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Abstract

Supervised linear dimension reduction (SLDR) is one of the most ef-

fective methods for complexity reduction, which has been widely ap-

plied in pattern recognition, computer vision, information retrieval,

and multimedia data processing. This thesis explores SLDR by en-

riching the theory of existing methods and by proposing new methods.

In the first part of this thesis, we present theoretical analysis of

Fisher’s linear discriminant analysis (LDA), one of the most repre-

sentative methods for SLDR. 1) Classical asymptotic analysis of LDA

is based on a fixed dimensionality, and thus does not apply in the

case where the dimensionality and the training sample number are

proportionally large. Besides, the classical result does not provide

quantitative information on the performance of LDA. To address these

limitations, we present an asymptotic generalization analysis of LDA,

allowing both the dimensionality and the training sample number to

be proportionally large, from which we principally obtain an asymp-

totic generalization bound that quantitatively describes the perfor-

mance of LDA in terms of the dimensionality and the training sample

number. 2) We study a new regularization method for LDA, termed

the block-diagonal regularization. By partitioning variables into small

groups and treating them independently, block-diagonal regulariza-

tion effectively reduces the dimensionality to training sample number

ratio and thus improves the generalization ability of LDA. We present

a theoretical justification of the block-diagonally regularized LDA by

investigating its approximation and sample errors. We show that the

block-diagonally regularized LDA performs competitively compared

to other types of regularized LDA, e.g., with the Tikhonov regular-

ization and the banded regularization.



In the second part of this thesis, we propose two new methods for

SLDR. 1) The first method is for parametric SLDR, termed max-min

distance analysis (MMDA). MMDA optimizes the projection matrix

by maximizing the minimum pairwise distance of all class pairs in the

dimension reduced space. Thus, it duly considers the separation of

all classes and overcomes the “class separation” problem of existing

parametric SLDR methods that close class pairs tend to merge in the

dimension reduced space. 2) The second method is for nonparamet-

ric SLDR, which uses minimizing the asymptotic nearest neighbor

classification error (MNNE) as the criterion for optimizing the pro-

jection matrix. Theoretically, we compare MNNE with other criteria,

e.g., maximizing mutual information (MMI) and minimizing Bhat-

tacharyya bound. We show that MMNE is superior to these two

criteria in terms of the closeness to the Bayes optimal criterion. Em-

pirical studies show that the proposed methods, MMDA and MNNE,

achieve state-of-the-art performance for parametric and nonparamet-

ric SLDR, respectively.
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Chapter 1

Introduction

1.1 Dimension Reduction: an Overview

Dimension reduction is an important data processing technique in pattern recog-

nition and machine learning Duda et al. [2001] Devroye et al. [1996] Bishop [2006].

By transforming data from the original space to low-dimensional representations,

the subsequent data analysis benefits from many aspects; for example, by pro-

viding a two or three-dimensional graphical visualization of data and reducing

the computational cost. Most importantly, dimension reduction helps to reduce

the complexity of the problem to be studied, and thus improves the performance

of data analysis. In density estimation, the phenomenon of the curse of di-

mensionality says that: “... to get good error rates, the number of training

samples should be exponentially large in the number of dimensionality” Devroye

et al. [1996]. Therefore, dimension reduction is generally a necessary step even

when the original dimensionality is moderate. In classification, dimension re-

duction is useful for improving the generalization ability of a classifier. Taking

linear classification, for example: reducing data dimensionality reduces the VC

(Vapnik-Chervonenkis) dimension of a classification algorithm, enabling better

generalization to be obtained with the same number of training samples Vapnik

[1998].

The study on dimension reduction has a long history in pattern recognition

and statistics, and has received increasing attention over the past decade due

1



1. Introduction

to the demand of high-dimensional data analysis. According to the information

used or the characteristics of the data transformation, dimension reduction can

be categorized in the following two ways:

• Supervised v.s. Unsupervised. The difference between supervised and un-

supervised dimension reduction lies in whether the label information of the

data is utilized or accessible. Generally, the purpose of supervised dimen-

sion reduction is to improve classification performance. Thus, it aims to find

a low-dimensional data representation by which different classes of data can

be well separated. Popular supervised dimension reduction methods include

Fisher’s linear discriminant analysis (LDA) Fisher [1936] Rao [1948], ker-

nel discrimination analysis (KDA) Mika et al. [1999] and nonparametric

discriminant analysis (NDA) Fukunaga and Mantock [1983]. Unsupervised

dimension reduction does not utilize label information, and is usually per-

formed for de-noising or obtaining a compact/semantic data representation.

In contrast to supervised dimension reduction, which focuses mostly on the

discrimination between classes, unsupervised dimension reduction is more

diverse due to the different aspects of the data characteristics concerned.

For instance, when aiming for minimum reconstruction error, principal com-

ponent analysis (PCA) Jolliffe [2002] should be applied, while if intending

to discover the latent uncorrelated factors behind observations, factor anal-

ysis (FA)Gorsuch [1983] will be preferable. Semantic data representation

has recently become very popular in the machine learning field, and many

algorithms have been developed, e.g., probabilistic latent semantic anal-

ysis (pLSA) Hofmann [1999] and latent Dirichlet allocation (LDA) Blei

et al. [2003]. Although these algorithms are often categorized as generative

probabilistic models, they do perform unsupervised dimension reduction

functionally.

• Linear v.s. Nonlinear. Linear dimension reduction exploits linear projec-

tion as data transformation. It learns a projection matrix W ∈ R
D×d, such

that z = WTx is the dimension reduced representation of the original data

x ∈ R
D. Just as linear models are generally the simplest way to conduct

statistical inference, so linear dimension reduction is superior to nonlinear

2



1. Introduction

dimension reduction in terms of model complexity. The most representative

linear dimension reduction methods include Fisher’s LDA and PCA, both

of which have been applied in a wide range of areas, from computer vision

and information retrieval to multimedia applications. Nonlinear dimension

reduction uses nonlinear functions f : RD �→ R
d as data transformation,

i.e., z = f(x). It is more satisfactory when the nonlinear structure of

data distribution becomes important or the trade-off between the training

sample number and model complexity is not difficult. Two major subcat-

egories of nonlinear dimension reduction are kernel dimension reduction

and manifold learning. The former can be understood as performing lin-

ear dimension reduction in a very high (possibly infinite) dimensional space

induced by a kernel function, and the most well-known methods are ker-

nel principal component analysis (KPCA) Schölkopf et al. [1997] and KDA

Mika et al. [1999]. Manifold learning assumes that data are distributed

on a low-dimensional manifold, which is embedded in the original high-

dimensional ambient space. Accordingly, in obtaining the low-dimensional

representation, a major aim of manifold learning is to preserve the local ge-

ometric structure of data distribution. Popular manifold learning methods

include locally linear embedding (LLE) Roweis and Saul [2000], ISOMAP

Tenenbaum et al. [2000] , Laplacian eigenmaps (LE) Belkin and Niyogi

[2003], Hessian eigenmaps (HLLE) Donoho and Grimes [2003], Generative

Topographic Mapping (GTM) Bishop et al. [1998], and local tangent space

alignment (LTSA) Zhang and Zha [2004].

Since dimension reduction has a considerably large literature, it is impossible

to include all the references here. We point readers to several useful surveys

on dimension reduction techniques, including Fodor [2002], Cayton [2005], Saul

et al., and Pless and Souvenir [2009].

