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ABSTRACT  
This paper describes a research investigation to access the feasibility 
of using an Artificial Intelligence (AI) method to predict and detect 
faults at an early stage in power systems. An AI based detector has 
been developed to monitor and predict faults at an early stage on 
particular sections of power systems.  The detector for this early 
warning fault detection device only requires external measurements 
taken from the input and output nodes of the power system.  The AI 
detection system is capable of rapidly predicting a malfunction 
within the system. Artificial Neural Networks (ANNs) are being 
used as the core of the fault detector.  A simulated medium length 
transmission line has been tested by the detector and the results 
demonstrate the capability of the detector.  Furthermore, comments 
on an evolutionary technique  as the optimisation strategy for ANNs 
are included in this paper.  
 
1.0 INTRODUCTION 
As a result of increasing competition in the electrical power industry 
and the requirement for quality power supply, adequate fault 
detection is becoming vitally important to both companies and 
consumers.  One of the strategies to ensure low running cost is the 
general avoidance of supply interruption wherever possible. 
Conventional fault studies are concerned mainly with a ‘what if ’ 
scenario i.e. on considering what would happen after a fault 
occurred, identifying its location and accessing the nature and degree 
of damage.  In contrast, if potential faults could be identified by an 
appropriate early warning system before a catastrophic fault actually 
occurs, the chance of power interruption would be greatly reduce.  
However, few studies have been made concerning early fault 
detection (EFD) techniques as used by Wong [1].  In a typical power 
system, the states (voltages and currents) of most bus bar nodes are 
monitored and gradual changes are analysed.  However, in general, 
because of the complexity of recorded data, faults cannot be easily 
recognised at an early stage. These faults can often be disguised 
initially by the complexity of power system operational data.The 
purpose of using the EFD system is to provide an early warning to 
the operator when potential faults are identified.  
The heart of the EFD system is a hierarchical ANNs structure [2], 
which consists a network of ANNs, which can be employed to 
monitor the states of some important components in power networks, 
such as switchgear and transformers.  Each of the individual ANNs 
is trained to detect minor changes to a component or a equivalent 
circuit component in a power system model.  In the training process, 
a sufficient number of training patterns are presented to the ANNs 
repeatedly until the problem is generalised.  A training pattern 
effectively consists of a series of numbers which inform the ANNs 
what the outputs states should be when identical, or similar, patterns 
are presented at the input of the ANN.  In this case, the training 
patterns are the states at both ends of the monitored power system 
section under slightly different ‘known’ working conditions.  The 
small variations of voltages and currents resulting from small 
degradation of component values, at sending and receiving ends of 
the monitored power system section, can be derived, under 
simulation, or selected from the power industry recorded data.  As 
some of the equivalent components of a power system model do not 
physically exist, or are inaccessible, they cannot be measured 
directly by simple measurement methods.  Thus, the application of 
an intelligent technique, such as an ANN method , is obviously 
desirable.  The principle of the EFD method can be applied to 
various sections of a power system.  A typical simplified example 
will now be given. 
High voltages and currents carried by transmission lines in power 
systems are subject to small changes in state, caused by partial 
faults,  often too trivially small to  trigger the conventional 
protection warming systems.  However, these small scale changes 
may develop and  eventually lead to major faults. If, for example, the 
protective layer for an underground transmission line had an 

undiscovered partial fault, due to road works damage, the cable 
could become progressively corroded and, in time, its electrical 
characteristics could change gradually.  A circuit breaker would trip 
if underground flooding caused a short-circuit and this fault could  
“black-out” a large area.  However, for a network with early warning 
fault monitoring, the interruption of power supply to certain sections 
of network could possibly be prevented.  The gradual change of 
impedance of the transmission line provides vital information which 
can be continuously monitored and analysed by the EFD technique 
to provide an early detection capability.  This approach could alert 
the operator before the main fault actually occurs enabling, in some 
situations, appropriate action to be taken, e.g. providing power 
supply from another circuit and switching out the endangered line 
prior to a more detailed investigation.  
 
2.0 ARTIFICIAL NEURAL NETWORK 
An ANN may be considered as a greatly simplified model of the 
human brain which can be used to perform a particular task or 
function of interest.[3]  The network is usually implemented using 
electronic components or  simulated in software on a digital 
computer.  The massively parallel distributed structure and the 
ability to learn and generalise makes it possible for ANNs to solve 
complex problems that otherwise are currently intractable.  A brief 
description of what and how neural networks are being employed is 
given below. For more information relating to ANNs, see [3-6]. 
 
