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Correlation Analysis of Electromyogram (EMG)
Signals for Multi-User Myoelectric Interfaces
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Abstract—An inability to adapt myoelectric interfaces to a
novel user’s unique style of hand motion, or even to adapt to
the motion style of an opposite limb upon which the interface
is trained, are important factors inhibiting the practical appli-
cation of myoelectric interfaces. This is mainly attributed to the
individual differences in the exhibited Electromyogram (EMG)
signals generated by the muscles of different limbs. We propose
in this paper a multi-user myoelectric interface which easily
adapts to novel users and maintains good movement recogni-
tion performance. The main contribution is a framework for
implementing style-independent feature transformation by using
Canonical Correlation Analysis (CCA) in which different users’
data is projected onto a unified-style space. The proposed idea is
summarized into three steps, to: 1) train a myoelectric pattern
classifier on the set of style-independent features extracted from
multiple users using the proposed CCA-based mapping, 2) create
a new set of features describing the movements of a novel user
during a quick calibration session, and 3) project the novel
user’s features onto a lower-dimensional unified-style space with
features maximally correlated with training data, and classify
accordingly. The proposed method has been validated on a setof
eight intact-limbed subjects, left-and-right handed, performing
ten classes of bilateral synchronous fingers movements withfour
electrodes on each forearm. The method was able to overcome
individual differences through the style-independent framework
with accuracies of >83% across multiple users. Testing was
also performed on a set of 10 intact-limbed and 6 below-
elbow amputee subjects as they performed finger and thumb
movements. The proposed framework allowed us to train the
classifier on a normal subject’s data while subsequently testing
it on an amputee’s data after calibration with a performance of
>82% on average across all amputees.

Index Terms—Myoelectric interface, EMG, Multi-user inter-
face, Feature extraction

I. I NTRODUCTION

DURING the last few years, significant attention has been
paid to pattern recognition based myoelectric interfaces

among researchers, with applications in controlling powered
prosthetics and rehabilitation systems [1], [2], [3], speech
recognition [4], and in computer games [5]. The main as-
sumption is that at a given surface electrode location, the
set of variables, i.e., the extracted features, describingthe
Electromyogram (EMG) signals will be similar for a given
pattern of muscle activation. However at the same electrode
location, there are differences between patterns or modes of
muscle actuation [6]. Based on these assumptions, a signif-
icant amount of research focus has been devoted to various
aspects of myoelectric control such as signal preprocessing
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[2], feature extraction and reduction [7], [8], [9], classification
and many other areas in EMG pattern recognition [10], [11].
Nonetheless, despite these advancements, there are consid-
erable challenges in applying research findings to a clini-
cally viable implementation [12]. Therefore, researchersare
investigating the clinical usability of EMG pattern recognition
through studies related to proportional myoelectric control
algorithms [13], the effect of simultaneous and dynamically
changing movements [14], the effect of the changes in EMG
characteristics on pattern recognition accuracy [12], [15], the
effect of limb position [16], [17], and electrode shift [18]on
pattern recognition, just to mention few of the reasons for the
lack of usability of these systems in practice [11].

The EMG signals also have a user-dependent nature [19]; a
factor causing the measured signals, at the same electrodespo-
sitioning and for different users performing the same motion,
to be largely different to each other. Such differences in the
EMG signals are also evidenced even when a user deploys both
hands for performing the same motion when using a bilateral-
mirrored contractions training scheme. The aforementioned
scheme was used previously to associate the EMG features
from the amputated limb with the actual movements on the
contralateral limb using a data glove [20], [21] or with the
force produced by the contralateral limb [22]. However, such
a scheme has not been used before in associating the EMG
features from both hands with each other due to the inhib-
ited differences between their corresponding EMG signals.
Asymmetries between the arms related not only to muscle
strength but also, among other factors, muscle geometry and
tone, specific motor unit sizes, length/size of the innervating
nerves and muscle innervation locations justify the variations
in the EMG patterns [3]. Thus, the significant challenge of
developing adaptable myoelectric interfaces which work on
multiple users’s hands, or even on the both hands of the same
user, is what this paper focuses on. To this end we make a
significant contribution to the growing research in this area by
proposing a framework that allows a myoelectric controller
that has been built on background data from other users, to
adapt to the changes in the EMG signal characteristics from
a different user with minimal efforts, making it suitable for
clinical implementations and practical applications. Tommasi
et al. [23] reported that the benefits of such a model are
apparent and the perspective is that of shipping a pre-trained
prosthesis which would very quickly adapt to the patient, with
the effect of enabling him/her to a higher comfort and aid
during daily-life activities. The proposed framework can also
be applied to associate the EMG patterns of specific muscles
activations related to an actual or imagined set of movements
on one upper limb with that of the actual movements on the
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contralateral limb of the same user, or between different users.

