying how the metabolites with differential abundance connect to their participating metabolic pathways

Table 3  Performance of 7 machine learning models

Algorithms

RF ANN NB KNN SVM DT LR

OC vs CON
  AUC​ 0.91 0.90 0.90 0.87 0.88 0.80 0.61

  Sensitivity 0.92 0.83 0.67 0.75 0.67 0.67 0.58

  Specificity 0.78 0.78 0.89 0.78 0.78 0.78 0.56

  PPV 0.85 0.83 0.89 0.82 0.80 0.80 0.64

  NPV 0.88 0.78 0.67 0.70 0.64 0.64 0.50

  Precision 0.85 0.83 0.89 0.82 0.80 0.80 0.64

  F1 0.88 0.83 0.76 0.78 0.73 0.73 0.61

OC vs BE
  AUC​ 0.86 0.80 0.83 0.86 0.94 0.69 0.73

  Sensitivity 0.80 0.60 0.80 1.00 0.80 0.80 0.80

  Specificity 0.86 0.86 0.71 0.86 0.86 0.57 0.71

  PPV 0.80 0.75 0.67 0.83 0.80 0.57 0.67

  NPV 0.86 0.75 0.83 1.00 0.86 0.80 0.83

  Precision 0.80 0.75 0.67 0.83 0.80 0.57 0.67

  F1 0.80 0.67 0.73 0.91 0.80 0.67 0.73
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plasma EV dataset (n = 29) was recruited to validate the 
models. We observed that the external validation of the 
independent EV dataset yielded AUC values of 0.86 (RF 
and SVM) and 0.91 (KNN and SVM) for the OC-BE and 
OC-CON comparisons, respectively (Supplementary 
Table  1). Notably, RF provided the overall best perfor-
mance for both model tests and the validation because 
it is a machine-learning approach for binary classifica-
tion and can handle smaller datasets well [27]. DT and 
LR appeared to give the worst performance, likely due to 
underfitting resulting from a smaller dataset [13]. Con-
sidering the pros and cons of the different machine learn-
ing algorithms (Supplementary Table  2), we determined 
that RF was an appropriate model for our relatively small 
dataset and binary research question.

Despite the promising discriminative power of RF 
model for distinguishing between the OC and CON/BE 
groups, the identified top-ranking signatures, including 
4-morpholineethanamine (100), maltol (100), 4-Amino-
furazan-3-carboxylic acid (89), and bicyclo[5.2.1]
decan-10-one (87) have not previously been reported 
as diagnostic biomarkers for OC. For example, Zhong 
et al. have shortlisted several metabolites, such as suc-
cinic acid, lactic acid, itaconic acid, malic acid, glutamic 
acid and glutathione, as potential biomarkers for OC in 
plasma and urine [29]. Liu et al. conducted a screening 
of nine differential metabolites from 37 OC tissues and 
their ascites [15]. The metabolites were 20-COOH-leu-
kotriene E4, 1,25-dihydroxyvitamin D3-26,23-lactone, 
20a,22b-dihydroxycholesterol, 3a,6a,7b-trihydroxy-
5b-cholicacid, and 3a,7a,12a,19-tetrahydroxy-5b-cholic 
acid [15]. We have identified different diagnostic 
metabolites. One possible reason for this discrepancy 
is that our study primarily focused on plasma EVs, 
while other research predominantly employed conven-
tional biological specimens such as tissue, plasma, hair, 
and ascites. Furthermore, in order to investigate the 
trace metabolite concentrations within plasma EVs, we 
employed a novel TSP. This probe enabled direct analy-
sis of metabolites without sample preparation, which is 
superior to the conventional method of organic liquid 
extraction used for mass spectrometry analysis.

Despite the promising results, several limitations of 
our research merit discussion. Firstly, the ovaries are 
situated deep within the pelvic cavity, and early-stage 
ovarian lesions often present with non-specific clini-
cal symptoms. By the time symptoms manifest and 
patients seek medical help, approximately 70% are 
already in advanced stages. Furthermore, distinguish-
ing between benign and malignant tissue types is par-
ticularly challenging. During exploratory laparotomy for 
OC, it is observed that only a small percentage of tumors 
are confined to the ovaries; the majority have already 

metastasized to the bilateral adnexa, greater omentum, 
and other pelvic organs. Consequently, OC presents sub-
stantial challenges in both diagnosis and treatment. Due 
to the difficulty of early detection, most clinical samples 
come from patients with stage III or IV OC, with very 
few at an early stage. To enhance early diagnosis, we will 
continue to collect clinical samples and related follow-up 
data from early-stage OC patients in future studies.

Conclusion
This study is the first identification of diagnostic bio-
markers from plasma EV metabolites in OC patients 
using machine learning algorithms. The profile of 
ovarian EV metabolites was characterized by metabo-
lites associated with the metabolism of carbohydrates, 
amino acids, and lipids. We demonstrated that the RF 
Model, combined with sensitive thermal separation 
probe-based mass spectrometry analysis of plasma EVs, 
can effectively identify OC patients with high accu-
racy. Thus, our study has shortlisted a set of potential 
biomarkers in plasma EVs, and the proposed approach 
could serve as a routine prescreening tool for OC.
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