2.1 Neurons And Synapses 
A neuron is an information processing unit that is fundamental to the 
operation of an ANN.  Two basic elements can be identified from a 
neuron; an adder and an activation function.  An adder is used to 
sum up the input signals, weighted by the respective synapses of the 
neuron.  The activation function limits the amplitude of the output of 
a neuron.  It compresses the permissible amplitude range of the 
output signal to some finite value [3].  For some gradient descent 
learning algorithms, such as the Back-Propagation learning method 
(BP), the activation functions are required to be bounded and 
differentiable.[4]  In this work, the standard sigmoid function was 
selected which bounds its output range between zero and one. 
Synapses are simple connection that can either impose excitation or 
inhibition on the receptive neuron.  Knowledge is acquired by the 
network through a learning process.  The synaptic weights are used 
to store the knowledge.  Through the learning process, the synaptic 
weights of the network are modified in such a way to map the input 
patterns to the output patterns. [3] 
 
2.2 Structure of  Artificial Neural Networks 
The standard Multi-Layer Feedforward (MLF) network is employed 
as the network architecture in this project.  The MLF network is a 
network of neurons and synapses organised in the form of layers; the 
input layer, hidden layer and output layer. 
 

 
Figure 1.  A 3-2-4 multi-layer feedforward network 

The function of the input layer is simply to buffer the external inputs 
to the network.  The hidden neurons have no direct connections to 
the outside world.  However, they empower the extraction of higher-
order statistics as the network acquires a global perspective despite 



its local connectivity by virtue of the extra set of synaptic 
connections and the extra dimension of neural interactions 
(Churchland and Sejnowski, 1992)[5].  Figure 1 shows the structure 
of a MLF network. 
The source nodes in the input layer of the network supply respective 
elements of the activation pattern, which constitute the input signals 
applied to the neurons (computation nodes) in the second layer.  The 
output signals of the second layer are used as inputs to the third 
layer, and so on, for the rest of the network.  
 
2.3 Learning Algorithm 
The procedure used to perform  the learning process is called a 
learning algorithm, the function of which is to modify the synaptic 
weights of the network in an orderly fashion so as to attain a desired 
design objective.  Many learning methods have been developed in 
the last few decades.  Detailed information concerning possible 
ANN learning algorithms can be obtained from [3-5]. 
Two learning algorithms have been used for this project; the 
standard back-propagation (BP) method and the genetic algorithm 
(GA).  BP has already been successfully applied by several 
researchers to solve some difficult and diverse problems by training 
ANNs in a supervised manner.  With regard to the BP method, a 
training set is applied to the input of the network, signals propagate 
through the network and emerge as a set of output states.  An error 
term is derived from the difference between the desired and actual 
output values and synaptic weights are then adjusted in accordance 
with an error correction rule.  As the iteration proceeds, the overall 
error normally approaches zero.[3]  
However, the slow rate of learning and the possible premature 
convergence are limitations of the standard BP learning method.  An 
alternative to the BP is the GA which is an evolutionary algorithm 
based on the concept of natural selection and evolution, described in 
[7], [8].  Evolutionary computing techniques are based upon 
Darwin’s theory of evolution where a population of individuals, in 
this case potential solutions, compete with one another over 
successive generations, ‘survival of the fittest’. After a number of 
generations, the best solutions survive and the less fit are gradually 
eliminated from the population [8]. As the GAs can prevent the local 
solutions when guided by the parallel search strategy, premature 
convergence can be avoided. The synaptic weights of ANNs are 
considered to be the chromosomes of an individual.  A population of 
individuals constitutes a pool of potential solutions. 
Chromosomes are traditionally represented by binary numbers and 
standard crossover and mutation are employed as the reproduction 
operators under a selection scheme.  A mapping process is required 
to convert binary chromosomes back into real numbers. Each 
individual (synaptic weights) of the new population will be 
transferred to the ANNs for evaluation.  After the fitness values are 
calculated, a new generation of weights will be genetically created. 
This process is repeated many times until the pre-defined precision 
is met. In many cases, standard GAs cannot be used to solve 
complex problems [10].  Figure 2 shows a representation of a 
modified GA training method developed by Wong [1]. 
 