Among multi-user adaptable EMG controller researchers,
Orabona’set al. [24] model adaptation has been applied
by constraining at each step a new model close to one of
a set of pre-trained models stored in the memory of the
prosthesis. The adaptation process attempts to modify the best
matched model from a pool of stored datasets to fit a new
subject; however, the process is executed in a high dimensional
parameter space of the classifier, that requires a large amount
of data to make the adaptation complete. Chattopadhyayet
al. [25] also presents, using myoelectric signals, a subject
independent computational feature selection framework for
monitoring muscle fatigue. A search mechanism toward the
vicinity of the best feature subset is guided by an objective
function based on the ratio of between subject to within subject
variance for the specific features, and this identifies movements
across multiple subjects. However, the main limitations here
include the time taken to find the best feature subset and the
large variance of EMG signals, which limit the applicability
of feature selection algorithms to the EMG classification prob-
lems [9], [26]. On the other hand, Matsubara and Morimoto
[27] have recently proposed a projection approach based on
Bilinear modeling of EMG signals that is composed of two
linear factors: a user-dependent factor (style) and a motion
dependent factor (content). Here performance is improved
upon previous models including those based on adaptable
Least-Squares Support Vector Machine (LS-SVMs) [19], [27].
However, the dimensions of the style and content variables
were experimentally selected by trial-and-error. In addition,
it is reported that the positioning of electrodes, the type of
features extracted and their dimensionality could significantly
impact the model’s performance [27].

We present in this paper a novel multi-user myoelectric
interface that can adapt to multiple users by adopting an
approach using Canonical Correlation Analysis (CCA) [28].
CCA is a well-established method which utilizes two views of
the same set of objects, in our case two feature sets extracted
from the hands of different users. This describes the same
set of hand motions or movements, and projects the two
feature sets onto a lower-dimensional space whereby features
are maximally correlated. Our proposed model is simple in
terms of its computational requirements as it does not require
significant training and storing of matrices of multiple user
features as proposed in [24]. The model is also parameters free
and provides analytical solutions, unlike the iterative model
proposed by Matsubara and Morimoto [27] that requires to
learn the style and content matrices in addition to the need for
proper initialization of the dimensions of the style and content
matrices.

The structure of this paper is organized as follows: SectionII
first reports a background on CCA feature projection and then
describes how we fit this method to our problem. Section III
describes the data collection procedure. Section IV presents
the experimental results and finally, Section V presents our
conclusions.

Fig. 1. Schematic diagram of the general CCA-based framework.

II. CANONICAL CORRELATION ANALYSIS IN EMG
PATTERN RECOGNITION

Canonical correlation analysis [28] is commonly used for
finding the correlations between two sets of multi-dimensional
variables. CCA seeks a pair of linear [29] or nonlinear
transformations [30], one for each set of variables, such that
the data are maximally correlated in the transformed space.As
a result, it can extract the intrinsic representation of thedata by
integrating two views of the same set of objects. CCA has been
applied successfully in various applications [31]. However, to
the best of the author’s knowledge, the application of CCA in
developing multi-user myoelectric interfaces is novel. Inthis
section, we map the presentation of CCA theory into one that
directly utilizes EMG feature matrices as shown in Fig.1.

Let us assume two different feature matrices,X ∈ R
d×n

collected from the expert hand, andY ∈ R
k×n collected from

a new user hand in a calibration session, with the same number
of samplesn, and similar or different dimensionsd and k

respectively1. Both of these feature matrices are extracted from
the EMG signals of two users’ implementing the same hand
motions, i.e., two representations of the same set of objects,
with xi andyi corresponding to thei’th object or motion class.
Our goal here is to find two projection matriceswx ∈ R

d

and wy ∈ R
k that will maximize the following correlation

coefficient:

ρ =
wT

xXY Twy
√

((wT
xXXTwx)(wT

y Y Y Twy))
(1)

Sinceρ is invariant to the scaling ofwx andwy , CCA can
be formulated equivalently as

1
X andY may also have different number of dimensions or featuresd and

k respectively. CCA usually limits the projected features’ dimensionality to
the minimum of the ranks of theX andY
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max
wx,wy

wT
xXY Twy (2)

Subject to wT
xXXTwx = 1, wT

y Y Y Twy = 1.

In the following, we assume thatY Y T is nonsingular. It can
be shown thatwx is obtained when the following optimization
problem is solved:

max
wx

wT
xXY T (Y Y T )−1Y XTwx (3)

Subject to wT
xXXTwx = 1.

Both formulations in Eqs. 2 and 3 attempt to find the
eigenvectors corresponding to top eigenvalues of the following
generalized eigenvalue problem:

XY T (Y Y T )−1Y XTwx = ηXXTwx (4)

whereη is the eigenvalue corresponding to the eigenvec-
tor wx. Within certain orthonormality constraints, multiple
projection vectors can be computed simultaneously when the
following optimization problem is solved:

max
W

trace(WTXY T (Y Y T )−1Y XTW ) (5)

Subject to WTXXTW = I,

whereW ∈ R
d×l is the projection matrix,l is the number

of projection vectors, andI is the identity matrix. The solution
to the optimization problem in Eq.5 consists of the topl
eigenvectors of the generalized eigenvalue problem in Eq.3. A
regularized version of CCA (rCCA), could also be constructed
by employing two regularization terms,λxI and λyI, with
λxI > 0, λyI > 0, that are added in Eq.2 to prevent overfitting
and avoid the singularity ofXXT and Y Y T . Specifically,
rCCA solves the following generalized eigenvalue problem:

XY T (Y Y T + λyI)
−1Y XTwx = η(XXT + λxI)wx. (6)

It is worth mentioning here that the aforementioned CCA-
based approach utilized in this paper is unsupervised, i.e.,
CCA does not observe the class label from the training set
when constructing thewx and wy projection matrices, with
the main goal being to maximize the correlation among the
dimensions ofX andY . However, a supervised version could
also be implemented by correlating the feature matrix with a
class-indicator matrix and by using a binary representation of
entities, e.g. for an example with 4 classes andxi belonging
to class 1, thenxi will be appended with[1, 0, 0, 0], and
[0, 1, 0, 0] for class 2 and so on.