1.2 Supervised Linear Dimension Reduction

This thesis is devoted to a subcategory of dimension reduction, i.e., supervised

linear dimension reduction (SLDR). For a multi-class problem, with a joint prob-

3



1. Introduction

ability distribution p(x, y), x ∈ R
D and y ∈ {1, 2, ..., c}, SLDR can be described

informally as

Given the conditional probability densities p(x|y = i), i = 1, 2, ..., c,

SLDR aims to find a linear transformation z = WTx, wherein W ∈
R

D×d, such that the conditional probability densities after dimension

reduction, p(z|y = i), i = 1, 2, ..., c, can be well separated from one

another.

Two key issues in SLDR are 1) estimating conditional probability densities,

p(x|y = i) and/or p(z|y = i) , and 2) defining the separability measurement

among multiple p(z|y = i), which we refer to as the discrimination power. In

addressing these two problems, different types of SLDR methods have been pro-

posed. For instance, there are parametric and nonparametric SLDR methods

regarding conditional density estimation. The former assumes that data are gen-

erated from certain probability distribution families, e.g., the homoscedastic or

heteroscedastic Gaussian distributions, while the latter is generally distribution-

free and utilizes nonparametric methods to perform density estimation. As for

the definition of discrimination power, Bayes error should be the optimal choice

whenever classification is the data analysis task. We refer to minimizing Bayes

error as the Bayes optimal criterion for SLDR. However, due to the difficulty in

calculating Bayes error, the Bayes optimal criterion is only tractable for quite

limited data distributions, e.g., the homoscedastic Gaussian distributions. For

general cases, a practical strategy is to use a proxy to approximate the Bayes

optimal criterion.

1.2.1 Parametric Methods

The most remarkable method for parametric SLDR is Fisher’s linear discrimi-

nant analysis (LDA), first proposed by Fisher [1936] for binary classification and

then extended by Rao [1948] to the multi-class scenario. It assumes that the

conditional densities, p(x|y = j), are homoscedastic Gaussian distributions, i.e.,

p(x|y = j) = N(x;μj,Σ), where μj is the j-th class mean and Σ is the common

covariance matrix. In LDA, the discrimination power is defined by the ratio of

4



1. Introduction

the between-class scatter to the within-class scatter, and the optimal projection

matrix W∗ that gives the maximized discrimination power can be obtained by

generalized eigendecomposition. One important property of LDA is that for a

c+ 1-class problem, it obtains a c dimensional subspace which is asymptotically

Bayes optimal, i.e., asymptotically, the subspace has the minimum Bayes error

among all c dimensional subspaces and also the same Bayes error as in the original

space. This is often referred to as the asymptotical Bayes optimality of LDA.

Another approach to parameterizing SLDA, with a less restrictive assumption

than LDA, is to allow different classes to have distinct covariance structures, i.e.,

exploiting heteroscedastic Gaussian distributions for conditional density model-

ing. To define the discrimination power between heteroscedastic Gaussian distri-

butions, Loog and Duin [2004] proposed to utilize the Chernoff bound, and the

resulting Chernoff Criterion (CC) can be regarded as a proxy of the Bayes optimal

criterion under the heteroscedastic Gaussian assumption. Information quantities,

such as Kullback-Leibler divergence, have also been used for the same purpose of

discrimination power measurement Decell and Mayekar [1977] Tao et al. [2009].

Since the heteroscedastic Gaussian assumption takes into account the discrim-

ination information provided by covariance matrices, the corresponding SLDA

methods generally outperform LDA given a sufficient number of training samples.

However, when training samples are limited, these methods can show inferior per-

formance compared to LDA due to the inaccuracy of the estimation of multiple

covariance matrices.

1.2.2 Nonparametric Methods

In order to extend SLDR to the scenario of general data distributions, i.e., de-

veloping a distribution-free SLDR method, nonparametric approaches are usu-

ally applied. Fukunaga and Mantock [1983] proposed the first nonparametric

SLDR method, termed nonparametric discriminant analysis (NDA). NDA fol-

lows the same idea as LDA by defining the discrimination power as the ratio

of the between-class scatter to the within-class scatter. However, its between-

class scatter is defined in a nonparametric way, distinct from that of LDA which

uses the means of Gaussian distributions. Further, NDA puts more weights on

5



1. Introduction

the samples near the classification boundary when calculating the between-class

scatter and is able to deal with nonlinearly separable distributions.

Kernel density estimation has also been introduced to nonparametric SLDR.

For example, Lee and Landgrebe [1993] proposed to use the kernel method for

conditional density estimation and to define the discrimination power, similar

to NDA, by considering the decision boundary of a nonparametric classifier.

Torkkola [2003] also utilized the kernel method to estimate the conditional densi-

ties of different classes, and then introduced quadratic mutual information based

on Renyi’s entropy to measure the discrimination power among classes.

1.2.3 Proxies of the Bayes Optimal Criterion

Although the Bayes optimal criterion is theoretically the best choice for SLDR,

the calculation of Bayes error is generally intractable, since it requires a complex

integral over the entire data space. Therefore, a tractable strategy for SLDR

is to use a proxy criterion to approximate the Bayes optimal criterion. Even

in the case of LDA, Fisher’s criterion is a proxy criterion, which can be proved

to be equivalent to the Bayes optimal criterion under the homoscedastic Gaus-

sian assumption. For general data distributions, minimizing an upper bound of

Bayes error is a common choice as a proxy of the Bayes optimal criterion. For

example, Loog and Duin [2004] used the Chernoff bound and proposed the Cher-

noff Criterion (CC) for SLDR, while Saon and Padmanabhan [2001] proposed a

proxy criterion which minimizes a generalized Bhattacharyya Bound. Both crite-

ria show promising performance under the heteroscedastic Gaussian assumption

of data distributions. Another proxy criterion is the maximizing mutual infor-

mation (MMI), proposed by Torkkola [2003], which is based on the fact that

the conditional entropy provides an upper bound of Bayes error and minimizing

conditional entropy is equivalent to maximizing mutual information. MMI fur-

ther integrates the kernel method for conditional density estimation and shows

state-of-the-art performance for nonparametric SLDR.
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1. Introduction

1.3 Contributions of This Thesis

This thesis explores SLDR from two aspects: theoretical analyses and algorith-

mic extensions. In the first part of this thesis, we present theoretical analyses of

LDA, one of the most representative methods for SLDR. Specifically, we prove

an asymptotic generalization bound of LDA, and based on this result we pro-

pose a new regularization method for LDA. In the second part of this thesis, we

present two new methods for parametric and nonparametric SLDR, respectively.

The parametric method is based on the criterion of maximizing the minimum

pairwise distance in the dimension reduced space, which we refer to as max-min

distance analysis (MMDA). MMDA solves the “class separation” problem suffered

by existing parametric SLDR methods, including LDA and its many extensions.

The nonparametric method utilizes minimizing the nearest neighbor classification

error (MNNE) as the criterion for dimension reduction. By examining the close-

ness to the Bayes optimal criterion, we show that MNNE is superior to other

criteria for nonparametric SLDR, e.g., maximizing mutual information (MMI)

and minimizing the Bhattacharyya bound.

1.3.1 Theoretical Analyses

LDA is one of the most representative methods for SLDR, and also a fundamental

model in pattern recognition and statistics. However, given its popularity and

wide applications, there are few results on the theoretical analysis of LDA; for

example, an exact generalization analysis of LDA has not been found in the

literature. To enrich the theory of LDA, we present an asymptotic generalization

analysis of LDA, from which we principally obtain an asymptotic generalization

bound that quantitatively describes the performance of LDA in terms of the

dimensionality and the training sample number. Motivated by the bound, we

propose a block-diagonal regularization LDA, which shows favorable performance

in dealing with problems with insufficient training samples.