2.4 Hierarchical Distributed ANNs (HDANNs) 
Recently developed HDANNs are advanced neural network 
architectures [2].  HDANNs consist of several interconnected level 
of ANNs.  The outputs of lower level ANNs are connected to the 
inputs of higher level ANNs. A typical schematic of a HDANN is 
shown on Figure 3. 
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Figure 3.  A schematic diagram of HDANNs 

HDANNs manifest a number of superior characteristics over 
conventional methods, exhibiting faster learning rate, smaller 
training sets and usually lessen the memory storage required.  Most 

importantly, each of the individual ANNs can be trained separately, 
‘the divide and conquer approach’, with the aid of parallel training, 
the overall training time can be greatly reduced.  HDANNs have 
been applied to solve multiple fault detection problems in this 
project.  Three independent ANNs are employed to monitor the same 
section of a power system.  Each ANN produces an output 
identifying the potentially faulty components.  The outputs from 
level 2 are fed into the level 1 (Figure 3) decision making ANNs 
which will further analyse the output data to produce meaningful 
instructions for the system operator. 
 
3.0 EXPERIMENTS AND RESULTS 
The characteristics of most passive components of a power systems 
can be considered to be a system of connected equivalent 
resistances, inductances or capacitances.  A RLC ∏ circuit was used 
to construct a model which simulates these characteristics.  The 
schematic diagram is shown in Figure 4.  This simple circuit can 
represent various equivalent power system components or sectors 
such as a medium length transmission line, low pass filter.  In order 
to verify the capability and reliability of the early warning fault 
detection system, the RLC ∏ circuit has been intensively tested 
under many diverse working condition.  Soft faults which are caused 
by slight degradation of one or more impedances were introduced at 
various location into the ∏ circuit. For single fault testing, an ANNs 
unit was employed to monitor both the sending and receiving end 
states.  Its outputs would which impedance (resistance, inductance or 
capacitance) represents a potential problem.  In the case of multiple 
faults testing, the situation were too complex for an single ANNs 
unit to efficiently handle.  Therefore, advanced HDANNs were 
employed.  The experimental results are shown in Table 1 at the end 
of the paper. 
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Figure 4.  The schematic diagram of the  ∏ circuit. 

Before the early warning fault detection system can be applied, it 
must be fully trained.  To ‘train’ the network a training set is applied 
to the ANN inputs and the learning algorithm invoked so that the 
output produces the desired response to identify ‘soft’ faults.  
Various patterns obtained from different operating conditions are 
repeatedly submitted to the ANN input units until the problem is 
fully generalised. 
For this ∏ circuit example, training patterns for the ANNs unit were 
constructed based on the following principle.  The values of the 
impedances in the ∏  circuit were varied in small incremental steps.  
The changes of impedance of the ∏ circuit affected states at both the 
sending and receiving ends of the circuit.  By specifying a certain 
degree of impedance change, for example 10% (see Table 1 and 
Figure 4), as a ‘soft’ fault, the states at both ends of the transmission 
line can be used to form the training pattern for the ANNs unit.  The 
numerical data generated often differs only by very small magnitude.  
These relatively small differences in current and voltage values 
makes it very difficult for the ANNs fault analyser to detect a ‘soft’ 
fault state. The solution to this problem is to pre-process the input 
data for the ANNs unit.  A normalisation pre-process method, which 
maps the input data to the range of 0 to 1, is applied to maximise the 
differences among the data.  The results from this experiment 
demonstrated that the pre-process  (normalisation) method is 
essential to obtain a solution and it also helps to reduce the training 
process time.  Table 1 shows the ANNs normalised training pattern 
for the multiple faults testing.  The first two columns list the 
percentage of change of impedance values, while the next eight 
columns of numbers show the sending (Vs, Is) and receiving end 
(Vr, Ir) voltages and currents, respectively.  The desired outputs 
which represent the fault states of the ANNs unit then are listed in  
the next three columns, where a fault is represented by a logic ‘1’.  
Each row of data was produced by changing the value of resistance, 
inductance and capacitance by only a small step 