A. Least-Squares CCA-Framework

In order to simplify the aforementioned CCA implementa-
tion and provide a generalized solution, it has been shown in
the literature that efficient algorithms for solving least-squares
problems can be applied to scale CCA to very large data sets
[32], [33]. Given the usual least-squares problem with the form
of

min
W

n
∑

i=1

||WTX − T ||2F , (7)

whereT = [t1, t2, ..., tn] being the class indicator matrix,
W is the projection matrix that minimizes the difference
betweenX and T , it is well known that the optimalW is
given by

W =
(

XXT
)−1

XT T (8)

where the pseudo-inverse is used in case
(

XXT
)

is singular.
According to Sunet al. [32], a least-squares CCA-framework
(LS-CCA) can be easily constructed by replacing the class
indicator matrix by

T =
(

Y Y T
)−

1

2 Y = HT (9)

where it follows from Eq.9 that the solution to the least-
squares CCA-framework for the aboveT is

W =
(

XXT
)−1

XH (10)

Based on the above equivalence, the LS-CCA can be
extended to include regularization techniques to control the
complexity and improve the generalization performance of the
suggested model. Similarly to ridge regression [34], by using
the target matrixT in Eq.9, we obtain the 2-norm regularized
least-squares CCA formulation by minimizing the following
objective function:

L2(W,λ) =
k
∑

j=1

(

n
∑

i=1

(xT
i wj − Tij)

2 + λ||wj ||
2

2

)

, (11)

The above formulation is equivalent to finding a projection
matrix forX . In this case, one can utilize the features from one
subject, denoted as the expert, to representT and then utilize
features from the remaining subjects to make them similar in
style toT , i.e., raise the correlation between these feature sets
so they have a similar trend resulting in a unified-style-space
(with style here referring to the trend of the features across
the different classes).

B. EMG Adaptation Scheme

In order to control complex myoelectric prostheses, the
EMG patterns must be associated with the correct movements.
In previous studies, a specific muscle activation, is usually
associated with a specific movement imagined by the subject,
and it is then up to the test subject to remember all the
imaginary or virtual movements. Experiments were previously
conducted to associate the EMG patterns with specific hand
movements based on the use of a data glove on the healthy
hand contralateral to the amputation (when controlling pow-
ered prosthetics by amputees) [20], or on a data glove on the
same hand from which the EMG is collected (when teleoper-
ating multi-finger robots) [21]. In this paper, we present a new
concept that facilitates the association of EMG patterns with
the actual hand movements based on the use of EMG data
collected from the contralateral hand to the one been tested,
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whether from the same or a different user. The proposed CCA-
based framework can act as a possible shortcut to high-end
control of an advanced multi-user prosthesis by minimizing
the efforts spent on training a subject/patient on the use ofa
prosthetic device. An adaptation scheme is presented here in
a way that requires the novel user to go through a calibration
session in which the system collects EMG data from the new
user while implementing one repetition of each of a predefined
set of hand motions. Additionally, the proposed framework
extends the previous work in this field by allowing the system
to overcome the individual differences in the EMG patterns
collected from the different hands, i.e., the prosthesis system
could be trained with EMG data from one subject and tested
on EMG data from another subject, after using our CCA-based
framework. Two schemes of users’ adaptation are tested here,
one for each set of collected EMG datasets.

• Within-Subject Experiments: In the first scheme, simul-
taneous fingers movements are carried out by each user
with both hands while their EMG signals were collected.
In this context, the expert and user data in Fig.1 were
collected from the same user, with the expert data been
collected from the muscles on one hand (intact limb) and
the user data been collected from the contralateral hand
(from the remaining muscles on contralateral limb). CCA
based projection matrices are then computed to make
the extracted features from both hands highly correlated.
Testing is then performed with and without the proposed
CCA adaptation with training/testing data from either
hand to measure the usability of the proposed adaptation
framework.

• Subject-Independent Experiments: In the second
scheme and as shown schematically in Fig.2, the leave-
one-out cross-validation (LOOCV) method was utilized,
with one user’s data retained for testing while training
the classifier on the data from the rest of the users
(more details in the experiments section). In this scheme,
we attempt to create a unified-style-space, i.e., attempt
to make all training users’ style similar to that of the
expert. This is done by correlating the feature matrices
acquired from each user preserved for training (intact-
limbed or amputee) with the feature matrix from an expert
user (usually intact-limbed subject). Then the interface
is applied on a novel user’s hand and CCA projection
matrices are computed to make the novel user’s features
correlated with the expert. The use of pre-trained models
is reported in many research articles as being very useful
in shortening the time required by the subject/patient to
become proficient in using the prosthetic hand [35], [23].

The main benefits with the proposed CCA-based scheme
include: Firstly, novel users require minimal training efforts to
start using the system or to re-train the system after daily use.
In most previous studies, each user must execute long-time
experiments to capture a sufficient number of EMG signals
in multiple trails to construct the training set for the classifier
before starting to use it. In the proposed framework, a small
amount of data (usually 3-to-5 sec of EMG data per movement
class are enough for calibration, as determined empirically) is

required to perform calibration and the system projects the
extracted features from the EMG signals onto a new space
whereby these are highly correlated with expert features. The
calibration set is much smaller than the training set that is
usually extracted from the users in the previous experiments,
i.e., there are huge benefits gained in training time as we
avoided the collection of multiple trials per each movement
from the new user. Secondly, the proposed scheme allows for
the development of muscle computer interfaces worn on either
left or right hand by the user, in addition is the ability to train
the system on one user’s right (or left) hand while testing on
a second user’s left (or right) hand. Finally, one can also train
the system on the data from intact-limbed subjects and then
test the system on the data from an amputee.