7



1. Introduction

1.3.1.1 Chapter 2

This chapter is devoted to an asymptotic generalization analysis of LDA, which

aims to provide a quantitative description of the performance of LDA in terms

of the dimensionality D and the training sample number N . Classical asymp-

totic analysis shows that for a fixed D the generalization discrimination power

of LDA approaches the population discrimination power as N goes to infinity.

However, this theory is inferior in two aspects. First, it assumes a fixed D and a

sufficiently large N , which makes the theory inapplicable for practical problems

where D and N are proportionally large. Second, it does not provide quantita-

tive information on the performance of LDA, and thus we are still unaware of

how large N needs to be with respect to D for LDA to obtain an acceptable

generalization discrimination power. To address these limitations, we present an

asymptotic generalization analysis of LDA. Unlike classical results based on mul-

tivariate statistics, our analysis is carried out by using powerful tools from random

matrix theory. The asymptotic generalization bound obtained allows D and N

to be proportionally large and quantitatively describes how the dimensionality to

training sample number ratio D/N affects the performance of LDA.

1.3.1.2 Chapter 3

This chapter studies regularized LDA. It is common in practical applications, e.g.,

face recognition, that the training sample number N is insufficient with respect to

the dimensionality D. In such a case, the direct application of LDA will readily

fail due to the highly inaccurate parameter estimation. To address this problem,

regularization has been introduced to LDA. Motivated by the asymptotic general-

ization bound obtained in Chapter 2, we propose a new regularization method for

LDA, termed the block-diagonal regularization. By partitioning variables into k

groups and treating them independently, block-diagonal regularization effectively

reduces the dimensionality to training sample number ratio and thus improves

the generalization ability of LDA. We present a theoretical justification of the

block-diagonally regularized LDA by investigating its approximation and sample

errors. Empirically, we evaluate the block-diagonally regularized LDA by face

recognition experiments, and compare it with other types of regularized LDA,
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1. Introduction

e.g., with the Tikhonov regularization and the banded regularization.

1.3.2 Algorithmic Extensions

In algorithmic extensions, we treat parametric and nonparametric SLDR sepa-

rately, because the two subcategories have different application scenarios. Gen-

erally, parametric SLDR has a lower model complexity and requires relatively

fewer training samples, and thus is favorable for high-dimensional applications,

e.g., face recognition. In contrast, nonparametric SLDR has a higher model com-

plexity and requires more training samples, which is more favorable for moderate

dimensional problems. We propose two new methods for parametric and nonpara-

metric SLDR, respectively. We show that they perform competitively compared

to the state-of-the-art methods.

1.3.2.1 Chapter 4

This chapter proposes a new method for parametric SLDR, termed max-min

distance analysis (MMDA). A major problem with existing parametric SLDR

methods, including LDA and its many extensions, is that when the dimensional-

ity of the learned subspace is low close class pairs tend to merge. This is referred

to as the “class separation” problem in the literature, and it has received consid-

erab attention in recent years. MMDA is proposed to solve the class separation

problem. It optimizes the projection matrix by maximizing the minimum pair-

wise distance among all class pairs in the dimension reduced space. Thus, it duly

considers the separation of all classes. Unfortunately, MMDA is hard optimize

directly due to the non-smoothness of the objective function and the orthonormal

constraints. Therefore, we derive an approximate algorithm for MMDA by using

the sequential convex relaxation technique. Empirical evaluations, on both syn-

thetic data experiments and face recognition, show the competitive performance

of MMDA compared to the state-of-the-art parametric SLDR methods.

1.3.2.2 Chapter 5

This chapter proposes a new method for nonparametric SLDR, which optimizes

the projection matrix by minimizing the asymptotic nearest neighbor classifi-

9



1. Introduction

cation error (MNNE). Previous study shows that asymptotic nearest neighbor

classification error upper bounds Bayes error by a factor of at most 2. Therefore,

MNNE can be regarded as a proxy of the Bayes optimal criterion for SLDR.

In the literature, maximizing mutual information (MMI) and minimizing the

Bhattacharyya bound have also been utilized as proxy criteria for SLDR. One

of our contributions is that we prove MNNE is superior to these two criteria in

terms of the closeness to the Bayes optimal criterion. We derive an algorithm for

MNNE, based on kernel density estimation and a gradient descent method on the

Grassmann manifold. Empirical evaluations on real datasets show the promising

performance of MNNE compared to the state-of-the-art nonparametric SLDR

methods.

1.4 Notations

Throughout this thesis, we will use the following notations. Lower case letter a

denotes a vector. Bold upper case letter A denotes a matrix. R
D denotes a D-

dimensional vector space. RD1×D2 denotes the set of all D1 by D2 matrices. Aii

or {A}ii denotes the i-th diagonal entry of a symmetric matrix A. Ai denotes the

i-th column of A. A1:c denotes the matrix composed by the first c columns of A.

S
D−1 denotes the D-dimensional unit sphere located on the original point. SD×D

+

and S
D×D
++ denotes the set of all D by D positive semidefinite and positive definite

matrices, respectively. A � B denotes B−A is positive semidefinite. diag(A,B)

denotes a block-diagonal matrix composed by A and B. ‖a‖ denotes the �2 norm

of a. ‖A‖ denotes the operator norm, i.e., the largest singular value, of A. λi(A)

denotes the i-th eigenvalue of A, sorted in a descent order. Λ(A) denotes the

diagonal matrix composed of the eigenvalues of A, with the eigenvalues sorted in

a descent order. det(A) denotes the determinant of A. R(A) denotes the range

or the column space of A.
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Theoretical Analyses
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Chapter 2

Asymptotic Generalization

Analysis of Linear Discriminant

Analysis

2.1 Introduction

Fisher’s linear discriminant analysis (LDA) Fisher [1936] Rao [1948] is among

the most representative SLDR methods. Given c + 1 classes in space R
D, rep-

resented by homoscedastic Gaussian distributions, LDA selects a c-dimensional

subspace by simultaneously minimizing the within-class scatter and maximizing

the between-class scatter. Since the within- and between-class scatters are mea-

sured by the sample covariance Σ̂ and sample means μ̂i, it can be shown by

multivariate statistics Anderson [1984] that the c-dimensional subspace selected

by LDA is asymptotically Bayes optimal, under conditions that the dimensional-

ity D is fixed and the training sample number N goes to infinity.

Because of its asymptotic Bayes optimality, we can trust the discriminative

subspace selected by LDA provided N is sufficiently large compared to D. How-

ever, the requirement of “sufficiently large” N is still unclear, and asymptotic

Bayes optimality does not provide quantitative justification for the performance

of LDA. Besides, practical problems often encounter the situation that D and N

are proportionally large, or have the same order of magnitudes, e.g., face recogni-
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2. Asymptotic Generalization Analysis

tion and object categorization. In this case, the asymptotic results from classical

multivariate statistics Anderson [1984] become invalid. For example, the sample

covariance may significantly deviate from its population counterpart when both

D and N are large Yin et al. [1988] EL Karoui [2008]. As a result, the asymptotic

Bayes optimality of LDA, which is built upon classical multivariate statistics, is

no longer applicable.

