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Correlation Analysis of Electromyogram (EMG)
Signals for Multi-User Myoelectric Interfaces

Rami N. Khushabaliember, IEEE

Abstract—An inability to adapt myoelectric interfaces to a [2], feature extraction and reduction [7], [8], [9], cldfsation
novel user's unique style of hand motion, or even to adapt to and many other areas in EMG pattern recognition [10], [11].
the motion style of an opposite limb upon which the interface ngpetheless, despite these advancements, there are -consid

is trained, are important factors inhibiting the practical appli- bl hall . Vi h findi ¢ lini
cation of myoelectric interfaces. This is mainly attributed to the erable challengés In applying research nindings 1o a clini-

individual differences in the exhibited Electromyogram (EMG) cally viable implementation [12]. Therefore, researcharms
signals generated by the muscles of different limbs. We pragse investigating the clinical usability of EMG pattern recdtipn
in this paper a multi-user myoelectric interface which eady through studies related to proportional myoelectric caintr
adapts to novel users and maintains good movement recogni- algorithms [13], the effect of simultaneous and dynamjcall

tion performance. The main contribution is a framework for . .
implementing style-independent feature transformation ly using changing movements [14], the effect of the changes in EMG

Canonical Correlation Analysis (CCA) in which different users’ ~characteristics on pattern recognition accuracy [12]],[ftte
data is projected onto a unified-style space. The proposedeéd is effect of limb position [16], [17], and electrode shift [18h
summarized into three steps, to: 1) train a myoelectric patrn  pattern recognition, just to mention few of the reasonslier t
classifier on the set of style-independent features extra@d from lack of usability of these systems in practice [11].

multiple users using the proposed CCA-based mapping, 2) cate . .

a new set of features describing the movements of a novel user 1€ EMG signals also have a user-dependent nature [19]; a
during a quick calibration session, and 3) project the novel factor causing the measured signals, at the same elecpoeles
user’s features onto a lower-dimensional unified-style sma with ~ sitioning and for different users performing the same nmtio
features maximally correlated with training data, and classify to be largely different to each other. Such differences @ th
accordingly. The proposed method has been validated on a set gy signals are also evidenced even when a user deploys both
eight intact-limbed subjects, left-and-right handed, peforming hands f f ina th fi h . bilateral
ten classes of bilateral synchronous fingers movements wifour Qn S for per orm_lng e _same motion when using a briateral-
electrodes on each forearm. The method was able to overcomemirrored contractions training scheme. The aforementione
individual differences through the style-independent franework scheme was used previously to associate the EMG features
with accuracies of >83% across multiple users. Testing was from the amputated limb with the actual movements on the
also performed on a set of 10 intactimbed and 6 below- cqnirgjateral limb using a data glove [20], [21] or with the
elbow amputee subjects as they performed finger and thumb f d d by th tralateral limb 221, H hs
movements. The proposed framework allowed us to train the orce produced by the contralatera 'm_ [22]. _Ov_vever, uc
classifier on a normal subject’s data while subsequently téing & Scheme has not been used before in associating the EMG

it on an amputee’s data after calibration with a performance of features from both hands with each other due to the inhib-

>82% on average across all amputees. ited differences between their corresponding EMG signals.
Index Terms—Myoelectric interface, EMG, Multi-user inter- ~Asymmetries between the arms related not only to muscle
face, Feature extraction strength but also, among other factors, muscle geometry and
tone, specific motor unit sizes, length/size of the innéngat
. INTRODUCTION nerves and muscle innervation locations justify the viest

the EMG patterns [3]. Thus, the significant challenge of
gveloping adaptable myoelectric interfaces which work on
multiple users’s hands, or even on the both hands of the same
user, is what this paper focuses on. To this end we make a
g_ignificant contribution to the growing research in thisaaby
sumption is that at a given surface electrode location, t éoposing a fram_ework that allows a myoelectric controller
that has been built on background data from other users, to

set of variables, i.e., the extracted features, descrilbiregy daot to the ch in the EMG sianal ch teristics f
Electromyogram (EMG) signals will be similar for a givena apt to the changes in the sighal characteristics from
different user with minimal efforts, making it suitabler fo

pattern of muscle activation. However at the same electroae

location, there are differences between patterns or moﬁiesc(gnICaI implementations and practlc_al applications. Toasi
al. [23] reported that the benefits of such a model are

muscle actuation [6]. Based on these assumptions, a sigﬁiﬁ‘— tand th tive is that of Shiopi ot
icant amount of research focus has been devoted to Vari&E)gsa:Leensisa\r/]vhicheV\E):urIS(’jp\?gr;\//ZJ?ckl)?aga;t ;gawgngé?\thwlin
aspects of myoelectric control such as signal preproogss ) . . .

