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Abstract

This paper reviews existing works on (deep) reinforcement learning consid-
erations in electric power system control. The works are reviewed as they
relate to electric power system operating states (normal, preventive, emer-
gency, restorative) and control levels (local, household, microgrid, subsystem,
wide-area). Due attention is paid to the control-related problems consider-
ations (cyber-security, big data analysis, short-term load forecast, and com-
posite load modelling). Observations from reviewed literature are drawn and
perspectives discussed. In order to make the text compact and as easy as
possible to read, the focus is only on the works published (or ”in press”) in
journals and books while conference publications are not included. Excep-
tions are several work available in open repositories likely to become journal
publications in near future. Hopefully this paper could serve as a good source
of information for all those interested in solving similar problems.

Keywords: Electric power system, reinforcement learning, deep
reinforcement learning, control, control-related problems.

1. Introduction

Power system is a vital infrastructure of modern societies. How impor-
tant is best seen from the fact that complete (known as blackouts) or partial
(known as brownouts) disruptions of power system result in huge economic
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and societal costs. An example is US-Canada power system outage of Au-
gust 14, 2003 [1] with estimated costs of 10 billion US dollars. In addition,
more and more services are expected to rely on electricity in the future (an
example is transportation systems’ increased reliance on electricity due to
development and deployment of electrical vehicles) and it is reasonable to
expect the costs of an outage such as [1] would be much higher if happens in
some future.

Complexity of present and expected future power systems is/will be in-
creasing due to deployment of electricity generation from so-called renewable
energy sources (RES), such as wind and solar, which are naturally uncer-
tain and interfaced with power system through power electronics converters
thus reducing the system inertia resulting in faster dynamics. This type of
electricity generation ranges from small to large and are connected across all
levels of power systems (high-voltage transmission, medium-voltage and low-
voltage distribution and microgrids). New types of loads (usually interfaced
with a system through power electronics converters) such as for example
electrical vehicles and increased use of High-Voltage Direct Current (HVDC)
to connect (usually a country geographical coverage) individual sub-systems
also add to the complexity of present and expected future power systems.

Advanced control techniques are needed to ensure reliable electricity de-
livery from generation sources to end-users and prevent (or decrease prob-
ability) of system’s blackouts/brownouts avoiding their huge economic and
societal consequences. Implementation of advanced communications infras-
tructure in power systems together with the availability of powerful computa-
tion architectures, and power electronics devices open up the possibilities to
implement advanced control schemes. All these complemented with achieve-
ments in control theory, control engineering, computer science, operational
research, and applied mathematics offer a number of advanced algorithms to
be used in control systems’ design (see [2–4] for discussions and vision from
systems (in general, including power systems) and control perspectives).

The use of recent breakthrough algorithms from machine learning opens
possibilities to design power system controls with the capability to learn
and update their control actions. This paper reviews considerations of Rein-
forcement Learning (RL) and Deep Reinforcement Learning (DRL) to design
advanced controls in electric power systems.

Research efforts in RL and DRL resulted in a number of useful methods
allowing power system controllers to learn a goal-oriented control law from
interactions with a system or its simulation model [5–7]. In RL and DRL set-
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ting a controller observes the system state, take control actions, and observe
the effects of these actions. and in this way progressively learn an algorithm
(a control law) associating control actions to the observations in order to
fulfil a pre-specified objective [5, 6, 8].

Some of considerations are already reviewed in [9]. In this paper the
focus is on power system control while decisions (like scheduling and mar-
ket decisions) and energy management are not included. RL and DRL-based
power system controls are reviewed as they relate to operating states of power
systems (control in normal state, preventive, emergency, and restorative con-
trol) and control levels (local, household, microgrid, subsystem, wide-area)
complemented with RL and DRL considerations to control-related problem:
cyber-security, short-term load forecasting, big data analysis, and compo-
nent/subsystem equivalent modelling.

The paper is organized as follows. Section 2 describes ongoing changes
in present and future power system structure together with presentation of
power system operating states. RL and DRL are shortly introduced in Sec-
tion 3 accompanied with some very recent connections between these meth-
ods and control in general. Section 4 reviews RL and DRL considerations
for power system control while Section 5 discusses possible future research
directions (perspectives) and Section 6 concludes.

2. Power system structure and operating states

Modern power systems undergo considerable transformation in their struc-
ture expected to be more pronounced in the future. Present and future power
system structures are illustrated in Fig. 1.
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Figure 1: Structure of power system: present (a) and future (b)).
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The trends driving the transformation are summarized as follows [10]:

• Changes in electricity generation sources (the mix and characteristics).
These changes shifts electricity generation from large power plants to
smaller generation from RES through their progressive deployment
across all levels of the system (transmission and distribution) together
with decommissioning of large thermal power plants (coal-fired and nu-
clear). This brings uncertainty in electricity generation and decrease
of the system inertia since RES generators are usually interfaced with
the system through power electronics converters (this makes frequency
regulation and control more challenging).

• New electricity load types and changes in load profiles. An example of
new type of the load is electrical vehicle with charging stations installed
across the system including individual homes. Changes in load profiles
are induced by possibility to generate electricity at the load side (this
is termed as ”prosumers” since they both generate and use electric en-
ergy), the use of electronics and controls in homes, offices and industrial
sites, and growing participation of the loads in electricity markets and
power system control.

• Smart grid technologies reflected in terms of advanced communica-
tions infrastructure, new instrumentation/measurement technologies
(like phasor measurement units (PMU) for transmission systems and
µPMU and advanced measurement infrastructure (smart meters) for
distribution systems) and increase of available data.

• The progressive emergence of microgrids and energy communities as
entities in power systems. These entities are similar and essentially in-
clude a group of interconnected loads and RES-based electricity gener-
ation within a geographical area that acts as a single controllable entity
with respect to the grid. They could operate in grid connected mode
but also could be disconnected from the system (actually this is main
operation mode of energy communities) and operate as autonomous
entity (this bring some flexibility in control of power systems, in par-
ticular restorative).