 
3.1 Experiment Results of Multiple Faults Testing 
A HDANN structure, which consists of four ANN units, is employed 
in this experiment.  Every impedance in the ∏ circuit are monitored 
by an independent ANN unit.  The voltages and currents of both 
sending and receiving end of the ∏ circuit (see Figure 4) are fed to 
the three ANN units.  The outputs of the each is then connected to 
the inputs of the final decision ANN unit which further analyses the 
data and produce meaningful results, such as which impedance(s) of 
the actual ∏ circuit exceeds the allowable tolerance limits, for the 
system operator.   
Each of the ANN units in the HDANN structure were trained by the 
BP training method, within approximately 1,000 iterations. A total 
of 57 sets of different testing cases were used to evaluate the 
detector.  One-third of these were not part of the training set.  The 
last three columns of Table 1 show the results produced by the early 
warning fault detection system. The desired and corresponding fully 
simulated results are closely matched with an average accuracy of 
99%.  Therefore, it is considered that the system can be used to 
accurately identify soft fault states.  
 
4.0 DISCUSSIONS AND CONCLUSIONS 
The concept and methods for EFD or soft fault detection has been 
outlined and tested. The preliminary results presented have been 
encouraging and show good potential for the algorithm to be 
successfully implemented in real power system environments.  As 
fault detection is one of the important processes for reliable 
operation of any power system, an effective soft detection algorithm 
could eventually become a standard monitoring application essential 
for power system operational processes.   
During the development process of the early warning fault detection 
system, it was found that adequate data pre-processing is absolutely 
essential so that ANN units can efficiently trained.  The 
normalisation method employed in these experiments made the 
training patterns more distinctly different from each other, hence 
facilitating analysis by the ANN units.  
Experiments on single and multiple fault testing under both DC and 
AC ∏ circuit have been carried out. Surprisingly, this research has 
shown that the soft fault detector performs better with more complex 
AC system (processing complex numbers rather than just scalar 
values).  A possible reason for this is that the addition phase 
information in the training pattern enhance the pattern distinction. 
Another important result of this research is the demonstration of the 
effectiveness use of HDANN, ‘the divide and conquer approach’.  
Instead of employing a single large ANN unit, several small, 
independent ANNs were employed.  The resulting training time 
required is about ten times less for the multiple fault testing 
experiment.  In addition, each independent ANN units can be trained 
separately.  In the case of system reconfiguration, only the affected 
ANNs units need to be retrained. 
Evolutionary computing techniques are being evaluated as an ANN 
optimisation strategy.  Preliminary results show that the standard 
GAs method works very well for simple logic problems, five to ten 
time better than BP during training.  However, as the complexity 
increases, performance declines markedly and standard GAs are 
unable to solve most complex analogue electrical problems.  The 
authors can independently confirm the findings of Yao and Liu [10]; 
which describe the limitations of GAs for ANN applications, (a) the 

noisy fitness evaluation problem, (b) the permutation problem 
(competing conventions problem).  The use of Evolutionary 
Programming (EP) algorithms are currently being investigated to 
avoid crossover operators which are not effective due to the 
permutation problem.  In order to improve the learning efficiency of 
the EP algorithm operators designed specifically for the problem 
domain are being  devised.  Several new EP operators have been 
developed, and preliminary results are encouraging. 
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Figure 2. Block diagram of GA training method.  



          Desired Simulated 
Degradation  Vs  Is  Vr  Ir  Fault Fault Fault Fault Fault Fault
Component % a bj a bj a bj a bj (R) (L) (C) (R) (L) (C) 

R -50% 1.0000 1.0000 0.4795 0.3268 0.6031 0.2383 0.4687 0.0000 1 0 0 1.00 0.00 0.00 
L -50% 1.0000 1.0000 0.9381 0.6245 0.8227 0.9790 0.9482 0.7650 0 1 0 0.00 0.99 0.01 
C -50% 1.0000 1.0000 0.4226 0.1896 0.4382 0.4715 0.4405 0.5965 0 0 1 0.00 0.01 1.00 

R,L -50% 1.0000 1.0000 1.0000 0.4239 1.0000 0.7792 1.0000 0.1991 1 1 0 1.00 0.99 0.01 
L,C -50% 1.0000 1.0000 0.9271 0.2841 0.8060 1.0000 0.9442 0.8216 0 1 1 0.00 0.99 1.00 
R,C -50% 1.0000 1.0000 0.4413 0.0000 0.5727 0.2591 0.4541 0.0771 1 0 1 0.99 0.03 1.00 