Given aforementioned limitations of the asymptotic Bayes optimality, but the

practical importance of LDA, there is a need of establishing new theoretical re-

sults to justify the performance of this SLDR method. We fulfill this by proving

an asymptotic generalization bound of LDA, in which we allow both D and N

increase and the ratio D/N −→ γ ∈ (0, 1). First, the new result, i.e., the asymp-

totic generalization bound, is applicable to the situations where D and N are

proportionally large. Second, it provides quantitative justification of the perfor-

mance of LDA, by showing how the dimensionality to training sample number

ratio D/N affects the generalization discrimination power preserved by empirical

learning over training samples. Informally speaking, given the population dis-

crimination power λ, the generalization discrimination power of LDA should be

larger than

cos2(arccos(
√

λ/(λ+ γ)) + arccos(
√
1− γ))λ

under mild conditions. Compared with the asymptotic Bayes optimality, such

result is considerably informative; for example, if γ = 0.2 and λ ≥ 10, we know

that LDA would preserve about 70% of the discrimination power.

The technical tools used in developing the new theory are from Randommatrix

theory (RMT) Wigner [1955] Wigner [1958] Marčenko and Pastur [1967] Bai and

Silverstein [1998] Edelman and Rao [2005]. The main goal of RMT is to provide

understanding of the diverse properties, most notably, statistics of eigenvalues,

of matrices with entries drawn randomly from various probability distributions.

RMT was originally motivated by applications in nuclear physics in 1950’s, and

after that it was intensively studied in mathematics and statistics. It also found

successful applications in engineering fields, e.g., wireless communications Tulino

and Verdú [2004], recently. In this chapter, we make use of two important results

from RMT. The first result is the Marčenko-Pastur Law Marčenko and Pastur
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2. Asymptotic Generalization Analysis

[1967], which states that the empirical spectral distribution of the eigenvalues

of the sample covariance converges almost surely to a deterministic distribution

Fγ(λ) as D/N −→ γ ∈ [0,∞). The second result is on the almost sure conver-

gence of the extreme singular values of a large Gaussian random matrix. Both

results play fundamental roles in our proof of the asymptotic generalization bound

of LDA.

The rest of this chapter is organized as follows. Section 2.2 introduces LDA

and briefly reviews its asymptotic Bayes optimality under the condition of fixed

dimensionality. Section 2.3 presents our main result, an asymptotic generaliza-

tion bound of LDA. Section 2.4 shows empirical evaluations of the asymptotic

generalization bound on both synthetic and real datasets. Technical proofs are

arranged as appendixes in Section 2.6.

2.2 LDA and its Asymptotic Optimality with

Fixed Dimensionality

The motivation of LDA is as follows. Given c + 1 classes in a high-dimensional

space R
D, it seeks a linear projection z = WTx, x ∈ R

D and W ∈ R
D×d, such

that the discrimination power among the classes is maximally preserved after the

projection. Suppose the c+1 classes are represented by homoscedastic Gaussian

distributions, Ni(μi,Σ), i = 1, 2, ..., c+ 1, with the class means μi ∈ R
D and the

common covariance matrix Σ ∈ S
D×D
++ , and they have equal prior probabilities1

1
c+1

. According to Fisher’s criterion, the discrimination power in the dimension

reduced space is given by

Δ(Σ,S|W) = Tr
(
(WTΣW)−1WTSW

)
, (2.1)

where the matrix

S =
1

c+ 1

c+1∑
i=1

(μi − μ)(μi − μ)T , with μ =
1

c+ 1

c+1∑
i=1

μi, (2.2)

1This does not substantially affect the results obtained later and is only assumed for the
convenience of expression.
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2. Asymptotic Generalization Analysis

is called the between-class scatter matrix, which measures the separation between

classes’ centers. Therefore, the optimal projection matrix W∗ of LDA can be

obtained by the maximization problem,

W∗ = arg max
W∈RD×d

Δ(Σ,S|W). (2.3)

Observing that S defined in (2.2) has only rank c, thus it does not affect the

attaining of the optimal value of the maximization problem (2.3) to restrict W ∈
R

D×c. In other words, a c-dimensional subspace is sufficient to preserve all the

discrimination power as defined in (2.1). Moreover, by basic property of trace

operator, (2.1) is invariant to the transformation W ← WA, with A ∈ R
c×c

being any nonsingular matrix. Thus, we can further require WTΣW = Ic, which

also does not affect (2.3). As a result, we can rewrite (2.3) as below

W∗ = arg max
WTΣW=Ic

Δ(Σ,S|W). (2.4)

Usually, (2.4) is solved by the generalized eigendecomposition

Sζi = λiΣζi, (2.5)

and W∗ is composed of the first c eigenvectors, ζi, i = 1, 2, ..., c. However,

for the convenience of the theoretical analysis, we utilize the simultaneous di-

agonalization Fukunaga [1990], an equivalent characterization of the generalized

eigendecomposition, to describe W∗. This is given in the proposition below.

Proposition 2.1. There exists a nonsingular matrix X∗ = [W∗ V∗], with W∗ ∈
R

D×c and V∗ ∈ R
D×(D−c), that simultaneously diagonalizes Σ and S, i.e.,

X∗TΣX∗ = I and X∗TSX∗ = Λ, (2.6)

where Λ is a diagonal matrix, with only the first c diagonal entries being nonzero.

Further, X∗ can be explicitly expressed as

X∗ = Σ− 1
2U∗, (2.7)
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2. Asymptotic Generalization Analysis

where U∗ is from the eigendecomposition Σ− 1
2SΣ− 1

2 = U∗ΛU∗T ; and,

Δ(Σ,S|W∗) =
c∑

i=1

λi, (2.8)

where λi, i = 1, 2, ..., c, is the first c diagonal entries of Λ.

In fact, the nonzero diagonal entries λi, i = 1, 2, ..., c, of Λ are just the nonzero

eigenvalues of (2.5), and W∗ and V∗ are the two invariant subspaces associated to

the nonzero and zero eigenvalues, respectively. In addition, the λi’s measure the

discrimination power in each of the c directions W∗
i , i = 1, 2, ..., c. Since the rest

diagonal entries of Λ are all zero, (2.8) explains why a c-dimensional subspace is

sufficient to preserve all discrimination power among the c+ 1 classes.

All above discussions are based on known population parameters, i.e., Σ and

S. In practice, we usually do not have access to these parameters but have a set of

training samples. Suppose there are n samples xi
j for each class, i = 1, 2, ..., c+1,

j = 1, 2, ..., n, and in total N = (c+1)n training samples for all classes. We have

the following empirical estimates for Σ and S,

Σ̂ =
1

N

c+1∑
i=1

n∑
j=1

(xi
j − μ̂i)(x

i
j − μ̂i)

T , (2.9)

Ŝ =
1

c+ 1

c+1∑
i=1

(μ̂i − μ̂)(μ̂i − μ̂)T , (2.10)

where

μ̂i =
1

n

n∑
j=1

xi
j and μ̂ =

1

c+ 1

c+1∑
i=1

μ̂i. (2.11)

Therefore, the empirical estimate of W∗ can be obtained by

Ŵ∗ = arg max
WT ̂ΣW=Ic

Δ(Σ̂, Ŝ|W). (2.12)

The key question regarding the performance of the empirical learning of LDA

is how much of the population discrimination power Δ(Σ,S|W∗) is preserved

in the generalization discrimination power Δ(Σ,S|Ŵ∗)? By using results from

classical multivariate statistics Anderson [1984], we can answer this question by
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the following proposition.