• Emergence of the electricity storage technologies across all levels of
power systems (ranging from large storage devices connected to trans-
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mission system to small ones connected to distribution system and mi-
crogrids/energy communities but also at individual load sites). These
technologies revealed to be main enablers of future power system op-
eration (possibility to smooth generation-load imbalances in uncertain
operation conditions) but also could serve as important control devices
across power system operation states.

• Increase in the deployment of HVDC lines to connect subsystems and
electricity generation from off-shore wind-based RES and increase in
deployment of so-called FACTS devices (Flexible Alternating Current
Transmission System). The former transforms pure AC to hybrid
AC/DC system (in transmission but also distribution systems). The
later opens possibilities to control power systems more efficiently.

The transformation further led to the consideration of the concept of
Internet of Things in electric power systems [11] where it often comes un-
der term Energy Internet [12]. The widely accepted classification of electric
power system operating states is the one introduced in [13]. Figure 2 illus-
trates five operating states as defined in [13] and adapted in [14].

Figure 2: Power system operating states (adopted from [14])

The states are defined in terms of the status of equality (E) and inequality
(I) constraints of the system (violated (indicated with ”˜” in Fig. 2) or not
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violated). The equality constraints express the generation-load demand bal-
ance while inequality constraints express physical limitations of power system
components (usually defined in terms of current and voltage magnitudes, ac-
tive, reactive and apparent powers that a system component can withstand
without any damage).

Figure 2 also illustrates controls used in electric power systems. In ad-
dition to preventive, emergency and restorative controls (shown in Fig. 2)
there is a need for the system to be controlled in normal operating state
since continuous small variations of generations and loads are present in this
state.

3. (Deep) Reinforcement learning: a short introduction and con-
siderations for control problems in general

Many power system controls are designed as the solution of multi-stage
decision optimal control problems. Dynamic programming [8] is natural
framework to solve these problems. Dynamic programming, reinforcement
learning and deep reinforcement learning are only briefly presented in this
section (to support discussions in later sections of this paper). More details
on these subjects can be found in [5–8, 15]

3.1. Dynamic programming and optimal control

Reference [16] considers dynamic programming as one of four canoni-
cal models to solve multi-stage decision optimal control problems in power
systems. This section largely follows presentation of [17], where dynamic pro-
gramming is formulated in the framework of discounted infinite time-horizon
optimal control for a short description of dynamic programming followed by
introduction to (deep) reinforcement learning. For this control, the objective
is to define, for every possible initial state x0, an optimal control sequence
u∗{t}(x0) (control policy). In order to determine this policy the value function
is defined as,

V (x) = max
u{t}

R(x, u{t}), (1)

R(x, u{t}) is the discounted return defined as,

R(x0, u{t}) =
∞∑
t=0

γtr(xt, ut). (2)
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where r(x, u) ≤ B is a reward function, γ ∈]0, 1[ a discount factor, and
u{t} = (u0, u1, u2, · · · ) a sequence of control actions applied to the system.

The value function is the solution of the Bellman equation [8],

V (x) = max
u∈U

[r(x, u) + γV (f(x, u))], (3)

The optimal control policy is deduced from the above equation as,

u∗(x) = arg max
u∈U

[r(x, u) + γV (f(x, u))]. (4)

The value function can be re-expressed by defining the so-called Q-function,

Q(x, u) = r(x, u) + γV (f(x, u)), (5)

as,

V (x) = max
u∈U

Q(x, u), (6)

while the optimal control policy is re-expressed by,

u∗(x) = arg max
u∈U

Q(x, u). (7)

Equation (7) provides a straightforward way to determine the optimal control
law from the knowledge of Q.

3.2. Reinforcement learning

In most of the electric power system control problems state space is infi-
nite and the Q-function must be approximated [5, 6, 8]. Prevailing approach
is a state space discretization technique that divides the state space into a
finite number of regions. On each region the Q-function depends only on u
and, in the RL algorithms, the notion of state used is not the real state of the
system x but rather the region of the state space to which x belongs denoted
by s (sometimes termed as pseudo-state). In general, the knowledge of the
region s(xt) at some time instant t together with u is not sufficient to predict
with certainty the region to which the system will move at time t + 1. To
model this uncertainty it is assumed that the sequence of discretized states
followed by a system under a certain control sequence is a Markov chain char-
acterized by time-invariant transition probabilities p(s′|s, u), which define the
probability to go to a state st+1 = s′ given that st = s and ut = u.
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Using transition probabilities and a discretized reward signal (r(s, u)), the
control problem can be reformulated as a Markov Decision Process (MDP)
and search for a control policy defined over the set of discrete states S, that
maximizes the expected return. The Q-function is now characterized by the
following Bellman equation,

Q(s, u) = r(s, u) + γ
∑
s′∈S

p(s′|s, u)max
u∈U

Q(s′, u), . (8)

A classical dynamic programming algorithm like the value iteration or the
policy iteration algorithm [5, 6, 8] can be used to estimate solution of this
problem. Optimal control policy is now defined by,

û∗(x) = u∗(s(x)) = arg max
u∈U

Q(s(x), u). (9)

RL is an approach to approximately solve above problem through estimation
of the Q-function by interacting with the system or its simulation model (by
trial and error). The interaction works as follows:

1. at time t, the algorithm observes the state st, sends a control signal ut,
and receives information back from the system in terms of the successor
state st+1 and reward rt = r(st, ut);

2. above four values are used either to estimate the transition probabilities
and the associated rewards (model based) and then compute the Q-
function, or learn directly the Q-function without learning any model
(model-free);

A RL algorithm at each time-step selects a control signal, by using the so-
called ε-greedy policy (a control signal is chosen at random in U chooses,
with a probability of ε). The smaller the value of ε, the better the RL
algorithms exploit the control law they have learned and the less they explore
their environment (this is known as “exploration-exploitation” trade-off in
RL algorithms).