III. D ATA COLLECTION

In order to test the proposed CCA-based EMG pattern
recognition system, two sets of EMG studies are utilized here.
The first is collected by the author while the second was
collected and first used by another research group [36].

A. DATASET-I: Synchronous Bilateral Fingers Movements
Study

An experimental protocol has been developed in which
EMG data is collected from both hands of each user for
testing the CCA-based adaptation scheme within the user, i.e.,
adaptation among the two hands. Eight subjects, five right
handed and three left handed, seven males and one female and
aged between 25 and 36 years had been recruited. All partici-
pants provided university research ethics committee approved
informed consent to participate in the study. Data was collected
using four EMG channels (Delsys DE 2.x series EMG sensors)
mounted on each of the left and right forearms as shown
in Fig.3. This approach endeavoured to cover all muscles of
the Extensor Digitorum (channel 1), Extensor Pollicis Longus
and Abductor Pollicis Longus (channel 2), Palmaris Longus
(channel 3), and Flexor Carpi Ulnaris (channel 4), as these
muscles contribute largely to finger movements.

A 2-slot adhesive skin interface was applied to each sensor,
and stuck firmly to the skin. A conductive adhesive dermatrode
reference electrode was placed on the wrist of the right hand
during the experiments. The data was processed by the Bagnoli
desktop EMG system from Delsys Inc. with the EMG signals
amplified to 1000 using a Delsys Bagnoli-8 amplifier. A 12-bit
analog-to-digital converter (National Instruments, BNC-2090)
sampled the signal at 4000 Hz; signals were then transferredto
Matlab software. and EMG signals bandpass filtered between
20 and 450 Hz.

A set of ten classes of fingers movements, specifically
fingers flexion movements, were carried on during the exper-
iments. These included the flexion of: Thumb (T), Index (I),
Middle (M), Ring (R), Little (L), Thumb-Index (T-I), Thumb-
Middle (T-M), Thumb-Ring (T-R), Thumb-Little (T-L), and
Hand Close (HC). Each subject was instructed to carry out
one movement at a time using both hands, with cues issued
by software to implement a specific finger motion lasting
five seconds, followed by a five second relax. Six trials were
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Fig. 2. The proposed subject independent CCA-framework foradaptation.

Fig. 3. Positions of electrodes on both forearms (sensors wires removed for
clarity).

collected for each class of movement using both left and right
hands simultaneously; the training and testing distribution is
discussed in the experiments.

B. DATASET-II: Individual and Combined Fingers Movement
Classification

In addition to testing on our own EMG data from intact-
limbed subjects, we aimed to test our proposed CCA-
framework on amputees and for this purpose we have utilized
the EMG studies that were collected and first utilized by
Timemy et al. [36]. EMG signals were recorded from the
right forearm of ten intact-limbed subjects (referred to asN1-
to-N10), including six males and four females ages 21 to
35 years. The study also includes EMG data collated from

six traumatic below-elbow amputees (referred to as A1-to-
A6), ages 24 to 34 years. Data from intact-limbed subjects
was collected from participants based at Plymouth University,
United Kingdom (UK), while the amputee data was collected
at the Artificial Limbs and Rehabilitation Centres in Baghdad
and Babylon, Iraq. Before placing electrodes on the subjects,
alcohol and abrasive skin preparation gel was applied to
the forearm for cleaning the skin. Electrode locations were
chosen to maximize the quality of recording. For intact-
limbed subjects, 12 EMG channels were used with pairs of
self-adhesive Ag-AgCl electrodes (Tyco healthcare, Germany)
placed around the circumference of the upper part of the
forearm (Fig.4 A and B). To reproduce electrode positions,
European recommendations for sEMG (SENIAM) [37] had
been followed to determine electrode locations prior to place-
ment. To mark the electrode locations, elbow joints were used
as a reference point. By contrast, only 11 EMG channels had
been recorded for amputee persons, this is due to the limited
upper forearm surface area. The same self-adhesive Ag-AgCl
electrodes (Tyco healthcare, Germany) had been used to ac-
quire signals from amputee persons. The level of transradial
amputation differed for each amputee person. For A1, the 11
pairs of electrodes were placed around the circumference of
the upper forearm, whereas the electrodes were placed into
two rows around the circumference of the upper forearm for
the rest of the amputees. The ground reference electrode was
placed on the wrist for healthy subjects and at the Olecranon
process of the Ulna for the amputee persons. The type of
amputation was transradial amputation for all of the amputee
persons apart from amputee person A3, who had undergone
a wrist disarticulation amputation (Fig.4 C). To minimize the
cross-talk, bi-polar EMG measurements were used with inter-
electrode distance of 24mm as recommended by Younget al.
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and the SENIAM [37], [38]. The intact-limbed and amputee
subjects had not been trained on EMG recording prior to the
study. All amputees had a strong muscular structure in the arm
and forearm, apart from (A3). The EMG activity was strong
since no-one suffered nerve damage.