P y 9 preproce the effect of enabling him/her to a higher comfort and aid
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D URING the last few years, significant attention has beé
paid to pattern recognition based myoelectric interfac
among researchers, with applications in controlling p@der
prosthetics and rehabilitation systems [1], [2], [3], spee
recognition [4], and in computer games [5]. The main a
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contralateral limb of the same user, or between differeatais

Among multi-user adaptable EMG controller researchers,
Orabona’set al. [24] model adaptation has been applied S
by constraining at each step a new model close to one of
a set of pre-trained models stored in the memory of the
prosthesis. The adaptation process attempts to modifyeke b
matched model from a pool of stored datasets to fit a new Calibration feature Expert feature
subject; however, the process is executed in a high dimealsio matrix ¥ matrix X
parameter space of the classifier, that requires a large @mou Canonical Correlation
of data to make the adaptation complete. Chattopadieyay Analysis (CCA)
al. [25] also presents, using myoelectric signals, a subject
independent computational feature selection framework fo
monitoring muscle fatigue. A search mechanism toward the
vicinity of the best feature subset is guided by an objective
function based on the ratio of between subject to withinectbj
variance for the specific features, and this identifies meamm
across multiple subjects. However, the main limitationsehe Correlation
include the time taken to find the best feature subset and the
large variance of EMG signals, which limit the applicalilit Fig. 1. Schematic diagram of the general CCA-based framewor
of feature selection algorithms to the EMG classificatiookpr
lems [9], [26]. On the other hand, Matsubara and Morimoto
[27] have recently proposed a projection approach based on !I. CANONICAL CORRELATION ANALYSIS IN EMG
Bilinear modeling of EMG signals that is composed of two PATTERN RECOGNITION
linear factors: a user-dependent factor (style) and a motio
dependent factor (content). Here performance is improved
upon previous models including those based on adaptaﬁ
Least-Squares Support Vector Machine (LS-SVMs) [19], [27

However, the dimensions of the style and content variablt dat imall lated in the t f d
were experimentally selected by trial-and-error. In daddit € data are maximally correlated in the transformed spage.

it is reported that the positioning of electrodes, the type 81result, it can extract the intrinsic representation ofth& by

features extracted and their dimensionality could sigaifity mteglg_rf:ljtmg two vllce\l/lvs _Of the_ same sel_t oftp bjec;sl. CgA ha};been
impact the model's performance [27]. applied successfully in various applications [31]. Howe

the best of the author’s knowledge, the application of CCA in
eveloping multi-user myoelectric interfaces is novelthis

We present in this paper a novel multi-user myoelectrfjc X . .
interface that can adapt to multiple users by adopting ction, we map the presentation of CCA theory into one that
irectly utilizes EMG feature matrices as shown in Fig.1.

approach using Canonical Correlation Analysis (CCA) [28]. i ; Tom
CCA is a well-established method which utilizes two views of L€t US assume two different feature matricés,c R

kx
the same set of objects, in our case two feature sets extracigllected from the expert hand, adde R**" collected from

from the hands of different users. This describes the sa@&eW user handin a calibration session, with the same number
f, samplesn, and similar or different dimensioné and &

set of hand motions or movements, and projects the W " :
feature sets onto a lower-dimensional space whereby Euﬁespectlvelﬁr. Both of these feature matrices are extracted from

are maximally correlated. Our proposed model is simple € EMG signals of two users’ implementing the same hand
terms of its computational requirements as it does not requiftions, i-e., two representations of the same set of ahject
significant training and storing of matrices of multiple nse/ith #: andy; corresponding to théth object or motion clazs.
features as proposed in [24]. The model is also parametses fPUr goal helge is to find two projection matrices, € R

and provides analytical solutions, unlike the iterativedeio @ndw, € R” that will maximize the following correlation
proposed by Matsubara and Morimoto [27] that requires fPefficient:

learn the style and content matrices in addition to the need f

proper initialization of the dimensions of the style and teorh wy XY w, 1)

- p =
matrices. \/((ngXTwm)(w;fYYTwy))
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Canonical correlation analysis [28] is commonly used for
ing the correlations between two sets of multi-dimenalo
ariables. CCA seeks a pair of linear [29] or nonlinear
'gmsformations [30], one for each set of variables, suelh th

The structure of this paper is organized as follows: Sedtion
first reports a background on CCA feature projection and thS
describes how we fit this method to our problem. Section IlI
describes the data collection procedure. Section IV ptesen _ _ _

X andY may also have different number of dimensions or featdraad

the eXp_e”mental results and fma"y’ Section V presents OHFespectiver. CCA usually limits the projected featureshensionality to
conclusions. the minimum of the ranks of th& andY

Sincep is invariant to the scaling of,, andw,,, CCA can
B formulated equivalently as



n
max wl XY T, 2 minz WX —T|[%, (7)
Wy Wy w —y
- Ty vT,, _ TyyT, -
Subjectto w, XX w, = 1,w, VY w, = 1. whereT = [t1, 1, ...,t,] being the class indicator matrix,
In the following, we assume thaty” is nonsingular. It can W is the projection matrix that minimizes the difference
be shown thatv, is obtained when the following optimizationbetweenX and 7', it is well known that the optimalV is

problem is solved: given by
—1
W= (xx")" Xx17 8
max  w! XYT(vYT) "'y XTw, (3) ( ) (®)
e o where the pseudo-inverse is used in ca&eX ") is singular.
Subjectto  w, XX w, = 1. According to Suret al. [32], a least-squares CCA-framework

£LS-CCA) can be easily constructed by replacing the class

Both formulations in Egs. 2 and 3 attempt to find the-> k
indicator matrix by

eigenvectors corresponding to top eigenvalues of theViatig

eneralized eigenvalue problem: _1
’ ? P T=(Yy") Yy =H" 9)
XYT(vy") 'YX w, = nX X w, (4)  where it follows from Eq.9 that the solution to the least-
where is the eigenvalue corresponding to the eigenvegduares CCA-framework for the aboVeis
tor w,. Within certain orthonormality constraints, multiple 1
projection vectors can be computed simultaneously when the W= (XX ) XH (10)
following optimization problem is solved: Based on the above equivalence, the LS-CCA can be

extended to include regularization techniques to contnel t

max  tracdWIXYT(yY?)~lyxTw) (5) Complexityandimprove the generalization performanceief t