R,L,C -50% 1.0000 1.0000 0.9805 0.0748 0.9821 0.7925 0.9919 0.2460 1 1 1 1.00 0.99 1.00 
R -30% 1.0000 1.0000 0.4695 0.4017 0.5484 0.3236 0.4627 0.2097 1 0 0 1.00 0.00 0.00 
L -30% 1.0000 1.0000 0.7392 0.5691 0.6822 0.7496 0.7442 0.6382 0 1 0 0.00 0.99 0.00 
C -30% 1.0000 1.0000 0.4343 0.3179 0.4495 0.4611 0.4447 0.5641 0 0 1 0.00 0.00 1.00 

R,L -30% 1.0000 1.0000 0.7681 0.4541 0.7781 0.6297 0.7672 0.3145 1 1 0 1.00 0.99 0.01 
L,C -30% 1.0000 1.0000 0.7274 0.3693 0.6691 0.7631 0.7399 0.6782 0 1 1 0.00 0.99 1.00 
R,C -30% 1.0000 1.0000 0.4486 0.2068 0.5307 0.3374 0.4549 0.2571 1 0 1 1.00 0.01 1.00 

R,L,C -30% 1.0000 1.0000 0.7533 0.2516 0.7645 0.6408 0.7615 0.3519 1 1 1 1.00 0.99 1.00 
R -10% 1.0000 1.0000 0.4583 0.4748 0.4937 0.4056 0.4552 0.4145 1 0 0 0.97 0.00 0.00 
L -10% 1.0000 1.0000 0.5463 0.5271 0.5387 0.5416 0.5469 0.5479 0 1 0 0.00 0.95 0.00 
C -10% 1.0000 1.0000 0.4463 0.4464 0.4607 0.4506 0.4489 0.5314 0 0 1 0.00 0.00 0.95 

R,L -10% 1.0000 1.0000 0.5535 0.4906 0.5675 0.5020 0.5523 0.4453 1 1 0 1.00 0.97 0.00 
L,C -10% 1.0000 1.0000 0.5409 0.4620 0.5335 0.5466 0.5450 0.5632 0 1 1 0.00 0.98 0.97 
R,C -10% 1.0000 1.0000 0.4520 0.4103 0.4880 0.4106 0.4530 0.4307 1 0 1 0.98 0.00 0.96 

R,L,C -10% 1.0000 1.0000 0.5478 0.4252 0.5622 0.5068 0.5502 0.4604 1 1 1 1.00 0.98 0.98 
R -5% 1.0000 1.0000 0.4553 0.4928 0.4800 0.4256 0.4532 0.4649 0 0 0 0.01 0.00 0.00 
L -5% 1.0000 1.0000 0.4991 0.5186 0.5026 0.4929 0.4987 0.5305 0 0 0 0.00 0.01 0.00 
C -5% 1.0000 1.0000 0.4493 0.4785 0.4636 0.4480 0.4500 0.5232 0 0 0 0.00 0.00 0.00 

R,L -5% 1.0000 1.0000 0.5024 0.5005 0.5166 0.4731 0.5012 0.4798 0 0 0 0.02 0.02 0.00 
L,C -5% 1.0000 1.0000 0.4962 0.4862 0.4999 0.4955 0.4977 0.5384 0 0 0 0.00 0.02 0.03 
R,C -5% 1.0000 1.0000 0.4522 0.4606 0.4772 0.4282 0.4521 0.4731 0 0 0 0.01 0.00 0.02 

R,L,C -5% 1.0000 1.0000 0.4995 0.4681 0.5139 0.4756 0.5001 0.4877 0 0 0 0.03 0.03 0.03 
All 0% 1.0000 1.0000 0.4523 0.5107 0.4664 0.4454 0.4510 0.5151 0 0 0 0.00 0.00 0.00 
R 5% 1.0000 1.0000 0.4491 0.5285 0.4527 0.4650 0.4488 0.5649 0 0 0 0.02 0.00 0.00 
L 5% 1.0000 1.0000 0.4059 0.5036 0.4301 0.3991 0.4038 0.5015 0 0 0 0.00 0.03 0.00 
C 5% 1.0000 1.0000 0.4553 0.5429 0.4692 0.4428 0.4521 0.5069 0 0 0 0.00 0.00 0.03 