While intact-limbed subjects performed actual finger move-
ments, amputee persons were instructed to produce a specific
imagined finger movement. This was sometimes helped by
mirror movements of the fingers of the intact hand. In total, 12
classes of finger movements had been carried out by amputees
(11 individual finger movements as well as the rest position,
which is considered in this study as one of the movement
classes). Index and thumb flexion were recorded on a different
day for A3 only with the same number of channels. The intact-
limbed subjects performed 15 classes of finger movement
from which we selected the same 12 classes of movements
performed by the amputees. The 12 individual finger move-
ments performed both by amputee persons and intact-limbed
subjects are as follows: little flexion (f1), ring flexion (f2),
middle flexion (f3), index flexion (f4), rest position, little
extension (e1), ring extension (e2), middle extension (e3),
index extension (e4), thumb flexion (f5), thumb extension (e5),
thumb abduction (a5).

The EMG signals were acquired with the custom-built
multichannel EMG amplifier. Each EMG channel was sam-
pled at a rate of 2000 Hz with 16-bit resolution. A Virtual
Instrument (VI) was developed in LABVIEW (National In-
struments, USA) to display and store the EMG signals. During
the recording, each participant sat on a chair in front of a
computer with the LABVIEW interface screen to see all the
EMG channels in real-time while performing the movements.
Their arm position was fixed and it was resting on a pillow.
They were asked to produce a succession of different finger
movements separated by 5-second periods of rest. Both groups

Fig. 4. Example of electrode location. A. Anterior view of the right forearm
of an intact-limbed subject. B. Posterior view of the forearm of an intact
limbed subject. C. Anterior view of amputee person A3.

of participants were asked to produce finger movements with
a moderate, constant-force, and non-fatiguing contractions to
the best of their ability. The final position of a movement was
held for a period of 8-12 seconds by intact-limbed subjects.
However, this time was limited to 5-10 seconds for amputees
to avoid fatigue. Each holding phase is referred as a ”trial”.
Six trials were recorded for each movement; the distribution
of training and testing trials are described in the experiments.

IV. EXPERIMENTS AND RESULTS

In the experiments, an overlapping windowing scheme was
utilized when extracting features with a window size of 150
msec overlapped by 50 msec. The extracted features cover
the recently proposed time-domain derivations of spectral
moments by Khushabaet al. [17] including 5 features/channel
consisting of a normalized version of the zero, second, and
forth order power spectral moments in addition to a sparsity
measures and the irregularity factor measure (this is the
number of zero crossings divided by the number of peaks).
Additionally, the correlation factor between each two possible
raw EMG signals was also added as features by concatenating
all the features together to form one large feature set. These
features have demonstrated power against many other feature
sets while having small computational requirements and di-
mensionality (for more info the interesting reader may refer to
[17]). For the EMG studies for both hands, as collected by the
author, the extracted feature set had a dimensionality of 26fea-
tures/hand, i.e., 26 features/hand = [5 features/channel (time-
domain moments)× 4 channels/hand+ 6 correlation features
(6 unique values from the correlation coefficients matrix)].
For the EMG studies acquired from [36], the dimensional-
ity of the extracted feature set totaled to 110 features/hand
when 11 channels were utilized, i.e., 110 features/hand = [5
features/channel× 11 channels/hand+ 55 correlation features
(55 unique values from the correlation coefficients matrix of
size 11× 11)], and similarly to 126 features/hand when 12
channels were utilized. In terms of the classification, three
different classifiers were tested including: Linear Discriminant
Analysis (LDA), k-Nearest Neighbor (kNN), and the well-
known LIBSVM library of support vector machine [39]. The
performance metric employed is classification accuracy of
the testing feature set, this is completely independent from
the training and the calibration set i.e., the unseen testing
data. In order to increase stability and robustness of the class
decision stream, we also implemented post-processing using
majority voting. Majority voting stipulates that the output of
the controller is not simply the most recent class decision but
the class that appears the most often in the previousn class
decisions (n = 8 in our experiments).

In the following subsections, different experiments have
been evaluated including testing within the subject, i.e. train
on left (or right) hand and test on right (or left) hand for the
same subject; then across the hands of the different subjects i.e.
hand train on a normal limbed subject and test on an amputee.

A. Experiments on DATASET-I

In this section, the classification performance of the system
is first evaluated without using CCA-framework, i.e., what is
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the classification performance of individual hands separately
(baseline accuracy for each hand). In this case, only the
EMG data from the first trial (for each movement) is used to
extract the training feature set, while the remaining five trials
(for each movement) are used to extract the testing feature
set i.e., completely independent feature sets. In additionto
the baseline for each hand, we compare our proposed CCA
framework with the simple-SVM utilized by Matsubara and
Morimoto [27]. The simple-SVM provides an indicator of the
classification performance when a classifier is trained on the
left hand data and tested on the right hand data, also vice
versa. In addition to simple-SVM, we have included what
we call ’global-SVM’, this is where an SVM classifier is
provided with training data from both hands. Additionally,the
results achieved through the Bilinear model of Matsubara and
Morimoto [27] were also included. The classification results
for each of the subjects with the aforementioned simple-SVM,
global-SVM, and Bilinear models are shown in Table.I, in
addition to the left and right hands baselines.