Proposition 2.2. Fixing dimensionality D, as the training sample number N −→
∞, it holds

Δ(Σ,S|Ŵ∗)−Δ(Σ,S|W∗) a.s.−→ 0. (2.13)

Indeed, it can be shown that Proposition 2.2 is a corollary of the convergence of

empirical estimates Σ̂ and Ŝ. As N → ∞, by the strong law of large numbers

(SLLN), we have Σ̂
a.s.−→ Σ and Ŝ

a.s.−→ S. Thus, it holds Ŵ∗ a.s.−→ W∗, which

consequently gives rise to (2.13).

The almost sure convergence in Proposition 2.2 provides a theoretical guar-

antee, at least in the case of a large training sample number, to the performance

of LDA. However, such classical result is limited by remarkable weaknesses:

1. The almost sure convergence is obtained based on the condition of a fixed

dimensionality D, and it is not applicable for practical problems where the

dimensionality D is proportionally large to the training sample number N .

2. It does not provide quantitative results on the performance of LDA. Espe-

cially, given the dimensionality D and the training sample number N , it is

still unknown how the generalization discrimination power Δ(Σ,S|Ŵ∗) is

compared to the population discrimination power Δ(Σ,S|W∗).

2.3 Asymptotic Generalization Analysis

In this section, we propose to give an asymptotic generalization analysis of LDA in

the setting where the dimensionalityD increases proportionably with the training

sample size N and the ratio D/N (D < N) has a positive limit γ ∈ (0, 1). It will

be clear at the end of this section our new result overcomes all the aforementioned

weaknesses of the classical result on LDA.

The analysis is completed by three steps. First, we express the generalization

discrimination power Δ(Σ,S|Ŵ∗) in a new formula with two auxiliary estimates

Σ̂0 and Ŝ0 which are independent of population parameters, e.g., the covariance

matrix, but only depend on D and N . Next, we present asymptotic results on the

eigensystems (eigenvalues and eigenvectors) of Σ̂0 and Ŝ0. With above results,
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we finally obtain an asymptotic lower bound of the generalization discrimination

power of LDA.

2.3.1 Generalization Discrimination Power

Recall the generalization discrimination power

Δ(Σ,S|Ŵ∗) = Tr((Ŵ∗TΣŴ∗)−1Ŵ∗TSŴ∗), (2.14)

where Ŵ∗ is given by

Ŵ∗ = arg max
WT ̂ΣW=Ic

Δ(Σ̂, Ŝ|W). (2.15)

At first sight, it may be the case that Δ(Σ,S|Ŵ∗) is affected by population

parameters Σ and S. For example, it is reasonable to think that a problem with a

simple covariance matrix, say I, is easy for empirical learning by LDA, and thus

could lead to better generalization ability, i.e., larger Δ(Σ,S|Ŵ∗). However,

in the following, we show that Δ(Σ,S|Ŵ∗) is independent of the covariance

structure and only depends on dimensionality D and training sample size N ,

given fixed population discrimination power Δ(Σ,S|W∗).

First, we introduce two auxiliary estimates

Σ̂0 = X∗T Σ̂X∗ and Ŝ0 = X∗T ŜX∗. (2.16)

where X∗ is from Proposition 2.1, i.e., it simultaneously diagonalizes Σ and S,

X∗TΣX∗ = I and X∗TSX∗ = Λ. (2.17)

From (2.16) and (2.17), we know that Σ̂0 and Ŝ0 are the empirical estimates of I

and Λ, respectively. This is summarized in Proposition 2.3

Proposition 2.3. Suppose the c + 1 classes have the common covariance ma-

trix I, and the class means μi are in particular locations in R
D such that the

between-class scatter matrix via (2.2) is given by Λ. Then, Σ̂0 and Ŝ0 are the

corresponding estimates of I and Λ, respectively.
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Then, the following Lemma 2.1 shows that Δ(Σ,S|Ŵ∗) can be expressed by

using the eigenvalues and eigenvectors of Σ̂0 and Ŝ0.

Lemma 2.1. Suppose the eigendecompositions Σ̂0 = UΛ(Σ̂0)U
T and Ŝ0 =

VΛ(Ŝ0)V
T , then

Δ(Σ,S|Ŵ∗) =
c∑

i=1

δiλi, (2.18)

where

δi = ‖RT (Λ−1(Σ̂0)U
TV1:c)U

Tei‖2. (2.19)

Although Lemma 2.1 does not show Δ(Σ,S|Ŵ∗) explicitly, it provides several

insight to the generalization ability of LDA:

1. Given the population discrimination power Δ(Σ,S|W∗), i.e., λi’s, the gen-

eralization discrimination power Δ(Σ,S|Ŵ∗) is independent of the covari-

ance Σ. (3.34) and (3.35) show that Δ(Σ,S|Ŵ∗) is exactly determined

by Σ̂0 and Ŝ0, which are the empirical estimates of I and Λ, respectively,

and are independent of Σ. This observation is important since it helps

us get rid of the covariance structures, especially the conditional number

λmax(Σ)/λmin(Σ), which is an important regularity condition for learning

the mixture of Gaussians Dasgupta [1999].

2. The eigenvalues and eigenvectors of Σ̂0 and Ŝ0 play the key roles in eval-

uating the generalization discrimination power Δ(Σ,S|Ŵ∗). In particular,

the eigenvalues of Σ̂0 is especially important due to the inversion operation

Λ−1(Σ̂0) in (3.35). The eigenvectors of Σ̂0 are rather uninformative, as we

will see later U is a uniformly distributed random variable on the set of all

orthonormal matrices. Moreover, regarding Ŝ0, the first c eigenvectors V1:c

also affect the generalization discrimination power Δ(Σ,S|Ŵ∗).

3. Like the the population discrimination power Δ(Σ,S|W∗) =
∑c

i=1 λi, the

generalization discrimination power Δ(Σ,S|Ŵ∗) is also expressed as a sum

of c components, each corresponding to its counterpart in Δ(Σ,S|W∗) but

multiplied by a factor δi.
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2.3.2 Properties of the Auxiliary Estimates

We have known from Section 2.3.1 that the generalization discrimination power

Δ(Σ,S|Ŵ∗) is exactly determined by eigenvalues and eigenvectors of the auxiliary

estimates Σ̂0 and Ŝ0. In this section, we present some useful lemmas on properties

of these eigenvalues and eigenvectors for the asymptotic generalization bound to

be proved later.

2.3.2.1 Asymptotic Properties of Σ̂0

First, we have the following lemma on the eigenvalues and eigenvectors of Σ̂0.

Lemma 2.2. Given the eigendecomposition Σ̂0 = UΛ(Σ̂0)U
T , it holds

1. U and Λ(Σ̂0) are independent random variables;

2. U follows the Haar distribution, i.e., it is uniformly distributed on the set

of all orthonormal matrices in R
D×D;

3. denoting by FN(λ) the empirical spectral distribution of the eigenvalues of

Σ̂0, i.e.,

FN(λ) =
1

D

D∑
i=1

1{λi(Σ̂0) ≤ λ}, λ ≥ 0, (2.20)

then, as D/N −→ γ ∈ (0, 1),

FN(λ)
a.s.−→ Fγ(λ), (2.21)

where the limit distribution Fγ(λ) has the density

dFγ(λ) =
1

2πγ

√
(λ+ − λ)(λ− λ−)

λ
, (2.22)

with

λ+ = (1 +
√
γ)2 and λ− = (1−√

γ)2. (2.23)

The first and second statements in Lemma 2.2 can be understood by the

fact that Σ̂0 is the empirical estimate of I and its probability density function is
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invariant to any orthogonal transformation, while the last statement is a corollary

of the well-known Marčenko-Pastur law, which says that the empirical spectral

distribution of the matrix A = 1
N
GGT , wherein G ∈ R

D×N has i.i.d entries

sampled from N(0, 1), converges almost surely to the deterministic distribution

Fγ(λ) as D/N −→ γ ∈ (0, 1).