Among many, most popular (at least in electric power systems community,
as will be clear in later sections of this paper) RL methods are Q-learning,
fitted Q-iteration, SARSA, TD, and their variants (for full details see [5, 6],
including relations among mentioned RL methods since they are often not
clear from electric power system literature).

9



3.3. Deep reinforcement learning

The rise and development of DRL is strongly connected to advances and
breakthroughs in deep learning [18] and in particular deep learning for neural
networks [19] (these neural networks are also known as Deep Neural Networks
(DNNs)). In principle, DNNs include more (hidden) layers in between input
and output layers of neural networks and enable RL to scale to decision-
making problems with high-dimensional state and action spaces owning to
their generalization capabilities. This is usually achieved by training DNNs
to approximate (parameterized by the weights of a DNN): value function,
control policy or model (in terms of transition probabilities and rewards)
[15].

A general DRL framework is illustrated in Figure 3. Note that not all
elements of the framework are present in every DRL method (an example is
replay memory element used to store the experience that it can be reprocessed
at a later time [7].

DNN
Learning
algorithm

- training
- validation
- testing

Control
policies

Replay

memory

System

(or its simulation model)

DRL contoller (agent)

s u

Figure 3: A general framework of DRL (adopted from [7] and slightly modified)

Each layer of a DNN consists in a non-linear transformation and the
sequence of these transformations leads to learning different levels of ab-
straction. An arbitrarily large number of hidden layers is possible within a
DNN. Two types of layers are of particular interest in DRL [7]:

• Convolutional layers: parameters of these layers consist of a set of
learnable filters (or kernels), which have a small receptive field and
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which apply a convolution operation to the input, passing the result
to the next layer. As a result, the network learns filters that activate
when it detects some specific features.

• Recurrent layers and their variants: particularly well suited for sequen-
tial data. Most important variants relevant for DRL include the long
short-term memory network and neural Turing machines (able to en-
code information from long sequences).

DRL approaches are usually classified as: value-function based, control-
policy-based and model-based. Most popular of these approaches are just
noted in this section (interested readers are referred to [7, 15] for full details).
Value-function-based DRL include Deep Q-networks (DQN) that combine Q-
learning with a neural representation and Extensions of DQN (to avoid insta-
bility and divergence): Double DQN, multi-task learning, and rapid learning.
Most popular control-policy-based DRL is the asynchronous advantage actor-
critic (A3C) algorithm able to efficiently learn tasks with continuous action
spaces.

3.4. (D)RL for control problems in general: a short review of recent works

A recent paper [20] comprehensively reviewed considerations of RL and
DRL for solving control problems. This reference includes a long list of
relevant works and is a good starting point for all those interested in the
field.

Worth mentioning here are two very recent monographs [21, 22], a re-
cent survey paper [23], and a vision paper [24] (not listed in [20] since not
available at the time when [20] was prepared). Monograph [22], written by
one of leading experts in the field, offers a comprehensive material on RL
and DRL for solving optimal control problems and will certainly become a
classic material to read whenever either RL or DRL are considered to solve
optimal control problem in any engineering (and non-engineering) problems.
An interesting observation from [22] is ”...no methods that are guaranteed
to work for all or even most problems, but there are enough methods to try
on a given challenging problem with a reasonable chance that one or more of
them will be successful in the end...”. This indeed holds true when RL and
DRL are considered for solving power system control problems. Material
of [21] focused on Lyapunov-based approach in using RL in feedback con-
trol and establishing stability during the learning phase and the execution
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(therefore offering a sort of safe RL). Reference [23] surveyed existing RL-
based feedback control solutions to optimal regulation and tracking of single
and multi-agent systems with the focus on Q-learning (as core algorithm for
discrete-time) and the integral RL (as core algorithms for continuous-time
systems). A vision for the field of systems and control in light of the advances
in machine learning and artificial intelligence (including RL and DRL) was
presented in [24]. A conclusion that can be drawn from [24] is the future
systems and control developments need to fully engage with the two fields
and trigger new research directions.

4. A short review of (D)RL considerations for electric power sys-
tem control and control-related problems

The considerations are reviewed in terms of power system operating state
for which they are designed to work. Table 1 summarizes these considera-
tions.

Table 1: Summary of (D)RL considerations for electric power system control

Control Reference(s)
Normal [25–56]

Preventive [57]
Emergency [17, 58–76]
Restorative [77–79]

Control-related [80–90]
considerations

4.1. Control in normal operating state

These considerations are summarized, in terms of a control problem, con-
trol level (local, subsystem, microgrid, household, wide-area), (D)RL method
used, and corresponding references. The summary is displayed in Table 2.

Reference [25], through consideration of protection relays as on/off control
devices, proposed DRL to set up the relay control logic able to differentiate
heavy load and faulty operating conditions of a distribution system with
high proliferation of electricity generation from RES. A problem was cast
as a multi-agent one and term nested is used because the method exploits
nested structure of electric distribution system.
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Works presented in [26–29] dealt with Maximum Power Point Tracking
(MPPT) control for wind energy [26, 28] and photo-voltaic electricity gener-
ation [27, 29]. They are local controls acting on individual wind or photo-
voltaic sources so that maximum electricity is generated. Q-learning was
used in [26] for variable-speed while [28] suggested the use of neural networks
in conjunction with Q-learning for permanent magnet synchronous genera-
tor wind energy conversions systems. Photo-voltaic system was considered in
[29] for MPPT through memetic computing incorporated in RL (Q-learning).
Reference [27] proposed variable leaky least mean square algorithm to gen-
erate photo-voltaic inverter reference, RL algorithm (Q-learning) for MPPT
and a sliding mode approach to generate switching signals. The MPPT is
designed with Q-learning algorithm for extraction of maximum power from
photo-voltaic panels during varied solar insolation. The work presented in
[30] is also a sort of control for maximizing gathered energy (in this work
from ocean waves) with Q-learning used to design controller to maximize
energy absorption in each sea state optimal resistive control of a wave point
absorber. Similar problem was considered in [31] using least-squares pol-
icy iteration RL method with function approximator (radial basis function)
and comparisons with Q-learning and SARSA RL method suggesting better
performances of the proposed approach.