These results clearly indicate a few important points, firstly
it is not feasible to implement the hand independent classifi-
cation scheme directly using EMG features from one hand to
infer what movement of the other hand will be, that is simple-
SVM fails to deal with the current problem despite good
performance individually for the baseline of each hand. This
is justified by the different EMG signals extracted from each
hand with different data distributions, though both hands are
implementing the same movement simultaneously. Secondly,
in comparison to simple-SVM and individual baselines for
each hand, the global-SVM has powerful performance. This
is mainly attributed to the fact that the classifier was made
aware of the distribution of the EMG features from both
hands by including EMG features extracted from both hands
in the training set. It is also important to mention here that
using more training data could further enhance the baseline
classification results for both hands, as only one trial per
movement has been allocated for training. However, our main
point is not devoted to enhancing the baseline classification
results, but to enhancing the cross-hands classification results
when using training and testing data from different hands.
Thirdly, the Bilinear model performed better than simple-
SVM, but performed worse than the global-SVM. Matsubara
and Morimoto [27] indicate clearly that there are some current
limitations to the Bilinear model including its sensitivity to
the type of features extracted from the EMG channels. In this
case, although training data was allocated from both hands,
the Bilinear model representation of the extracted content
variables has resulted in lower classification accuracies than
the global-SVM.

The proposed CCA-framework was then applied in this
experiment. In such a case, each subject could be requested
to go through a calibration session in which he/she shows
the system an example of how they perform a specific finger
movement (the style of movements) with both hands simulta-
neously or one hand only, if the interface is applied on that
specific hand. Features are then extracted from both hands and
were submitted to CCA to find two projection matrices that
would increase the correlation between the two feature sets, as

shown in Fig.1. Training data is allocated from one hand and
testing data from the opposite hand and the classifier makes
decisions on the new unseen testing data from the opposite
hand that has been multiplied by the precomputed projection
matrix from CCA. Out of the six trials collected from each
user for each movement, only the first trial of each movement
is used in the calibration process, i.e., get one trial’s features
from the right hand and one from the left hand, apply CCA-
framework, extract the projection matrices that would make
both hands features correlated and classify unseen testingdata.
In this case, the training data was again allocated from the first
trial only while testing data was acquired from the remaining
five trials (completely unseen during calibration). In thiscase,
the results from different scenarios are shown in Table.II
while using the LIBSVM classifier. This table again shows
the baseline accuracy for both hands after CCA was applied in
addition to two more scenarios: The first in which the training
feature set includes samples from opposite hand to the one
being tested on (comparable to simple-SVM) and the second
in which the training feature set includes samples from both
hands after CCA (comparable to global-SVM). These results
indicate the significance of the proposed CCA-based scheme
that managed to raise the correlation between the projected
features from both hands resulting in similar features trends
across the different classes with average accuracies of 80.64%
and 81.39% in comparison to 26.80% and 25.66% for simple-
SVM when testing on the left and right hands respectively.
On the other hand, when training on both hands after CCA,
the classifier is made aware of the distribution of the EMG
data from both hands which in turn allowed the classifier to
better generalize on the unseen testing data with accuracies of
84.25% and 88.35% with CCA in comparison to 80.68% and
86.34% for global-SVM without CCA and 72.11% and 71.5%
respectively on the left and right hands for the Bilinear model.

All of the aforementioned results were verified by an
analysis of variance test with a significance level at 0.05.
ANOVA tests outcome indicated that the classification results
when training on one hand and testing on the opposite with
CCA are significantly different from those with simple-SVM
with p << 0.01. The same significance level also applied to
the case where we train the classifier on EMG features from
both hands and test on either hand, indicating the significant
differences between our CCA-framework and the Bilinear
model and the global-SVM withp < 0.01. Thus, the proposed
approach allows the development of myoelectric interfacesthat
the user can wear on either hand. The testing classification
results using LDA andkNN classifiers also showed similar
results to these exhibited by the LIBSVM classifier as shown
in Fig.5.a when training on the right hand features and testing
on the left hand features with CCA and Fig.5.b when training
on the left hand features and testing on the right hand features
respectively.

The effect of the number of samples used in the calibration
process on the testing set classification accuracy was also
analyzed. In such a case, we randomly pick up a certain
number of samples from the available calibration data and
test the classification accuracies with CCA-framework applied
(with training data from the contralateral hand to the one
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TABLE I
CLASSIFICATION ACCURACIES(LIBSVM): WITHIN SUBJECT EXPERIMENT, WITHOUT CCA SCHEME

Baseline-Left Baseline-Right simple-SVM simple-SVM global-SVM global-SVM Bilinear Bilinear
TrainingData→ Train-Left Train-Right Train-Right Train-Left Train-Both Train-Both Train-Both Train-Both
TestingData→ Test-Left Test-Right Test-Left Test-Right Test-Left Test-Right Test-Left Test-Right

Subject1 78.04 79.65 22.39 23.92 74.04 73.27 71.40 67.2
Subject2 86.04 93.88 12.69 30.51 79.96 93.39 71.46 71.5
Subject3 77.37 98.22 53.94 27.96 78.27 94.88 73.57 78.8
Subject4 87.88 88.51 12.53 19.65 80.98 86.45 75.10 72.9
Subject5 89.41 80.39 12.86 17.98 81.65 75.73 69.84 61.2
Subject6 86.76 97.22 40.80 32.51 87.55 95.71 64.94 76.6
Subject7 80.96 80.04 12.24 11.41 83.24 78.04 71.49 63.0
Subject8 82.32 90.32 46.97 41.35 79.80 93.30 79.08 81.1

Average 83.60 88.53 26.80 25.66 80.69 86.35 72.11 71.5
Std 4.57 7.73 17.60 9.43 3.89 9.34 4.10 7.3

TABLE II
CLASSIFICATION ACCURACIES(LIBSVM): WITHIN SUBJECT EXPERIMENT, CCA UNSUPERVISED FRAMEWORK APPLIED

With CCA With CCA With CCA With CCA With CCA With CCA
TrainingData→ Train-Left Train-Right Train-Right Train-Left Train-Both Train-Both
TestingData→ Test-Left Test-Right Test-Left Test-Right Test-Left Test-Right