W suggested model. Similarly to ridge regression [34], bygsi
Subjectto W' XXTW =1, the target matrixZ” in Eq.9, we obtain the 2-norm regularized
least-squares CCA formulation by minimizing the following

where € R4*! is the projection matrix is the number =" .
objective function:

of projection vectors, and is the identity matrix. The solution
to the optimization problem in Eq.5 consists of the tbp

eigenvectors of the generalized eigenvalue problem in.E2q.3 k - ) )
regularized version of CCA (rCCA), could also be constrdcte La(W, A) = Z Z(Ii wj = Tij)” + Alfwillz |, (11)
by employing two regularization terms,,/ and \,I, with J=1 \i=l

A1 >0, \,I > 0, that are added in Eq.2 to prevent overfitting The above formulation is equivalent to finding a projection
and avoid the singularity of{ X7 and YY”. Specifically, matrix for X. In this case, one can utilize the features from one
rCCA solves the following generalized eigenvalue problem:subject, denoted as the expert, to repre§eand then utilize
features from the remaining subjects to make them similar in
XYTYT 4+ A )Y X T, = n(XXT + A\, Dws. (6) style toT, i.e., raise the correlation between these feature sets
v e =1 v e so they have a similar trend resulting in a unified-styleespa

It is worth mentioning here that the aforementioned CCAwith style here referring to the trend of the features agros
based approach utilized in this paper is unsupervised, ie different classes).
CCA does not observe the class label from the training set
when constructing thev, and w, projection matrices, with B, EMG Adaptation Scheme

the main goal being to maximize the correlation among theIn order to control complex myoelectric prostheses, the

dlmensu_)ns OfX andY’. However,_a supervised version CO_U|dEMG patterns must be associated with the correct movements.
also be implemented by correlating the feature matrix with I previous studies, a specific muscle activation, is uguall

cIa;g-lndlcator matrix and by using a binary represem:?mlb associated with a specific movement imagined by the subject,
entities, e.g. for an e>_<amp|e with 4 class_,es andelonging and it is then up to the test subject to remember all the
to class 1, thenw; will be appended with[1,0,0,0], and imaginary or virtual movements. Experiments were previous
[0,1,0,0] for class 2 and so on. conducted to associate the EMG patterns with specific hand
movements based on the use of a data glove on the healthy
A. Least-Squares CCA-Framework hand contralateral to the amputation (when controlling pow
In order to simplify the aforementioned CCA implementaered prosthetics by amputees) [20], or on a data glove on the
tion and provide a generalized solution, it has been shownsame hand from which the EMG is collected (when teleoper-
the literature that efficient algorithms for solving leagiares ating multi-finger robots) [21]. In this paper, we presenesvn
problems can be applied to scale CCA to very large data setscept that facilitates the association of EMG patterrit wi
[32], [33]. Given the usual least-squares problem with trenf the actual hand movements based on the use of EMG data
of collected from the contralateral hand to the one been tested



whether from the same or a different user. The proposed CCrequired to perform calibration and the system projects the
based framework can act as a possible shortcut to high-endracted features from the EMG signals onto a new space
control of an advanced multi-user prosthesis by minimizinghereby these are highly correlated with expert featurés. T
the efforts spent on training a subject/patient on the usa otalibration set is much smaller than the training set that is
prosthetic device. An adaptation scheme is presented heraisually extracted from the users in the previous experiment
a way that requires the novel user to go through a calibration., there are huge benefits gained in training time as we
session in which the system collects EMG data from the newoided the collection of multiple trials per each movement
user while implementing one repetition of each of a preddfinérom the new user. Secondly, the proposed scheme allows for
set of hand motions. Additionally, the proposed framewoitke development of muscle computer interfaces worn onreithe
extends the previous work in this field by allowing the systeiheft or right hand by the user, in addition is the ability taitr

to overcome the individual differences in the EMG patterrthe system on one user’s right (or left) hand while testing on
collected from the different hands, i.e., the prosthessesy a second user’s left (or right) hand. Finally, one can alamtr
could be trained with EMG data from one subject and testéide system on the data from intact-limbed subjects and then
on EMG data from another subject, after using our CCA-bastskt the system on the data from an amputee.

framework. Two schemes of users’ adaptation are tested here

one for each set of collected EMG datasets. I1l. DATA COLLECTION

« Within-Subject Experiments: In the first scheme, simul- In order to test the proposed CCA-based EMG pattern
taneous fingers movements are carried out by each ugggognition system, two sets of EMG studies are utilize@her
with both hands while their EMG signals were collectedlhe first is collected by the author while the second was
In this context, the expert and user data in Fig.1 weg®llected and first used by another research group [36].
collected from the same user, with the expert data been
collected from the muscles on one hand (intact limb) andl pATASET-I: Synchronous Bilateral Fingers Movements
the user data been collected from the contralateral hagg,qy
(from the remaining muscles on contralateral limb). CCA . . .

o . An experimental protocol has been developed in which
based projection matrices are then computed to m f1 .
. G data is collected from both hands of each user for
the extracted features from both hands highly correlat

Testing is then performed with and without the proposztgsung the CCA-based adaptation scheme within the user, i.