References [32, 33] proposed RL to control electricity generation from
electronically-interfaced electricity generators based on RES in order to sup-
port frequency regulation in the system. Actor-critic neural networks were
considered in [32]. The on-line controller based on a policy iteration rein-
forcement learning paradigm along with an adaptive actor-critic technique
was considered in [33] for wind turbines with doubly fed induction generators.

Q-learning was proposed in [34] for optimal tap setting of on-load tap
changer of step-down transformers (connecting electric distribution systems
with the rest of the system) in order to control distribution system side
voltage under uncertain load dynamics. A sequential learning algorithm was
used to learn an control-value function for each transformer based on which
the optimal tap positions is determined.

Automatic Generation Control (AGC) and Load-Frequency Control (LFC)
were considered in [35, 37–39, 41–46] (the objective is to keep frequency in a
narrow range around nominal value, for example in Europe [49.8−50.2]Hz).
AGC and LFC differs in that AGC includes LFC together with generation
dispatch function for control of so called area control error that is a param-
eterized sum of frequency deviation and active power flows over so-called
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tie-lines (the lines connecting subsystems within a larger interconnection).
Most of considerations suggest the use of Q-learning (or its variant Q(λ)).
Single AGC controller was defined in [35] and designed using Q-learning. The
same problem as in [35] was investigated in [36] with the difference that con-
tinuous state and control spaces were considered (this was achieved through
the use of radial basis function neural network trained by the RL method).
Q-learning method was also used in [37] with genetic algorithms to tune con-
troller parameters. Work presented in [38] suggested single AGC controller
based on multi-step Q(λ) method while [39] suggested the use of correlated
equilibrium Q(λ) within a multi-agent setting (similar approach was pro-
posed in [40] with the difference that correlated equilibrium Q-learning was
proposed within a multi-agent framework for AGC). A multi-objective Q-
learning was used to activate rules of AGC (consisting of dynamic allocation
of the AGC regulating commands among various AGC units, and activa-
tion of the secondary control reserve of those units was considered in [41].
Reference [42] proposed a lifelong learning control scheme for AGC where
the wind farms, photovoltaic stations, and electric vehicles are aggregated
as a wide-area virtual power plant participating in AGC with other gener-
ation plants. Q-learning was adopted, together with imitation learning and
knowledge transfer, to this purpose. Reference [43] proposed a combination
of R(λ) with an imitation pre-learning process and tested it for AGC based
on control performance standards. R(λ) is an average reward RL method [5]
similar to Q-learning. Work presented in [44] proposed DRL for LFC with
continuous control. Off-line control policy is suggested with a DRL method
and on-line control where features are extracted by stacked denoising auto-
encoders. An adapted DQN for continuous spaces was use as DRL. Integral
RL [23] for load frequency regulation in multi-area electric power systems
was suggested in [45]. Emotional RL was proposed in [46] for AGC where
the controller integrates two parts: RL and artificial emotion (this part is a
function of the elements of RL (control, learning rate, reward) and essentially
allows embedding domain knowledge).

A subsystem level voltage controls based on RL were considered in [47, 48]
and DRL in [49] and [50]. References [47, 48] considered voltage control
through Q-learning used to learn the optimal control law for reactive power
control. The objective is to keep substations’ voltage magnitudes within
the normal range around nominal voltages ([0.9 − 1.1]) for distribution and
([0.95− 1.05]) for transmission system. Q-learning was used to learn how to
adjust a closed-loop control rule by mapping states (power flow solutions)
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Table 2: Summary of (D)RL considerations for control in normal operating state

Level Control (D)RL Reference(s)
problem method

Device (local) Protection DRL (DQN) [25]
relays
MPPT Q-learning [26–30]

Least-squares [31]
policy iteration

Frequency Q-learning [32, 33]
regulation

Voltage Q-learning [34]
Subsystem AGC/LFC Q-learning [35–37, 41, 42]

Q(λ) [38]
Correlated Q(λ) [39]

Correlated Q [40]
R(λ) [43]

DRL (DQN) [44]
Integral RL [45]

Emotional RL [46]
Voltage Q-learning [47, 48]

DRL (DQN) [49]
DRL (DQN/DDPG) [50]

Load control DRL (DQN) [51, 52]
Microgrid Transient energy Tailored [53]

storage performances
Power quality Tailored [54]

control
Active/Reactive Tailored [55]
generation power

Household Parameter Q(λ) [56]
tuning

to controls (computed off-line). This is achieved though the formulation of
constrained power flow problem as a multi-stage decision problem [47] and
the use of an average consensus algorithm within a multi-agent RL-based
framework [48]. Reference [49] proposed a two time-scale voltage regulation
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scheme for distribution systems with radial grid. The optimal set-points of
smart inverters are obtained, at fast scale (every second) by minimizing bus
voltage deviations from their nominal values using a power flow model (exact
or linear approximation). A DQN algorithm is deployed at the slower time
scale (every hour) to configure a set of shunt capacitors to minimize the long-
term discounted voltage deviations. Work presented in [50] considered two
DRL methods (DQN and deep deterministic policy gradient (DDPG)) for
subsystem level voltage control with observation that DDPG method offered
much better performances after a sufficient number of training scenarios.