Subject1 80.53 77.55 75.63 73.02 81.44 78.97
Subject2 83.42 94.08 82.57 91.95 84.30 95.63
Subject3 81.67 97.18 83.12 87.93 82.61 94.51
Subject4 89.08 89.77 82.87 81.16 86.38 90.83
Subject5 87.06 87.95 87.32 74.71 90.10 86.24
Subject6 87.20 96.63 74.10 81.89 85.59 93.79
Subject7 81.26 79.53 82.67 74.61 81.10 78.14
Subject8 80.23 88.38 76.85 85.82 82.45 88.72

Average 83.81 88.88 80.64 81.39 84.25 88.35
Std 3.47 7.30 4.56 6.91 3.03 6.79

been tested). The process was repeated for 20 times along
each number of samples with the results averaged as shown
in Fig.6. These results clearly show that around 400-to-500
samples seem adequate to produce classification accuracies
that are not significantly different from those produced by
larger sample size. The results also indicate that even with
very small samples size of 100 samples our method was still
able to perform well with classification accuracies of 71.73%
and 74.57% when training the classifier on right hand data
and testing on left hand data and vice versa respectively. In
comparison to the Bilinear model, the number of samples used
in calibration did not have a significant impact upon the testing
set classification results which is one of the main powerful
attributes of the Bilinear model. However, the fact that the
classification results achieved by the CCA-framework with
100 samples, with training features from individual hands only,
still outperform the Bilinear model trained with EMG features
from both hands, warrants its acceptance as a good adaptation
framework.

B. Experiments on DATASET-II

In this set of experiments, a leave-one-out cross-validation
testing scheme was utilized in which, at each time, five out
of the total six amputees’ EMG signals features are allocated
for extracting the training feature set while the remainingone
amputee’s EMG signals features are allocated for extracting
the testing feature set. According to Fig.1, the CCA-framework
is then utilized to increase the correlation between each ofthe
five amputees’ features preserved for training and the expert

features. As the amputees had different levels of transradial
amputation then we decided to use an intact-limbed subject’s
EMG signals features as the expert features when employ-
ing the unsupervised CCA-framework (or the class-indicator
matrix for the supervised version). In such a case, we seek
feature transformation matrices that would make each of the
amputees’ EMG features similar to that of the expert, resulting
in a unified-style-space, i.e., the five amputees’ EMG features
are highly correlated to that of the expert now. The remaining
one amputee’s EMG features matrix is kept for testing and
the CCA framework is applied on a small sample of his/her
features during calibration to increase the correlation between
his/her features and that of the expert. Thus, no training data
is acquired from the subject on which we are testing our CCA
framework, as the classification performance is evaluated using
a classifier trained on background data from other users alone.

As there were multiple trials for each of the movements
with a huge amount of collected EMG data, then the first
trial for each subject been tested was set aside to acquire
the calibration data. Specifically, in this experiment onlythe
data belonging to the first five seconds from each first trial
was used for calibration. The data from the remaining five
trials was set aside for testing, that is the calibration feature
set was completely separated from the testing set. Given the
large number of EMG channels and the extracted features
from these EMG datasets, then dimensionality reduction was
utilized. For this purpose, the Orthogonal Fuzzy Neighborhood
Discriminant Analysis (OFNDA) feature projection method
by Khushabaet al. [9], that have been utilized on these
same EMG studies from amputees in [36], is also used in
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(b) Training-left and testing-right

Fig. 5. Testing classification accuracies with the LDA,kNN,and LIBSVM
classifiers while using the proposed CCA framework with training data from
one hand and testing data from he opposite hand.
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Fig. 6. Effect of the number of samples used in the calibration process on the
testing set classification accuracy while using our proposed CCA-framework,
with samples taken randomly from all classes. In each of these curves, training
is based on data from the contralateral limb to the one been tested.

this research. The baseline classification results, when training
and testing data is acquired from the same subject, for the
intact-limbed had an average of 98.39% (standard deviation
of 2.40%) across all subjects, while the amputees subjects
achieved much lower than that as shown in Table.III. As the
intact-limbed subjects had powerful classification results, we
aimed to investigate whether we can enhance the classification
results for the amputees by using the CCA framework, and
with each intact-limbed person as an expert. The classification
results with the unsupervised CCA framework are given in
Table.IV. In such a case, the first row in Table.IV shows an
expert N1, the first column shows a testing subject A1, while
the remaining subjects (A2-A6) are allocated for training,with
a testing accuracy of 85.52%. The second column then shows
the accuracy when A2 is preserved for testing and A1, A3,
A4, A5 and A6 are used for training with a testing accuracy of
86.31%, and similarly for the remaining entries, with different
expert in each row.