CCA adaptation with training/testing data from ei,[headaptatlon among the two hands. Eight subjects, five right

hand to measure the usability of the pronosed ada ta,[irg)fr;\]nded and three left handed, seven males and one female and
framework y prop P aged between 25 and 36 years had been recruited. All partici-

. Subject-Independent Experiments In the second pants provided unlversn_y _reseqrch ethics committee aygolo
. A informed consent to participate in the study. Data was ctat
scheme and as shown schematically in Fig.2, the leave-. .
L " sing four EMG channels (Delsys DE 2.x series EMG sensors)
one-out cross-validation (LOOCV) method was utilize :
. , . . . .~ thounted on each of the left and right forearms as shown
with one user’s data retained for testing while trainin . .
o Fig.3. This approach endeavoured to cover all muscles of
the classifier on the data from the rest of the us

e L -
(more details in the experiments section). In this schem{ge Extensor Digitorum (channel 1), Extensor Pollicis Losg

we aftempt to create a unified-style-space, i.e., atte aild Abductor Pollicis Longus (channel 2), Palmaris Longus

. , . ’g% annel 3), and Flexor Carpi Ulnaris (channel 4), as these
to make all training users’ style similar to that of th . )
muscles contribute largely to finger movements.

expert. This is done by correlating the feature matrices . 0 .

. L : A 2-slot adhesive skin interface was applied to each sensor,
acquired from each user preserved for training (intact- : . . )
. X . nd stuck firmly to the skin. A conductive adhesive dermadrod
limbed or amputee) with the feature matrix from an exper : :

) . . . reference electrode was placed on the wrist of the right hand

user (usually intact-limbed subject). Then the interface ;
is applied on a novel user's hand and CCA ro'ectionurmgthe experiments. The data was processed by the Bagnol
P pro) desktop EMG system from Delsys Inc. with the EMG signals

matrices are computed to make the novel user's featurer%plified to 1000 using a Delsys Bagnoli-8 amplifier. A 12-bit

porrelated W'th the expert. The use of pre-t_ralned mOdegﬁalog-to-digital converter (National Instruments, BIRQS0)
is reported in many research articles as being very usefu

in shortening the time reauired by the subiect/patient ampled the signal at 4000 Hz; signals were then transfesred
g he t eq y subjectip atlab software. and EMG signals bandpass filtered between
become proficient in using the prosthetic hand [35], [23

0 and 450 Hz.

The main benefits with the proposed CCA-based schemeA set of ten classes of fingers movements, specifically
include: Firstly, novel users require minimal trainingaets to fingers flexion movements, were carried on during the exper-
start using the system or to re-train the system after daiéy uiments. These included the flexion of: Thumb (T), Index (1),
In most previous studies, each user must execute long-tiMéldle (M), Ring (R), Little (L), Thumb-Index (T-1), Thumb-
experiments to capture a sufficient number of EMG signaldiddle (T-M), Thumb-Ring (T-R), Thumb-Little (T-L), and
in multiple trails to construct the training set for the ddier Hand Close (HC). Each subject was instructed to carry out
before starting to use it. In the proposed framework, a smathe movement at a time using both hands, with cues issued
amount of data (usually 3-to-5 sec of EMG data per movemdnt software to implement a specific finger motion lasting
class are enough for calibration, as determined empiyicel five seconds, followed by a five second relax. Six trials were
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Fig. 2. The proposed subject independent CCA-frameworlaéaptation.

six traumatic below-elbow amputees (referred to as Al-to-
A6), ages 24 to 34 years. Data from intact-limbed subjects
was collected from participants based at Plymouth Unitersi
United Kingdom (UK), while the amputee data was collected
at the Artificial Limbs and Rehabilitation Centres in Bagtida
and Babylon, Irag. Before placing electrodes on the sufject
alcohol and abrasive skin preparation gel was applied to
the forearm for cleaning the skin. Electrode locations were
chosen to maximize the quality of recording. For intact-
limbed subjects, 12 EMG channels were used with pairs of
self-adhesive Ag-AgCl electrodes (Tyco healthcare, Gegha
placed around the circumference of the upper part of the
forearm (Fig.4 A and B). To reproduce electrode positions,
European recommendations for sSEMG (SENIAM) [37] had
been followed to determine electrode locations prior tc@la
ment. To mark the electrode locations, elbow joints werause
Fig. 3. Positions of electrodes on both forearms (sensamswemoved for as a reference point. By contrast, only 11 EMG channels had
clarity). been recorded for amputee persons, this is due to the limited
upper forearm surface area. The same self-adhesive Ag-AgCl
%Iectrodes (Tyco healthcare, Germany) had been used to ac-
quire signals from amputee persons. The level of trandradia
amputation differed for each amputee person. For Al, the 11
pairs of electrodes were placed around the circumference of
o ) ] the upper forearm, whereas the electrodes were placed into
B. DATASET-II: Individual and Combined Fingers Movemeny,, rows around the circumference of the upper forearm for
Classification the rest of the amputees. The ground reference electrode was
In addition to testing on our own EMG data from intactplaced on the wrist for healthy subjects and at the Olecranon
limbed subjects, we aimed to test our proposed CChrocess of the Ulna for the amputee persons. The type of
framework on amputees and for this purpose we have utilizachputation was transradial amputation for all of the amgpute
the EMG studies that were collected and first utilized byersons apart from amputee person A3, who had undergone
Timemy et al. [36]. EMG signals were recorded from thea wrist disarticulation amputation (Fig.4 C). To minimizet
right forearm of ten intact-limbed subjects (referred td\ds cross-talk, bi-polar EMG measurements were used with-inter
to-N10), including six males and four females ages 21 tlectrode distance of 24mm as recommended by Yaira.
35 years. The study also includes EMG data collated from

collected for each class of movement using both left and rig
hands simultaneously; the training and testing distrdsufs
discussed in the experiments.