Load as a control mean to balance electricity generation and consump-
tion was considered in [51, 52] using DRL to this purposes. Reference [51]
considered an approach to find a near-optimal sequence of decisions based on
sparse observations. This reference investigated the capabilities of different
deep learning techniques, such as convolutional neural networks and recur-
rent neural networks, to extract relevant features for finding near-optimal
policies for a residential heating system and electric water heaters, with con-
clusion that LSTM network offers a higher performance than stacking these
time-series in the input of a convolutional neural network. Reference [52] sug-
gested the use of a convolutional neural network to extract hidden state-time
features to mitigate partial observability. A convolutional neural network is
used as a function approximator to estimate the Q-function in the supervised
learning step of fitted Q-iteration.

Considerations of RL for microgrid level control were presented in [53–
55]. In [53] a hybrid energy storage (consisting of Lithium-Ion battery and
ultra-capacitor) is controlled in order to improve transient performances in a
microgird involving photo-voltaic system and diesel generators. Two neural
networks are used to this purpose: one to estimate system dynamics on-line
and another to to calculate the optimal control input for the storage sys-
tem through on-line learning based on the estimated system dynamics. This
approach is specific, it somewhat resembles DRL but does not belong to
any known of DRL algorithms. In [54] a DSTATCOM (Distribution STATic
COMpensator) was proposed to compensate power quality issues (the reac-
tive power, harmonics, and unbalanced load current) in a microgrid. Voltage
controller minimizes the voltage profile at point of microgrid coupling with
the rest of the system, whereas the current based controller compensate the
unbalanced load current in distributed generation sources. RL method pro-
posed in [54] is also specific: for each pair of input/output signal, three
different control signals are considered and in each state the adaptation unit
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is used to selects one control. Reference [55] proposed a critic-based adaptive
control system that include a neuro-fuzzy and a fuzzy critic controllers for the
control of active and reactive powers generation in a microgrid. The fuzzy
critic controller is based on a neuro-dynamic programming RL algorithm.
On-line tuning of the output layer weights of the neuro-fuzzy controller is re-
alized through reinforcement signal produced by the critic controller together
with the back-propagation of error.

RL considerations to control a household were presented in [56]. Q(λ)
was proposed to learn the optimal values of only one parameter of a fuzzy
controller that include a set of fuzzy rules generated by off-line optimization.
A value of parameter corresponds to one set of fuzzy rules.

4.2. Preventive control

Q-learning was suggested in [57] to determine optimal control of active
power generations for preventing cascading failure and blackout in smart
grids. This approach belongs to subsystem level controls and considers single
line outages (termed N-1 contingency in power system literature) and two
consecutive line outages (termed N-1-1). The control is designed to work
in normal operating state of the system and applies control action in this
state in order to avoid cascading failures and possible blackouts/brownouts.
Proposed approach was tested in experimental set-up in addition to tests in
simulation environments (as in many other considerations reviewed in this
paper).

4.3. Emergency control

Table 3 summarizes these consideration also in terms of a control problem,
control level (local, subsystem, microgrid, wide-area), (D)RL method used
and, corresponding references.

Two problems for which (D)RL was considered in existing works are in-
stability (transient, oscillatory angle and voltage instabilities) and cascading
failure problem (cascading outages of transmission lines and electricity gen-
eration plants usually initiated by outage of a transmission line suffering
lasting overload).

Transient angle instability appears in electric power systems after large
disturbances (usually outage of large generators or important transmission
lines as well as three-phase short-circuit in transmission system). Imbalance
in generation and demand causes fast increase/decrease of angular velocities

17



Table 3: Summary of (D)RL considerations for emergency control

Level Control (D)RL Reference(s)
problem method

Device (local) Transient Q-learning [17, 60–62]
angle instability

Fitted Q-iteration [58, 59]
DRL (DQN) [73]

Oscillatory Q-learning [17, 60, 65–68]
angle instability

Fitted Q-iteration [58, 59, 69]
Subsystem Voltage (FIDVR) DRL (DQN) [73]

Cascading Q-learning [76]
failure

Wide-area Oscillatory Q-learning [70, 71]
angle instability TD(λ) [72]

Transient actor-critic [63, 64]
angle instability

Frequency TD(λ) [74]
instability

of synchronous generators (this instability is also termed as first-swing in-
stability). The aim of controls is to keep the system in synchronism (with
angular velocities equal or very close to the nimnal value defined by the
nominal system frequency). References [17, 58–64, 73] dealt with transient
instability control by controlling individual electric power system compo-
nents such as thyristor-controlled series capacitor [17, 58, 59] and a dynamic
brake (a resistor usually located near electricity generation plant) to absorb
excess of electricity generation [60, 61]. Q-learning was used in [17, 60–62]
while [58, 59] suggested fitted Q-iteration. Reference [60] suggested limiting
controls to stabilizing ones (derived from the concept of control Lyapunov
functions) in order to ensure safety during exploration in RL. Inclusion of
state history to recover Markov property in partially observable problems
was considered in [62]. A dynamic brake wa also considered in [73] for emer-
gency control using DRL (DQN was an approach of the choice in [73]) largely
following implementation details presented in [17, 62]. The problem of tran-
sient angle instability was also considered within wide-area control systems
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[63, 64]. Work of [63] presented an optimal wide-area system-centric con-
troller and observer based on a hybrid RL (adaptive critic design) and TD
with eligibility traces framework. A similar approach (in terms of the use
of RL) was presented in [64] with an extension consisting in a value priority
scheme to prioritize local and proposed global control so damping of both lo-
cal and inter-area oscillations is achieved. The prioritizing scheme is designed
using a derived Lyapunov energy function.