Further, we have the following two lemmas on Λ−1(Σ̂0) and Λ−2(Σ̂0).

Lemma 2.3. Suppose ξ is a unit-length random vector uniformly distributed on

the unit sphere S
D−1 and it is independent of Σ̂0, then, as D/N −→ γ ∈ (0, 1),

it holds

ξTΛ−1(Σ̂0)ξ
a.s.−→

∫
λ−1dFγ(λ) =

1

1− γ
. (2.24)

Lemma 2.4. Suppose ξ is a unit-length random vector uniformly distributed on

the unit sphere S
D−1 and it is independent of Σ̂0, then, as D/N −→ γ ∈ (0, 1),

it holds

ξTΛ−2(Σ̂0)ξ
a.s.−→

∫
λ−2dFγ(λ) =

1

(1− γ)3
. (2.25)

These two lemmas say that, in the limit, the projection of Λ−(Σ̂0) and Λ−2(Σ̂0)

onto a random direction is almost surely deterministic.

2.3.2.2 Asymptotic Properties of Ŝ0

We have the following lemma on the first c eigenvectors of Ŝ0.

Lemma 2.5. Given Λ and the eigendecomposition Ŝ0 = VΛ(Ŝ0)V
T , then, as

D/N −→ γ ∈ (0, 1), it holds

lim
D/N−→γ

‖VT
1:cei‖2 ≥

λi

λi + γ
, a.s., i = 1, 2, ..., c, (2.26)

where λi is the i-th diagonal entry of Λ.

Note that the first c eigenvectors of Λ are I1:c = [e1, ..., ec]. Thus, from the

relationship between Ŝ0 and Λ, V1:c is actually an estimate of I1:c. Lemma 2.5

describes the performance of this estimation in terms of λi and γ. Specifically, if
λi

λi+γ
is close to 1, then ei is mostly included in V1:c.
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If we treat Ŝ0 as obtained by a perturbation on Λ, matrix perturbation theory

Stewart and Sun [1990] can be directly applied to examine the performance of

V1:c as an estimate of I1:c. However, we found that the the corresponding lower

bound would be λi−1
λi

, which is much looser than (2.26). The superiority of our

bound comes from random matrix theory, in particular, the result on the largest

singular value of a random Gaussian matrix Edelman and Rao [2005].

2.3.3 Asymptotic Generalization Bound

In this section, we prove our main result, which is an asymptotic lower bound of

the generalization discrimination power Δ(Σ,S|Ŵ∗). Recall the result in Lemma

2.1, i.e., Δ(Σ,S|Ŵ∗) =
∑c

i=1 δiλi. We first present a lower bound of δi.

Lemma 2.6. Given the eigenvalues Λ(Σ̂0) of Σ̂0 and the first c eigenvectors V1:c

of Ŝ0, it holds

δi ≥ max2{cos(θ), 0}, (2.27)

where

θ = arccos(‖VT
1:cei‖) + arccos

(
ξTΛ−1(Σ̂0)ξ

/√
ξTΛ−2(Σ̂0)ξ

)
, (2.28)

with ξ a unit-length random vector uniformly distributed on the unit sphere S
D−1.

Then by Lemma 2.3, Lemma 2.4, Lemma 2.5, and Lemma 2.6, we have the

following theorem on the generalization discrimination power Δ(Σ,S|Ŵ∗).

Theorem 2.1. Suppose the population discrimination power is given by Δ(Σ,S|W∗) =∑c
i=1 λi, and Ŵ∗ is the empirical optimal projection matrix obtained by maxΔ(Σ̂, Ŝ|W).

For the generalization discrimination power Δ(Σ,S|Ŵ∗) =
∑c

i=1 δiλi, as both

the dimensionality D and the training sample number N increase (N > D) and

D/N −→ γ ∈ (0, 1), it holds almost surely

δi ≥ ηi = max2
{
cos(arccos(

√
λi/(λi + γ)) + arccos(

√
1− γ)), 0

}
. (2.29)
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Proof. By Lemma 2.3 and Lemma 2.4, we have

lim
D/N−→γ

ξTΛ−1(Σ̂0)ξ√
ξTΛ−2(Σ̂0)ξ

=

1
1−γ

1
(1−γ)1.5

=
√
1− γ, a.s., (2.30)

and by Lemma 2.5, we have

lim
D/N−→γ

‖VT
1:cei‖ =

√
λi/(λi + γ), a.s.. (2.31)

Then the proof is completed by substituting (2.30) and (2.31) into Lemma 2.6

and recalling the fact Δ(Σ,S|Ŵ∗) =
∑c

i=1 δiλi.

From Theorem 2.1, we have the following observations:

1. Given the population discrimination power Δ(Σ,S|W∗), i.e., λi’s, the lower

bound of the generalization discrimination power Δ(Σ,S|Ŵ∗), i.e., ηi’s,

is only determined by the dimensionality to training sample number ratio

γ = D/N , which is quantitatively described by (3.23). Figure 2.1 shows the

lower bound ηi as a function of γ and λi.

2. The affection of γ = D/N to the generalization discrimination power Δ(Σ,S|Ŵ∗)

comes from two aspects, each though the term
√
λi/(λi + γ) and the term√

1− γ. Note that the first term
√
λi/(λi + γ) allows a tradeoff between

λi and γ, i.e., the affection caused by a large γ can be relatively reduced

by a large λi. This is consistent with the intuition that a problem with a

larger population discrimination power should be easier to be dealt with by

LDA. In contrast, the second term
√
1− γ is only related to γ. According to

(2.30),
√
1− γ is due to Λ(Σ̂0), i.e., the eigenvalues of the sample covari-

ance. Actually, by assuming a sufficient large λi so that
√

λi/(λi + γ) ≈ 1,

we have

ηi ≈ 1− γ, (2.32)

which shows that given the dimensionality to training sample number ratio

γ = D/N , the loss of discrimination power due to the imperfection of sample

covariance is approximately γ. To the best of our knowledge, this is the
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Figure 2.1: Asymptotic generalization bound of LDA.

first quantitative result on the influence of covariance estimation to LDA,

although it has been commonly noticed in the literature.

3. In the lower bound of the generalization discrimination power, each ηi is

individually determined by the corresponding λi. Since λi is sorted in a

decreasing order, ηi is also in a decreasing order according to (3.23). This

implies that, in the c components of the generalization discrimination power

Δ(Σ,S|Ŵ∗) =
∑c

i=1 δiλi, the last few ones may not be as useful as the first

few ones. We will come back to this point in Chapter 4 by considering how

to further reduce dimensionality from c to lower cases.
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2.4 Empirical Evaluations

In this section, we present empirical experiments on both synthetic and real

datasets to evaluate the validity of the asymptotic generalization bound ob-

tained before. We first learn Ŵ∗ by performing LDA and then compare the

lower bound of the generalization discrimination power, i.e., Δ(Σ,S|Ŵ∗) ≥∑c
i=1 ηiλi from Theorem 2.1, with the true generalization discrimination power,

i.e., Δ(Σ,S|Ŵ∗) =
∑c

i=1 δiλi from Lemma 2.1. Specifically, one can see that the

comparison is actually between ηi and δi, i = 1, 2, ..., c.