and the SENIAM [37], [38]. The intact-limbed and amputeef participants were asked to produce finger movements with
subjects had not been trained on EMG recording prior to tlaemoderate, constant-force, and non-fatiguing contrastio
study. All amputees had a strong muscular structure in time athe best of their ability. The final position of a movement was
and forearm, apart from (A3). The EMG activity was strongeld for a period of 8-12 seconds by intact-limbed subjects.
since no-one suffered nerve damage. However, this time was limited to 5-10 seconds for amputees

While intact-limbed subjects performed actual finger movée avoid fatigue. Each holding phase is referred as a "trial”
ments, amputee persons were instructed to produce a spe@fictrials were recorded for each movement; the distrilbutio
imagined finger movement. This was sometimes helped bj/training and testing trials are described in the expenisie
mirror movements of the fingers of the intact hand. In total, 1
classes of finger movements had been carried out by amputees IV. EXPERIMENTS AND RESULTS
(11 individual finger movements as well as the rest position, In the experiments, an overlapping windowing scheme was
which is considered in this study as one of the movemeutilized when extracting features with a window size of 150
classes). Index and thumb flexion were recorded on a differensec overlapped by 50 msec. The extracted features cover
day for A3 only with the same number of channels. The intadhe recently proposed time-domain derivations of spectral
limbed subjects performed 15 classes of finger movemegnoments by Khushalbet al.[17] including 5 features/channel
from which we selected the same 12 classes of movemegessisting of a normalized version of the zero, second, and
performed by the amputees. The 12 individual finger movésrth order power spectral moments in addition to a sparsity
ments performed both by amputee persons and intact-limbagasures and the irregularity factor measure (this is the
subjects are as follows: little flexion (f1), ring flexion {f2 number of zero crossings divided by the number of peaks).
middle flexion (f3), index flexion (f4), rest position, ligtl Additionally, the correlation factor between each two [iloiss
extension (el), ring extension (e2), middle extension,(e3aw EMG signals was also added as features by concatenating
index extension (e4), thumb flexion (f5), thumb extensid) (e all the features together to form one large feature set. &hes
thumb abduction (a5). features have demonstrated power against many other éeatur

The EMG signals were acquired with the custom-buiets while having small computational requirements and di-
multichannel EMG amplifier. Each EMG channel was sammensionality (for more info the interesting reader may réde
pled at a rate of 2000 Hz with 16-bit resolution. A Virtua[17]). For the EMG studies for both hands, as collected by the
Instrument (V1) was developed in LABVIEW (National In-author, the extracted feature set had a dimensionality 6¢@6
struments, USA) to display and store the EMG signals. Duririgres/hand, i.e., 26 features/hand = [5 features/chatingg
the recording, each participant sat on a chair in front of gomain momentsx 4 channels/hand+ 6 correlation features
computer with the LABVIEW interface screen to see all thé6 unique values from the correlation coefficients matrix)]
EMG channels in real-time while performing the movementsor the EMG studies acquired from [36], the dimensional-
Their arm position was fixed and it was resting on a pillovity of the extracted feature set totaled to 110 featuresthan
They were asked to produce a succession of different fingghen 11 channels were utilized, i.e., 110 features/hand = [5
movements separated by 5-second periods of rest. Both grofgatures/channek 11 channels/hand+ 55 correlation features
(55 unique values from the correlation coefficients matrfix o
size 11x 11)], and similarly to 126 features/hand when 12
channels were utilized. In terms of the classification, ehre
different classifiers were tested including: Linear Disgrniant
Analysis (LDA), k-Nearest NeighboriNN), and the well-
known LIBSVM library of support vector machine [39]. The
performance metric employed is classification accuracy of
the testing feature set, this is completely independennfro
the training and the calibration set i.e., the unseen m@stin
data. In order to increase stability and robustness of thgscl
decision stream, we also implemented post-processing usin
majority voting. Majority voting stipulates that the outpof
the controller is not simply the most recent class decisiain b
the class that appears the most often in the previogtass
decisions f = 8 in our experiments).

In the following subsections, different experiments have
been evaluated including testing within the subject, raint
on left (or right) hand and test on right (or left) hand for the
same subject; then across the hands of the different salject
hand train on a normal limbed subject and test on an amputee.

A. Experiments on DATASET-I

Fig. 4. Example of electrode location. A. Anterior view oethight forearm . . . .
of an intact-imbed subject. B. Posterior view of the foreaof an intact In this section, the classification performance of the syste

limbed subject. C. Anterior view of amputee person A3. is first evaluated without using CCA-framework, i.e., what i