Oscillatory angle instability relates to the problem of low-frequency oscil-
lations in the system (local modes in the range [0.7− 2.0] Hz and inter-area
modes in the range [0.1− 0.8] Hz). This type of instability was considered in
the context of controlling individual system components [17, 58–60, 65–69]
and wide-area controls [70–72]. Some of the works [17, 58–60] are already
discussed in the context of transient angle instability and some comments
are valid for oscillatory angle instability consideration. A backstepping con-
trol was designed in [65] using Q-learning. Reference [66] proposed a de-
centralized synergetic controllers with varying parameters. Particle swarm
optimization is first used to optimize parameters of the controllers followed
by RL (Q-learning) to vary some of controller parameters to improve its
performances. Work of [67] suggested Q-learning to design a controller for
interline power controller to damp low-frequency oscillations (inter-area os-
cillations often present between two subsystems in a larger interconnection).
In [68] a set of quadrature boosters devices, controlled by fuzzy controllers,
are coordinated by Q-learning for oscillations damping. Fitted Q-iteration
RL method was considered in [69] where a trajectory-based approach was
designed as supplementary to existing controllers. In [70] a wide-area decen-
tralized power system stabilizer was designed using Q-learning for damping
both local and inter-area low frequency oscillations. Work presented in [71]
also used Q-learning RL method and both physical and communication in-
frastructure brought uncertainties were addressed. Wide area control for
oscillations damping presented in [72] used TD(λ).

Reference [73]) dealt with Fault Induced Delayed Voltage Recovery (FIDVR)
problem through DRL (DQN) where under-voltage load shedding was used
as an emergency control. FIDVR problem is caused by a fault in transmission
system resulting in slow voltage recovery in distribution system (the problem
is connected to presence of reactive power loads in distribution and increased
demand for this power due to reduced voltage causing slow recovery).

Frequency instability (a long-term instability caused by imbalance in gen-
eration and load demand after system survives faser transient processes) was
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considered in [74] with an adaptive under-frequency load shedding as emer-
gency control realized using TD(λ) RL method. The approach is considered
as a set of load controlling agents envisioned to be employed with strategic
power infrastructure defense system presented in [75].

An approach for emergency control of cascading failures was presented in
[76] where Q-learning was used to learn a control law modifying active power
generation in order to control flows over transmission lines. The control is
applied once te system experiences considered outages.

4.4. Restorative control

A multi-agent framework with Q-learning was suggested in [77] for restora-
tion of power grid systems after being subjected to disturbances involving
outages of lines and loss of generators. The controls included are generation,
load and line’s switches. Q-learning was also considered in [78] to develop
optimal sequence for system restoration. This approach is based on a power
flow-based model of cascading failure (consecutive outages of the system
lines) and works in sequential fashion (power system components are bought
back one by one through a sequence od controls). A multi-agent framework
with Q-learning was also suggested in [79] for fault location, isolation, and
restoration in electric power distribution systems. Q-learning was modified
to capture interactions among RL-based agents through so-called Q-matrix.
From control level point of view these controls belong to subsystem level.

4.5. Power system control-related considerations

As already emphasized, integration of new instrumentation technology,
advanced communication infrastructures and powerful computation archi-
tectures allowed design of advanced controls in power system. However, this
integration transformed modern power systems into cyber-physical systems
and control-related aspects of these systems have to be fully considered. An
important aspect is cyber-security since cyber attacks can make best de-
signed controls to malfunction or degrade their performances. Several works
dealt with this problem [80–88]. Reference [80] considered cyber-physical sys-
tems security from systems and control perspective in general, and shortly
discussed possibilities to use RL and DRL to this purpose. Q-learning was
proposed in [81] to analyze the transmission grid vulnerability under sequen-
tial topology attacks and identify critical attack sequences with consider-
ation of physical system behaviors. A modified Q-learning (termed nearest
sequence memory Q-learning) was adopted in [83] to evaluate threat imposed
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by false data injection attack on voltage control of a power system. Test re-
sults revealed if even a few substations are attacked a voltage collapse with
its consequences can happen in the system. Power system state estimation
under cyber attacks was considered in [82, 84, 85]. Secure state estima-
tion with assumption that measurements are sent over a wireless networks
under jamming attacks was dealt in [82] and the antijamming game frame-
work for secure state estimation using multi-agent reinforcement learning to
determine optimal path against an intelligent attacker. Reference [85] con-
sidered secure state estimation with risk-averse transmission path selection
method that is based on RL idea and demonstrated how proposed approach
can improve secure state estimation robustness. DRL method (DQN) was
proposed in [84] to defend against data integrity attacks in power systems
state estimation. These types of cyber attacks are able to bypass the bad
data detection mechanism in state estimation and make the system operator
and controllers obtain the misleading states of system. In [86] the on-line
attack detection problem was formulated as a partially observable Markov
decision process (Markov property recovered through the use of a window
of state history)and on-line detection algorithm using SARSA method was
proposed for early cyber attacks detection. Recent work presented in [87]
discusses te use of RL in a general framework of cognitive risk control for
cyber attacks in smart grids. RL was proposed in [88] to evaluate false data
injection attacks on automatic voltage control of power systems (in normal
operating states). A Q-learning algorithm with nearest sequence memory is
adopted for on-line learning of attacking strategy and optimal attack strat-
egy is modelled as a partially observable Markov decision process. Based on
kernel density estimation, a bad data detection and correction method were
presented to mitigate the disruptive impacts of the attacks.

Another important aspect of modern power systems is that huge amount
of data (termed big data) are available and analysis of these data can help
improve performances of power system controls. Work presented in [89] sug-
gested to integrate fuzzy cluster based analytical method, game theory and
reinforcement learning to perform the security situational analysis for the
smart grid.