Recall that

δi = ‖RT (Λ−1(Σ̂0)U
TV1:c)U

Tei‖2, (2.33)

wherein Λ(Σ̂0) and U are the eigenvalues and the eigenvectors of Σ̂0 while V1:c

contains the first c eigenvectors of Ŝ0. As Σ̂0 and Ŝ0 are obtained by normaliz-

ing the sample estimators Σ̂ and Ŝ, respectively, with X∗ which simultaneously

diagonalizes population parameters Σ and S, it is necessary to know Σ and S

before hand. For the synthetic data case, we can specify these parameters. But

for the real data case, they are unknown. To this end, we choose real datasets

with sufficiently number of samples compared to the dimensionality, i.e., N  D,

and treat the estimates with entire dataset as the “population” parameters. In

addition, note that δi = ‖RT (Λ−1(Σ̂0)U
TV1:c)U

Tei‖2 is a random variable due to

the empirical learning by LDA. Thus, we do Monte Carlo experiments to obtain

the realizations of δi.

As for

ηi = max2
{
cos(arccos(

√
λi/(λi + γ)) + arccos(

√
1− γ)), 0

}
, (2.34)

it is a deterministic variable related to λi and γ. We vary λi and γ so as to evalu-

ate the asymptotic generalization bound in different situations. Besides, in order

to evaluate this asymptotic result, we are supposed to vary the dimensionality D

to a sufficient large case. However, by experiments, we found that D ≥ 100 is

almost sufficient for the asymptotic generalization bound to be valid.
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2.4.1 On Synthetic Datasets

The evaluation in this subsection is based on synthetic datasets. From previous

discussion, we know the covariance structure does not affect the generalization

ability of LDA, and thus we properly choose the covariance matrix to be Σ = I.

The between-class matrix is specifies as S = diag(λ1, ...,λc, 0, ..., 0), where c is

class number. Note that we can always choose the class means μi such that via

(2.2) they give the specified S. Below, we design three examples with different

setting of c and λi, i = 1, ..., c. In each example, we vary D and γ to examine how

these two parameters affect the generalization ability of LDA and the validity of

the obtained asymptotic generalization bound.

The experiment is conducted in following steps: 1) according to the given c

and λi, i = 1, ..., c, we choose class means μi, i = 1, ..., c+ 1; 2) generate in total

N = D/γ samples from the c+1 Gaussian distributions, N(μi, I), i = 1, ..., c+1,

each with N/(c + 1) samples; 3) repeat step 2) 10,000 times, and for each time

calculate δi, i = 1, ..., c, by (2.33); 4) calculate ηi, i = 1, ..., c, by (2.34); 5)

compare δi and ηi by plotting them on one figure.
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Example 1: c = 2, λ1 = 1, D = {10, 50, 100, 200}.
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Figure 2.2: Evaluation of the asymptotic generalization bound on Example 1.
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Example 2: c = 2, λ1 = 10, D = {10, 50, 100, 200}.
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Figure 2.3: Evaluation of the asymptotic generalization bound on Example 2.
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Example 3: c = 5, λ1 = 10, λ2 = 2, λ3 = 1, λ4 = 0.5, D = 100.
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Figure 2.4: Evaluation of the asymptotic generalization bound on Example 3.
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We have the following remarks on the evaluation results shown by Figures 2.2

to 2.4:

1. Although the asymptotic generalization bound holds theoretically in the limit

case, i.e., D = ∞, in all the three examples above D ≥ 100 is enough

for it to be valid. Recall that our asymptotic result is obtained based on

asymptotic results from random matrix theory, e.g., the Marčenko-Pastur

Law and the convergence of extreme singular values of a random matrix,

which themselves hold satisfyingly for a moderate dimensionality.

2. The plots show that the bound is considerably tight: the shape of the ηi

curve fits the scatters of δi well. This is due to the deterministic character

of the bound, i.e., when D is sufficient large the bound holds almost surely

rather than in a probabilistic sense.
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2.4.2 On Real Datasets

This subsection presents empirical evaluations of the asymptotic generalization

bound on three real datasets from the UCI machine learning repository Blake

and Merz [1998]. 1) The image segmentation (ImageSeg) dataset, which contains

samples randomly drawn from a database of seven outdoor images. Nineteen

continuous valued features are extracted for each 3 × 3 region, and thus each

sample is a vector from R
19. The class label is obtained by manual segmentation,

including brick-face, sky, foliage, cement, window, path, and grass. There are

2,310 samples and 7 classes in total. 2) The Landsat dataset, which has been

used in the Statlog project, consists of the multi-spectral values of pixels in 3× 3

neighborhoods in a satellite image. It constants in total 6,435 samples from

6 classes, including red soil, cotton crop, grey soil, damp grey soil, soil with

vegetation stubble, and very damp grey soil, and each sample is a vector in

R
36. 3) The optical recognition of handwritten digits (Optdigits) dataset, which

contains 5,620 samples from R
60 for optical recognition of 10 handwritten digits

from 0 to 9.

On each dataset, we model the classes by homoscedastic Gaussian distri-

butions, where the classes means μi, between-class scatter matrix S, and the

common covariance matrix Σ are estimated by using the entire dataset. Note

that for all the three datasets, it holds N  D, and thus we can suppose these

estimations to be reliable. The procedure of experiments for the evaluation of

the asymptotic generalization bound is similar to the synthetic data case: 1) we

randomly select a certain number of training samples according to a given γ;

2)performance LDA and calculate δi by (2.33); 3) repeat step 1) and 2) 10,000

times; 4) calculate ηi by (2.34); 5) compare δi and ηi by plotting them on one

figure. The results of evaluation on the three datasets are shown in Figure 2.5,

2.6 and 2.7, respectively.

On all the three datasets, our asymptotic generalization bound are valid, i.e.,

the scatters of δi is lower bounded by the curve of ηi. However, the tightness of

the bound is not as good as in the synthetic data case. This is because the real

data are located on a finite support of the data space, which cannot provide the

worst-case simulation results as in the synthetic data case.
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Figure 2.5: Evaluation of the asymptotic generalization bound on the ImageSeg

dataset
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Figure 2.6: Evaluation of the asymptotic generalization bound on the ImageSeg

dataset
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Figure 2.7: Evaluation of the asymptotic generalization bound on the OptDigits

dataset
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2.5 Discussions

We have proved the asymptotic generalization bound of Fisher’s LDA, in the

setting where both dimensionality D and training sample size N increase and

D/N −→ γ ∈ (0, 1). In this section, we discuss possible extensions of this result

in different settings.

In practice, it is possible that the class number c + 1 increases along with D

and N . The following corollary shows that the same generalization ability holds

for LDA as long as the increasing speed of c+ 1 is lower than those of D and N .

Corollary 2.1. Suppose the population discrimination power is given by Δ(Σ,S|W∗) =∑c
i=1 λi, and Ŵ∗ is the empirical optimal projection matrix obtained by maxΔ(Σ̂, Ŝ|W).