the classification performance of individual hands sepérat shown in Fig.1. Training data is allocated from one hand and
(baseline accuracy for each hand). In this case, only thesting data from the opposite hand and the classifier makes
EMG data from the first trial (for each movement) is used tdecisions on the new unseen testing data from the opposite
extract the training feature set, while the remaining fiveldr hand that has been multiplied by the precomputed projection
(for each movement) are used to extract the testing featumatrix from CCA. Out of the six trials collected from each
set i.e., completely independent feature sets. In addimon user for each movement, only the first trial of each movement
the baseline for each hand, we compare our proposed C@3Aused in the calibration process, i.e., get one trial'$ufess
framework with the simple-SVM utilized by Matsubara androm the right hand and one from the left hand, apply CCA-
Morimoto [27]. The simple-SVM provides an indicator of thdramework, extract the projection matrices that would make
classification performance when a classifier is trained @n thoth hands features correlated and classify unseen tekitag
left hand data and tested on the right hand data, also vicethis case, the training data was again allocated from the fi
versa. In addition to simple-SVM, we have included whdtial only while testing data was acquired from the remagnin
we call 'global-SVM’, this is where an SVM classifier isfive trials (completely unseen during calibration). In tbése,
provided with training data from both hands. Additionatlye the results from different scenarios are shown in Table.ll
results achieved through the Bilinear model of Matsubacdh awhile using the LIBSVM classifier. This table again shows
Morimoto [27] were also included. The classification resulthe baseline accuracy for both hands after CCA was applied in
for each of the subjects with the aforementioned simple-$SVMddition to two more scenarios: The first in which the tragnin
global-SVM, and Bilinear models are shown in Table.l, ifieature set includes samples from opposite hand to the one
addition to the left and right hands baselines. being tested on (comparable to simple-SVM) and the second
These results clearly indicate a few important points,l§irstin which the training feature set includes samples from both
it is not feasible to implement the hand independent classifiands after CCA (comparable to global-SVM). These results
cation scheme directly using EMG features from one hand itadicate the significance of the proposed CCA-based scheme
infer what movement of the other hand will be, that is simpléhat managed to raise the correlation between the projected
SVM fails to deal with the current problem despite goofeatures from both hands resulting in similar featuresdsen
performance individually for the baseline of each handsThacross the different classes with average accuracies 64%0.
is justified by the different EMG signals extracted from eachnd 81.39; in comparison to 26.88 and 25.66( for simple-
hand with different data distributions, though both hands aSVM when testing on the left and right hands respectively.
implementing the same movement simultaneously. Seconddn the other hand, when training on both hands after CCA,
in comparison to simple-SVM and individual baselines fathe classifier is made aware of the distribution of the EMG
each hand, the global-SVM has powerful performance. Thigta from both hands which in turn allowed the classifier to
is mainly attributed to the fact that the classifier was madtter generalize on the unseen testing data with accsratie
aware of the distribution of the EMG features from botle4.29% and 88.35; with CCA in comparison to 80.68 and
hands by including EMG features extracted from both han88.34% for global-SVM without CCA and 72.1% and 71.5%
in the training set. It is also important to mention here thaespectively on the left and right hands for the Bilinear mlod
using more training data could further enhance the baselineAll of the aforementioned results were verified by an
classification results for both hands, as only one trial panalysis of variance test with a significance level at 0.05.
movement has been allocated for training. However, our madOVA tests outcome indicated that the classification rssul
point is not devoted to enhancing the baseline classificatiwhen training on one hand and testing on the opposite with
results, but to enhancing the cross-hands classificatisultse CCA are significantly different from those with simple-SVM
when using training and testing data from different handwith p << 0.01. The same significance level also applied to
Thirdly, the Bilinear model performed better than simplethe case where we train the classifier on EMG features from
SVM, but performed worse than the global-SVM. Matsubafaoth hands and test on either hand, indicating the significan
and Morimoto [27] indicate clearly that there are some autrredifferences between our CCA-framework and the Bilinear
limitations to the Bilinear model including its sensitivito model and the global-SVM with < 0.01. Thus, the proposed
the type of features extracted from the EMG channels. In thapproach allows the development of myoelectric interfélcas
case, although training data was allocated from both hantl&e user can wear on either hand. The testing classification
the Bilinear model representation of the extracted contemsults using LDA and:NN classifiers also showed similar
variables has resulted in lower classification accuradias t results to these exhibited by the LIBSVM classifier as shown
the global-SVM. in Fig.5.a when training on the right hand features andrtgsti
The proposed CCA-framework was then applied in thisn the left hand features with CCA and Fig.5.b when training
experiment. In such a case, each subject could be requestedhe left hand features and testing on the right hand fesitur
to go through a calibration session in which he/she showespectively.
the system an example of how they perform a specific fingerThe effect of the number of samples used in the calibration
movement (the style of movements) with both hands simultprocess on the testing set classification accuracy was also
neously or one hand only, if the interface is applied on thahalyzed. In such a case, we randomly pick up a certain
specific hand. Features are then extracted from both hamds anmber of samples from the available calibration data and
were submitted to CCA to find two projection matrices thdest the classification accuracies with CCA-framework gl
would increase the correlation between the two feature asts (with training data from the contralateral hand to the one



TABLE |
CLASSIFICATION ACCURACIES(LIBSVM): WITHIN SUBJECT EXPERIMENTWITHOUT CCA SCHEME

Baseline-Left  Baseline-Right  simple-SVM  simple-SVM  gitisVM  global-SVM Bilinear Bilinear

TrainingData— Train-Left Train-Right Train-Right Train-Left Train-Bbt  Train-Both Train-Both  Train-Both