One of the important benefits of applying the proposed
CCA-framework on these EMG studies is attributed to the
fact that there were different number of EMG channels utilized
across the amputees and the intact-limbed subjects. The fact
that the proposed CCA-framework can be applied on two
feature matrices with different dimensionalities makes itvery
attractive option, as it is simply not possible using other
adaptation frameworks unless the same number of channels
is used across all subjects. The second important benefit of
the proposed CCA-framework is attributed to its capability
for increasing correlations among EMG signals collected from
EMG channels at different forearm positions. As mentioned
previously, the level of transradial amputation was different
for each amputee which in turn necessitated the different
placement of electrodes on some amputees (A1 versus the

TABLE III
AMPUTEES’ B ASELINE CLASSIFICATION RESULTS, TRAINING AND

TESTING DATA FROM THE SAME SUBJECT

Subject→ A1 A2 A3 A4 A5 A6
LIBSVM 83.10 83.75 80.54 81.47 79.65 74.67

LDA 81.09 85.60 82.19 76.44 79.08 78.41
kNN 83.55 85.05 81.44 81.61 79.43 79.17

TABLE IV
SUBJECT-INDEPENDENTCLASSIFICATION RESULTS(LIBSVM),

UNSUPERVISEDCCA-FRAMEWORK APPLIED, TRAINING DATA FROM

BACKGROUND MODEL BASED ON INDEPENDENT SUBJECTS TO THE ONE
BEEN TESTED

Subject A1 A2 A3 A4 A5 A6
N1 85.52 86.31 82.15 81.65 82.79 72.37
N2 85.43 86.81 82.65 81.04 85.55 76.88
N3 85.66 85.06 82.40 78.89 84.69 69.86
N4 84.99 89.32 81.64 82.63 85.36 72.14
N5 86.15 86.06 80.89 81.91 84.71 75.34
N6 84.63 85.61 81.29 82.52 83.98 76.18
N7 86.46 86.26 81.59 82.16 86.69 73.34
N8 86.15 85.81 82.40 81.59 85.02 75.67
N9 86.55 86.06 84.20 82.90 85.86 76.17
N10 85.25 86.36 81.29 81.54 81.86 75.38

Mean 85.68 86.36 82.05 81.68 84.65 74.33
Std 0.64 1.14 0.95 1.14 1.45 2.28
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rest of the amputees). This in turn allowed for training on A2-
to-A6 features while testing on A1 features, despite different
electrodes placements. Matsubara and Morimoto [27] sug-
gested that electrode placement influences the user dependent
variables in their bilinear model; they also caution that the
method cannot be used if the electrodes are not placed on the
same muscles between different users. This is due to different
amputee patient conditions (as verified in our experiments).
However, different amputees do have different conditions,and
for an adaptable interface to be clinically applicable, such an
interface should be applicable even under different conditions
of amputations, this being the case using our CCA-framework.

In comparison to the classification accuracy results achieved
by the unsupervised CCA-framework, we have also com-
puted the results by using a supervised version of our CCA-
framework, in which we correlate the amputees’ features
against the class indicator matrix rather than the expert fea-
ture matrix as shown in Table.V. Additionally we have also
included the simple-SVM (training data from all amputees,
except the one been tested) and global-SVM (training data
from all amputees, including the one been tested). The results
of the Bilinear model were not competitive with the rest
of the results which is possibly due to the aforementioned
effect of electrodes placement variations and we decided to
remove these results from this comparison. These results
clearly indicate the simple-SVM is of no use here due to the
variations in the EMG features across different subjects. On
the other hand, the accuracy results by global-SVM seem more
convincing; however, the fact that training data was required
from each subject, including the one the classifier is testedon,
made the global-SVM not competitive with our unsupervised
CCA-framework. It should be mentioned here that for the
subject been tested the amount of data used for calibration
with our CCA-framework is the same as that amount of
data included in the training set from the testing subject in
global-SVM. However, our framework employs this data for
calibration and does not include this data with the training
set, i.e., training in our framework is completely based on
data from other subjects. In comparison to simple-SVM and
global-SVM our CCA-framework achieved significantly better
results as validated by an ANOVA test with the achieved
p-values of<<0.05 for the tests against simple-SVM and
global-SVM. On the other hand, there was no statistically
significant difference between the accuracy results achieved
by the supervised vs. the unsupervised versions of our CCA-
framework, with ANOVA giving ap-value of> 0.05. Thus,
either of the CCA versions can be used.

In the final part of the experiments, the classification results
with the LDA and kNN classifiers were also calculated as

TABLE V
AVERAGE AMPUTEES’ CLASSIFICATION ACCURACY RESULTS USING

DIFFERENT METHODS FOR ADAPTATION

Subject→ A1 A2 A3 A4 A5 A6
simple-SVM 9.56 63.54 49.69 14.49 27.64 26.84
global-SVM 77.52 71.61 72.76 75.29 70.08 70.51

Unsupervised-CCA 85.68 86.36 82.05 81.68 84.65 74.33
Supervised-CCA 85.65 86.30 81.84 81.55 86.00 76.43

shown in Fig.7, indicating a similar trend to those exhibited by
the LIBSVM classifier. This in turn indicates that the extracted
features are robust against the change of the classifier.
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Fig. 7. Average classification results with LDA,kNN, and LIBSVM
classifiers, with standard deviation as bars.

V. CONCLUSIONS

In this paper, an approach for developing multi-user my-
oelectric interfaces utilizing a CCA framework has been
proposed. Two schemes of adaptation have been tested, one
among individual users, in which we tested the possibility of
training the classifier on EMG features from either hand while
testing the opposite, and a second between users, including
training on multiple users data and testing on a novel user. Our
initial results clearly indicates the significance of this research,
allowing us to train and test on different users with average
classification accuracies of> 82% across all subjects. The
performance of the proposed model has also been compared
with other models like the simple-SVM, global-SVm and the
Bilinear model proving its power as a multi-user adaptation
framework. However, further investigation is required into the
adaptation approaches for further enhancing the performance
of subject-independent EMG classification results and the real-
time application of this framework. This will be the basis of
our future research.
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