Short-term load forecasting is of importance in any predictive control in
electric power systems and a number of methods have been proposed so far.
Work presented in [90] suggested RL (Q-learning) as an approach to choose
most appropriate short-term load forecast method among those available. A
Q-learning learns the optimal policy of selecting the best forecasting model
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for the next time step, based on the model performance.
Reference [91] proposed the use of Q-learning with imitation and knowl-

edge transfer for improved modelling of composite loads in electric power
systems. In [92] a modification of Q-learning method (termed as enhanced
RL, different from Q-learning since it records value function only for controls,
not for state-control pair) was considered for determination of the equivalent
of electric distribution system with due account of uncertainties of electricity
generation from RES. This is related to the control since many controllers are
designed using simulation models and improvement in component modelling
yields more accurate control designs.

4.6. Observations

Based of the review of existing considerations of (D)RL for power system
control and related problems the following observations are drawn:

• (D)RL was considered as a solution for electric power system control
across all operating states and control levels (from local (device) to
wide-area level). The considerations confirm potentials of (D)RL to
solve these problems. However, all the considerations are research
works and no practical implementation was reported.

• All considerations used simulation models of the system do design the
controllers This is expected since hard to envision direct interaction of
(D)RL with real-life electric power system due to exploration issue on
such a vital infrastructure. This will be prevailing approach as long as
some safety guarantees are not included in control design.

• Most of considerations are for controls in normal and emergency oper-
ating state and control-related problems while comparatively less con-
siderations exists for preventive and restorative controls. Surprisingly
low number of considerations exist for preventive control. Likely rea-
son for this is the most controls of this type are formulated as static
optimization problem.

• Prevailing RL method used is Q-learning (and its variantQ(λ)) followed
by Fitted Q-iteration. A likely reason for this is success of these RL
methods in other domains.

• DRL started being considered for electric power system control and re-
lated problems only recently. A likely reason is matured DRL methods
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emerge also rather recently. This interest is increasing rapidly (as con-
firmed by several papers available on open repositories and ”in press”,
reviewed in this paper). DQN is most used DRL method (again, its
success in other domains is the main reason for it). An exception is
work presented in [50] where DDPG offered better performances with
respect to DQN.

• (D)RL was considered as single controller or in the context of multi-
agent systems.

• Most of control-related considerations dealt with the problem of cyber-
physical security of the system. This is not surprising since the problem
is very important and its importance will increase in the context of
Energy Internet (Internet of Things).

• All emergency control considerations relate to the emergency controls
bringing a system from emergency to alert state. No considerations
reported on the emergency control bringing a system from failure to
restorative state.

• In general, there is a lack of efficient fusion of (D)RL models with
control theory and practice in electric power systems. Few exceptions
exist [59, 62, 68, 69] where RL was fused with the concept of control
Lyapunov functions [62], model predictive control [59, 69] and fuzzy
logic based control [68].

• In cases when the system is partially observable Markov decision prob-
lems, usual approach is to use history of states/controls to recover
Markov property (see [62] where communication delays were handled
through the use of states-controls history).

• Some considerations [53, 54] do not belong to any well-known RL
method but are rather motivated by the spirit of RL and marked in
this review as ”Tailored”.

• Embedding domain specific knowledge (in defining state space, con-
trol and reward) is crucial for a problem dimensionality reduction and
accelerating learning.
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5. Perspectives

(D)RL is a vibrant research field and new or improved existing meth-
ods emerge fast. It is reasonable to expect increased interests (from both
research community and electric power system practitioners) to further con-
sider (D)RL to solve control problems in future. The following are some
future directions:

• Uisng (D)RL to control electric power system devices, in particular
emerging ones, not considered previously. An example are energy stor-
age devices allowing rapid and frequent charges/discharges such as su-
percapacitor, superconductive magnetic energy storage and flywheels
[93]. In principle, these devices could be controlled in a similar way as
dynamic braking resistor [61, 62].

• Revisiting existing RL considerations for electric power system control
in the context of DRL, in particular for cases where the problem boils
down to be partially observable Markov decision problem (see [62, 86]
where history of states/controls were used to handle communication
delays and recover Markov property at expense of increased dimen-
sionality reasonably expected to be better handled by DRL).

• Considerations of (D)RL methods offering safe exploration. An ap-
proach in [62] proposed limiting admissible controls to stable ones and
used the concept of control Lyapunov functions to this purpose. Other
possibilities, in this respect, include the use of safe (D)RL (see [94, 95]
and especially [96, 97] discussing safe exploration for controls, [98] for
synthesis of RL and robust control with stability guarantees, and [99]
for robust adversarial RL where a controller was trained in the presence
of a destabilizing adversary applying disturbance to the system).

• Fusion with advanced methods coming from control theory and engi-
neering (some example exists, see [55, 59, 62, 68, 69], for some future
on control see [2–4]). Recent work presented in [100] is another ex-
ample of combining RL and a model predictive control and is worth
of considerations in electric power systems. This work, in line with
the suggestions on combining RL and model predictive control [59, 69]
shown, from control theoretic perspective, how RL methods can be
used to tune parameters of economic model predictive controller and
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how economic model predictive controller could be used as a new type
of function approximator within RL. (D)RL could be used to coordinate
existing controllers that ensure baseline properties (this is an interest-
ing possibility since in existing electric power systems, especially large
interconnections, the controls are not designed in a coordinated way
and cause permanent oscillations in the system). Reference [101] offers
some viable insights on this possibility. Moreover, expected increase in
future electric power system operations uncertainties necessitate more
deployment of robust control (see [2]). These controllers are designed
on the worst-case basis but operate most of the time in non-worst-case
situations and thus wasting control efforts. (D)RL could prove to be an
appropriate approach to be used with robust controllers to tune their
parameters for better overall performances. Another option would be
to use robust RL [98] and robust adversarial RL [99].