TestingData— Test-Left Test-Right Test-Left Test-Right Test-Left FeSght Test-Left Test-Right
Subjectl 78.04 79.65 22.39 23.92 74.04 73.27 71.40 67.2
Subject2 86.04 93.88 12.69 30.51 79.96 93.39 71.46 71.5
Subject3 77.37 98.22 53.94 27.96 78.27 94.88 73.57 78.8
Subject4 87.88 88.51 12.53 19.65 80.98 86.45 75.10 72.9
Subject5 89.41 80.39 12.86 17.98 81.65 75.73 69.84 61.2
Subject6 86.76 97.22 40.80 32.51 87.55 95.71 64.94 76.6
Subject? 80.96 80.04 12.24 11.41 83.24 78.04 71.49 63.0
Subject8 82.32 90.32 46.97 41.35 79.80 93.30 79.08 81.1
Average 83.60 88.53 26.80 25.66 80.69 86.35 72.11 71.5

Std 4.57 7.73 17.60 9.43 3.89 9.34 4.10 7.3
TABLE 1l

CLASSIFICATION ACCURACIES(LIBSVM): WITHIN SUBJECT EXPERIMENT CCA UNSUPERVISED FRAMEWORK APPLIED

With CCA With CCA  With CCA  With CCA  With CCA  With CCA
TrainingData—  Train-Left ~ Train-Right  Train-Right  Train-Left ~ Train-Bbt Train-Both
TestingData— Test-Left Test-Right Test-Left Test-Right Test-Left T&3ght

Subjectl 80.53 77.55 75.63 73.02 81.44 78.97
Subject2 83.42 94.08 82.57 91.95 84.30 95.63
Subject3 81.67 97.18 83.12 87.93 82.61 94.51
Subject4 89.08 89.77 82.87 81.16 86.38 90.83
Subjects 87.06 87.95 87.32 74.71 90.10 86.24
Subject6 87.20 96.63 74.10 81.89 85.59 93.79
Subject? 81.26 79.53 82.67 74.61 81.10 78.14
Subject8 80.23 88.38 76.85 85.82 82.45 88.72
Average 83.81 88.88 80.64 81.39 84.25 88.35
Std 3.47 7.30 4.56 6.91 3.03 6.79

been tested). The process was repeated for 20 times aléeafures. As the amputees had different levels of tranasradi
each number of samples with the results averaged as shawmputation then we decided to use an intact-limbed subject’
in Fig.6. These results clearly show that around 400-to-58MG signals features as the expert features when employ-
samples seem adequate to produce classification accurairigsthe unsupervised CCA-framework (or the class-indicato
that are not significantly different from those produced bmatrix for the supervised version). In such a case, we seek
larger sample size. The results also indicate that even wiftature transformation matrices that would make each of the
very small samples size of 100 samples our method was stithputees’ EMG features similar to that of the expert, rasylt
able to perform well with classification accuracies of 7%73in a unified-style-space, i.e., the five amputees’ EMG festur
and 74.5% when training the classifier on right hand datare highly correlated to that of the expert now. The remajinin
and testing on left hand data and vice versa respectively.dne amputee’s EMG features matrix is kept for testing and
comparison to the Bilinear model, the number of samples usi® CCA framework is applied on a small sample of his/her
in calibration did not have a significant impact upon theitgst features during calibration to increase the correlatiamwben
set classification results which is one of the main powerfhis/her features and that of the expert. Thus, no training da
attributes of the Bilinear model. However, the fact that this acquired from the subject on which we are testing our CCA
classification results achieved by the CCA-framework witframework, as the classification performance is evaluasétu
100 samples, with training features from individual hanaly,o a classifier trained on background data from other usersalon
still outperform the Bilinear model trained with EMG featsr ~ As there were multiple trials for each of the movements
from both hands, warrants its acceptance as a good adaptatiith a huge amount of collected EMG data, then the first
framework. trial for each subject been tested was set aside to acquire
the calibration data. Specifically, in this experiment ottg
. data belonging to the first five seconds from each first trial

B. Experiments on DATASET-II was used for calibration. The data from the remaining five

In this set of experiments, a leave-one-out cross-vabdatitrials was set aside for testing, that is the calibratioriuiesa
testing scheme was utilized in which, at each time, five osét was completely separated from the testing set. Given the
of the total six amputees’ EMG signals features are allatatlarge number of EMG channels and the extracted features
for extracting the training feature set while the remainimg from these EMG datasets, then dimensionality reduction was
amputee’s EMG signals features are allocated for extrgctintilized. For this purpose, the Orthogonal Fuzzy Neighborh
the testing feature set. According to Fig.1, the CCA-frammdw Discriminant Analysis (OFNDA) feature projection method
is then utilized to increase the correlation between ead¢heof by Khushabaet al. [9], that have been utilized on these
five amputees’ features preserved for training and the éxpsame EMG studies from amputees in [36], is also used in
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this research. The baseline classification results, wiaémirig

and testing data is acquired from the same subject, for the
intact-limbed had an average of 98739standard deviation

of 2.40%) across all subjects, while the amputees subjects
achieved much lower than that as shown in Table.lll. As the
intact-limbed subjects had powerful classification resulte
aimed to investigate whether we can enhance the clasficati
results for the amputees by using the CCA framework, and
with each intact-limbed person as an expert. The classditat
results with the unsupervised CCA framework are given in
Table.lV. In such a case, the first row in Table.IV shows an
expert N1, the first column shows a testing subject A1, while
the remaining subjects (A2-A6) are allocated for trainingh

a testing accuracy of 85.%2 The second column then shows
the accuracy when A2 is preserved for testing and Al, A3,
A4, A5 and A6 are used for training with a testing accuracy of
86.31%, and similarly for the remaining entries, with different
expert in each row.