R,L 5% 1.0000 1.0000 0.4031 0.5212 0.4168 0.4187 0.4019 0.5509 0 0 0 0.05 0.04 0.00 
L,C 5% 1.0000 1.0000 0.4091 0.5356 0.4330 0.3964 0.4049 0.4931 0 0 0 0.00 0.04 0.04 
R,C 5% 1.0000 1.0000 0.4521 0.5606 0.4555 0.4623 0.4499 0.5566 0 0 0 0.02 0.00 0.03 

R,L,C 5% 1.0000 1.0000 0.4062 0.5531 0.4197 0.4160 0.4030 0.5424 0 0 0 0.05 0.04 0.04 
R 10% 1.0000 1.0000 0.4460 0.5461 0.4391 0.4844 0.4466 0.6144 1 0 0 0.96 0.00 0.00 
L 10% 1.0000 1.0000 0.3600 0.4971 0.3938 0.3541 0.3571 0.4899 0 1 0 0.00 0.96 0.00 
C 10% 1.0000 1.0000 0.4583 0.5751 0.4720 0.4401 0.4532 0.4986 0 0 1 0.00 0.00 0.97 

R,L 10% 1.0000 1.0000 0.3548 0.5319 0.3679 0.3932 0.3537 0.5872 1 1 0 0.99 0.97 0.00 
L,C 10% 1.0000 1.0000 0.3667 0.5607 0.3998 0.3485 0.3594 0.4725 0 1 1 0.00 0.97 0.99 
R,C 10% 1.0000 1.0000 0.4517 0.6103 0.4447 0.4789 0.4485 0.5978 1 0 1 0.96 0.00 0.98 

R,L,C 10% 1.0000 1.0000 0.3612 0.5953 0.3739 0.3874 0.3558 0.5697 1 1 1 0.99 0.98 0.99 
R 30% 1.0000 1.0000 0.4325 0.6157 0.3846 0.5602 0.4367 0.8096 1 0 0 1.00 0.00 0.00 
L 30% 1.0000 1.0000 0.1810 0.4778 0.2487 0.1855 0.1751 0.4605 0 1 0 0.00 1.00 0.00 
C 30% 1.0000 1.0000 0.4706 0.7040 0.4834 0.4295 0.4574 0.4657 0 0 1 0.00 0.00 1.00 

R,L 30% 1.0000 1.0000 0.1708 0.5768 0.1789 0.3006 0.1700 0.7372 1 1 0 1.00 1.00 0.01 
L,C 30% 1.0000 1.0000 0.2041 0.6642 0.2687 0.1669 0.1826 0.4023 0 1 1 0.00 1.00 1.00 
R,C 30% 1.0000 1.0000 0.4481 0.8069 0.4009 0.5424 0.4417 0.7585 1 0 1 1.00 0.00 1.00 

R,L,C 30% 1.0000 1.0000 0.1912 0.7617 0.1981 0.2805 0.1763 0.6782 1 1 1 1.00 1.00 1.00 
R 50% 1.0000 1.0000 0.4181 0.6835 0.3304 0.6329 0.4258 1.0000 1 0 0 1.00 0.00 0.00 
L 50% 1.0000 1.0000 0.0095 0.4678 0.1044 0.0347 0.0012 0.4561 0 1 0 0.01 1.00 0.01 
C 50% 1.0000 1.0000 0.4831 0.8331 0.4947 0.4188 0.4616 0.4325 0 0 1 0.00 0.00 1.00 

R,L 50% 1.0000 1.0000 0.0000 0.6243 0.0000 0.2220 0.0000 0.8925 1 1 0 1.00 1.00 0.01 
L,C 50% 1.0000 1.0000 0.0524 0.7715 0.1405 0.0000 0.0143 0.3498 0 1 1 0.00 1.00 1.00 
R,C 50% 1.0000 1.0000 0.4415 1.0000 0.3569 0.6013 0.4328 0.9128 1 0 1 1.00 0.01 1.00 

R,L,C 50% 1.0000 1.0000 0.0359 0.9243 0.0338 0.1840 0.0099 0.7849 1 1 1 1.00 1.00 1.00 
 

 
Table 1.  Training patterns for the ANNs based ‘soft’ fault detector.  

 
 

Where 
Vs is sending end voltage; Is is sending end current; Vr is receiving end voltage; Ir is receiving end current; 
F1 = 1 indicates a fault on R1; F2 = 1 indicates a fault on R2; F3 = 1 indicates a fault on R3. 