• Many electric power system controls are designed through extensive
simulations and (D)RL fits well to this kind of problems (an exam-
ple is work presented in [102] where several parameters are computed
through simulations for under-voltage load shedding (considered to be
an expensive emergency control in electric power systems)) and the use
of (D)RL could offer a viable solution for improvements and reduction
of economic losses through fine tuning of the controller parameters.
Similar observation holds true for so-called system integrity protection
schemes design [103].

• As argued in [104], preventive control problems would be better for-
mulated as multi-stage decision problem (particularly in presence of
increased uncertainties) and it is reasonable to expect more (D)RL
considerations in the future.

• The use of (D)RL methods to trade-off between preventive (open-loop)
and corrective (closed-loop) controls in electric power systems [104].
Preventive controls are expensive and (D)RL could help decrease as-
sociated costs through learning the trade-off (an example potentially
useful to consider was presented in [105]) for transient instability prob-
lem).

• The approach from [90] for short-term load forecasting (RL used to
chose among a number of available forecasting methods at each step)
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could be easily extended to equally important problem of electricity
generation from RES forecasting (particularly solar and wind-based
electricity generation). This is related to possible increased use of pre-
dictive controls in electric power systems in the future.

• Some methods coming from RL research sub-fields like hierarchical RL
[106], preference-based RL [107] and imitative RL [108] are worth of
considerations in electric power system controls. Some of them al-
low embedding preferences (somewhat related to embedding a domain
knowledge) and accelerate RL (imitative learning particularly well-
suited for multi-agent RL-based control) while hierarchical RL nat-
urally fits many control problems. Three existing works considered
imitative learning in electric power system control [42, 43, 91] where
[42, 91] also considered knowledge transfer (a point to be considered
more in the future). Bayesian RL permits embedding prior knowledge
about controlled system and is worth considerations in electric power
system controls (see [109] for a promising Bayesian RL approach).

• More considerations of other DRL methods (other than DQN since
it cannot solve the problems with large continuous control space and
where te optimal policy is stochastic) is expected. Reference [50] is a
good example showing better performances of DDPG with respect to
DQN for particular problem. Bayesian DRL is particularly interesting
for future considerations. Reference [110] offers a good starting point.
In addition, experience replay option in some DRL methods, if used
with care, considerably improves performances of the methods (a good
source on this subject, dealing with systems control, is reference [111]).
DRL methods are not without the issues (particularly related to the
convergence and sensitivity to involved parameters) [20], but huge un-
dergoing research efforts will certainly offer solutions for the issues and
increase interest in te use of DRL (interesting new results, in this re-
spect, were presented in [112] with considerations of so-called ”deadly
triad” in RL: function approximation, bootstrapping, and off-policy
learning).

• Integral RL is a popular RL algorithm among control theorists and
engineers [23, 113] and is worth of more consideration for electric power
system control (only one work considered the use of integral RL to this
purpose [45]) in the future (integral RL offers some advantages, with
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respect to other RL algorithms, such as scalability, higher efficiency
and less open parameters).

• Further use of (D)RL in determining dynamic equivalent of electric
distribution systems or external subsystems with high penetration of
electricity generation from RES. References [91, 92] considered RL for
these purposes (identification of composite load [91] and an equivalent
of active distribution network [92]). Some successes in using deep learn-
ing for this purposes (an example is reference [114]) suggest that DRL
could offer viable solutions to this problem.

• (D)RL considerations to design fault-tolerant controls since future un-
certainties and increased complexity in electric power system structure
are expected to experience inevitable failures in measurements, control
actuators, etc. A good starting point is the work presented in [115].

• Energy Internet (Internet of Things) opens a number of possibilities for
(D)RL considerations in this context (holds true also for cyber-physical
systems since no clear distinction in the literature on these terms).
Reference [116] discussed applications and challenges of DRL in this
context and revealed opportunities to use DRL in all three layers of
Internet of Things: perception layer (control of the physical system or
its components), network layer (control of communications resources)
and application layer (control of computation resources). Future con-
siderations should take into account the use of blockchain technology
in this context [117].

• Bringing (D)RL considerations to the attention of electric power sys-
tem practitioners. A good starting point is embedding domain specific
knowledge where the system experts could bring useful information for
better use of the methods together with the use of interpretable (D)RL
methods.

6. Conclusion

(D)RL considerations for electric power system control and related prob-
lems are reviewed in this paper focusing on journals publications and books.
The considerations are presented as they relate to electric power system op-
erating states and control level together with control-relevant ones. This
review reveals:
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• (D)RL offers viable solutions for many electric power system control
problems across all its operating states. The considerations include
different level of controls ranging from local to wide-area.

• Going back to important observation of [22] ”...no methods that are
guaranteed to work for all or even most problems, but there are enough
methods to try on a given challenging problem with a reasonable chance
that one or more of them will be successful in the end...” a suggestion
is to try several (D)RL methods for an electric power system problem
to be solved and chose the one showing best performances.

• Proliferation of smart grid technologies make electric power systems to
become cyber-physical ones and due considerations, based on (D)RL,
were already given to some issues these technologies bring in electricity
sector.

In general, this review shows (D)RL offers a panel of promising methods
to be considered in design of electric power system controllers. It is reason-
able to expect more considerations due to expected future changes electric
power systems (increased uncertainties and complexity). Further research
is strongly encouraged together with due consideration of bringing it to the
attention of electric power system practitioners. This review focused only on
the works published in the journals and books. Conference papers and (D)RL
considerations for electric power system decision problems (scheduling, mar-
ket decisions and energy management of microgrids and buildings) are not
included and they are left for a possible future extension of this review. Ap-
proaches known as approximate and adaptive dynamic programming were
also considered in electric power system controls. Only some of these ap-
proaches belong to RL but not reviewed in this paper to avoid confusions
(these approaches and RL are often used interchangeably in the literature)
and left for a possible future extensions.
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