One of the important benefits of applying the proposed
CCA-framework on these EMG studies is attributed to the
fact that there were different number of EMG channels @iz
across the amputees and the intact-limbed subjects. The fac
that the proposed CCA-framework can be applied on two
feature matrices with different dimensionalities makegeity
attractive option, as it is simply not possible using other
adaptation frameworks unless the same number of channels
is used across all subjects. The second important benefit of
the proposed CCA-framework is attributed to its capability
for increasing correlations among EMG signals collectedfr
EMG channels at different forearm positions. As mentioned
previously, the level of transradial amputation was défer
for each amputee which in turn necessitated the different
placement of electrodes on some amputees (Al versus the

TABLE Il
AMPUTEES BASELINE CLASSIFICATION RESULTS, TRAINING AND
TESTING DATA FROM THE SAME SUBJECT

Subject— Al A2 A3 Ad A5 A6
LIBSVM 83.10 83.75 8054 8147 79.65 74.67
LDA 81.09 85.60 82.19 76.44 79.08 78.41
kNN 83.55 85.05 8144 8161 79.43 79.17
TABLE IV

SUBJECTINDEPENDENTCLASSIFICATION RESULTS(LIBSVM),
UNSUPERVISEDCCA-FRAMEWORK APPLIED, TRAINING DATA FROM
BACKGROUND MODEL BASED ON INDEPENDENT SUBJECTS TO THE ONE
BEEN TESTED

Subject Al A2 A3 Ad A5 A6
N1 85.52 86.31 8215 81.65 8279 7237
N2 8543 86.81 8265 81.04 8555 76.88
N3 85.66 85.06 8240 78.89 84.69 69.86
N4 84.99 89.32 8164 8263 8536 7214
N5 86.15 86.06 80.89 8191 84.71 75.34
N6 84.63 85.61 8129 8252 83.98 76.18
N7 86.46 86.26 8159 82.16 86.69 73.34
N8 86.15 8581 8240 8159 85.02 75.67
N9 86.55 86.06 84.20 8290 8586 76.17
N10 85.25 86.36 81.29 8154 8186 75.38

Mean 85.68 86.36 82.05 81.68 84.65 74.33
Std 0.64 1.14 0.95 1.14 1.45 2.28
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rest of the amputees). This in turn allowed for training on AZhown in Fig.7, indicating a similar trend to those exhititsy
to-A6 features while testing on Al features, despite dififer the LIBSVM classifier. This in turn indicates that the exteat
electrodes placements. Matsubara and Morimoto [27] sugatures are robust against the change of the classifier.
gested that electrode placement influences the user degtende

variables in their bilinear model; they also caution that th

method cannot be used if the electrodes are not placed on  [mmLoA
same muscles between different users. This is due to ditfer BB o S E'[:“BNSVM
amputee patient conditions (as verified in our experiment P [T R ol “ TR o — T

However, different amputees do have different conditiamsl

for an adaptable interface to be clinically applicable,hsan

interface should be applicable even under different caot

of amputations, this being the case using our CCA-framewoil
In comparison to the classification accuracy results aeliev

by the unsupervised CCA-framework, we have also cor

puted the results by using a supervised version of our CC

framework, in which we correlate the amputees’ feature

against the class indicator matrix rather than the expert fe

ture matrix as shown in Table.V. Additionally we have als

included the simple-SVM (training data from all amputee: A e AssubjectSAA "o "o

except the one been tested) and global-SVM (training dauwa

from all amputees, including the one been tested). Theteesuig. 7. Average classification results with LDANN, and LIBSVM

of the Bilinear model were not competitive with the restlassifiers, with standard deviation as bars.

of the results which is possibly due to the aforementioned

effect of electrodes placement variations and we decided to

remove these results from this comparison. These results V. CONCLUSIONS

clearly indicate the simple-SVM is of no use here due to the In this paper, an approach for developing multi-user my-

variations in the EMG features across different subjects. @electric interfaces utilizing a CCA framework has been

the other hand, the accuracy results by global-SVM seem m@mposed. Two schemes of adaptation have been tested, one

convincing; however, the fact that training data was regfiiramong individual users, in which we tested the possibility o

from each subject, including the one the classifier is tested training the classifier on EMG features from either hand a/hil

made the global-SVM not competitive with our unsupervise@sting the opposite, and a second between users, including

CCA-framework. It should be mentioned here that for theaining on multiple users data and testing on a novel usar. O

subject been tested the amount of data used for calibratiaitial results clearly indicates the significance of thésearch,

with our CCA-framework is the same as that amount allowing us to train and test on different users with average

data included in the training set from the testing subject tiassification accuracies af 82% across all subjects. The

global-SVM. However, our framework employs this data foperformance of the proposed model has also been compared

calibration and does not include this data with the trainingith other models like the simple-SVM, global-SVm and the

set, i.e., training in our framework is completely based odRilinear model proving its power as a multi-user adaptation

data from other subjects. In comparison to simple-SVM arfthmework. However, further investigation is requireditiie

global-SVM our CCA-framework achieved significantly betteadaptation approaches for further enhancing the perforenan

results as validated by an ANOVA test with the achievedf subject-independent EMG classification results andehé r

p-values of <<0.05 for the tests against simple-SVM andime application of this framework. This will be the basis of

global-SVM. On the other hand, there was no statisticallyur future research.

significant difference between the accuracy results aeliev
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