For the generalization discrimination power Δ(Σ,S|Ŵ∗) =
∑c

i=1 δiλi, as both

the dimensionality D and the training sample number N increase (N > D) and

D/N −→ γ ∈ (0, 1), and the class number c + 1 also increases but satisfying

(c+ 1)/D −→ 0, it holds almost surely

δi ≥ ηi = max2
{
cos(arccos(

√
λi/(λi + γ)) + arccos(

√
1− γ)), 0

}
. (2.35)

It can be seen that Corollary 2.1 extends the result in Theorem 2.1, where

the class number c+1 is assumed to be a fixed constant. Note that the condition

(c + 1)/D −→ 0 is essential for the validity of (2.35). It means that though the

class number c + 1 can be considerably large but it should not be comparable

to the dimensionality D. This is realistic for practical problems, where data

dimensionality can be tens of thousands while the class number has a lower order

of magnitude.

Besides, the condition D/N −→ γ ∈ (0, 1) in Theorem 2.1 requires that the

growing speeds of D and N are linearly comparable, i.e., D = γN + o(N) or

D = O(N). It will be interesting to consider the case where D and N may not

increase in sync. The following two corollaries show the results for two settings

where D grows essentially slower and faster than N , respectively.

Corollary 2.2. Suppose the population discrimination power is given by Δ(Σ,S|W∗) =∑c
i=1 λi, and Ŵ∗ is the empirical optimal projection matrix obtained by maxΔ(Σ̂, Ŝ|W).

For the generalization discrimination power Δ(Σ,S|Ŵ∗) =
∑c

i=1 δiλi, as both
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the dimensionality D and the training sample number N increase and satisfying

D = o(N), it holds almost surely

δi −→ 1. (2.36)

Corollary 2.3. Suppose the population discrimination power is given by Δ(Σ,S|W∗) =∑c
i=1 λi, and Ŵ∗ is the empirical optimal projection matrix obtained by maxΔ(Σ̂, Ŝ|W).

For the generalization discrimination power Δ(Σ,S|Ŵ∗) =
∑c

i=1 δiλi, as both

the dimensionality D and the training sample number N increase and satisfying

N = o(D), it only leads to trivial lower bound

δi ≥ 0. (2.37)

We have the following observations from Corollaries 2.2 and 2.3. First, when

D grows slower than N , i.e., D = o(N), we have that δi −→ 1. In this case, there

is no loss of discrimination power asymptotically, i.e., LDA is asymptotically

Bayes optimal as long as D = o(N). This substantially generalizes the classical

result on LDA’s asymptotic Bayes optimality, which requires D being a fixed

constant. Second, when D grows faster than N , i.e., N = o(D), we only obtain a

trivial lower bound δi ≥ 0. Such result is quite informative and one may wonder

if it is possible to give more informative results on LDA’ generalization ability

when N = o(D). Actually, Bickel and Levina [2004] gives a negative answer to

this question. It has been proved that for a binary-class classification problem

with equal prior probabilities, the 1-dimensional subsapce learned by LDA has

classification error rate 0.5, i.e., like random guessing, if N = o(D). Thus, LDA

has 0 generalization ability in this situation, which implies the lower bound (2.3),

though trivial, is sharp in the sense that it can be attained.
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2.6 Appendixes

2.6.1 Proof of Lemma 2.1

Proof. The proof is divided into two steps.

i) Since X∗ is nonsingular in Proposition 2.1, we can express Ŵ∗ as

Ŵ∗ = X∗Q, (2.38)

for some Q ∈ R
D×c. Then,

Δ(Σ,S|Ŵ∗) = Tr((Ŵ∗TΣŴ∗)−1Ŵ∗TSŴ∗)

= Tr((QTX∗TΣX∗Q)−1QTX∗TSX∗Q)

= Tr((QTQ)−1QTX∗TΛQ)

= Tr((QTQ)−1QT
1Λ1Q1)

= Tr(Q1(Q
TQ)−1QT

1Λ1)

=
c∑

i=1

δiλi,

(2.39)

where Q1 contains the first c rows of Q and

δi = {Q1(Q
TQ)−1QT

1 }ii. (2.40)

ii) Similar to Proposition 2.1, we can augment Ŵ∗ with some V̂∗ ∈ R
D×c to

simultaneously diagonalize Σ̂ and Ŝ, and thus have

Ŵ∗T Σ̂Ŵ∗ = Ic and Ŵ∗T ŜŴ∗ = Λ̂1, (2.41)

where Λ̂1 is some c×c diagonal matrix. Then, substituting (2.38) into (2.41) and

recalling Σ̂0 = X∗T Σ̂X∗ and Ŝ0 = X∗T ŜX∗, we get

QT Σ̂0Q = Ic and QT Ŝ0Q = Λ̂1. (2.42)

Given the eigendecomposition Σ̂0 = UΛ(Σ̂0)U
T , we have from the first equa-

tion in (2.42) that there must exist some orthogonal matrixO ∈ R
D×c, OTO = Ic,
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such that

Q = UΛ− 1
2 (Σ̂0)O. (2.43)

Further, given the eigendecomposition Ŝ0 = VTΛ(Ŝ0)V, we get from the second

equation in (2.42) that

OTΛ− 1
2 (Σ̂0)U

TVΛ(Ŝ0)V
TUΛ− 1

2 (Σ̂0)O = Λ̂1. (2.44)

In addition, since Ŝ0 has rank c, we can rewrite (2.44) as

OTΛ− 1
2 (Σ̂0)U

TV1:cΛ
1
2
1 (Ŝ0)Λ

1
2
1 (Ŝ0)V

T
1:cUΛ− 1

2 (Σ̂0)O = Λ̂1, (2.45)

where Λ1(Σ̂0) is the first c × c diagonal block of Λ(Σ̂0). (2.45) implies the

columns of O must be the left singular vectors of Λ− 1
2 (Σ̂0)U

TV1:cΛ
1
2
1 (Ŝ0). Thus,

O spans the range space of Λ− 1
2 (Σ̂0)U

TV1:cΛ
1
2
1 (Ŝ0) and also the range space

of Λ− 1
2 (Σ̂0)U

TV1:c
1. Then, there must exist some matrix A ∈ R

c×c such that

Λ− 1
2 (Σ̂0)U

TV1:c = OA, and thus

O = Λ− 1
2 (Σ̂0)U

TV1:cA
−1, (2.46)

where the nonsingularity of A is implied by the nonsingularity of Λ− 1
2 (Σ̂0)U

T .

By (2.43) and (2.46), we have

Q = UΛ−1(Σ̂0)U
TV1:cA, (2.47)

and

Q1 = IT1:cUΛ−1(Σ̂0)U
TV1:cA. (2.48)

Therefore,

{Q1(Q
TQ)−1Q1}ii =

eTi UΛ−1(Σ̂0)U
TV1:c(V

T
1:cUΛ−2(Σ̂0)U

TV1:c)
−1VT

1:cUΛ−1(Σ̂0)U
Tei

(2.49)

1 It actually requires Λ1(Ŝ0) to be invertible, i.e., the first c eigenvalues of Ŝ0 are all nonzero.

Note that with probability one Ŝ0 and S has the same rank, and thus this requirement is always
satisfied as long as S has rank c.

38



2. Asymptotic Generalization Analysis

Letting R span the range space R = R(Λ−1(Σ̂0)U
TV1:c), then

RRT = Λ−1(Σ̂0)U
TV1:c(V

T
1:cUΛ−2(Σ̂0)U

TV1:c)
−1VT

1:cUΛ−1(Σ̂0), (2.50)

which together with (2.49) gives

{Q1(Q
T
� Q�)

−1Q1}ii = eTi URRTUTei = ‖RTUTei‖2. (2.51)

This completes the proof.

2.6.2 Proof of Lemma 2.2

We need the following propositions, which are referred to as the Marčenko-Pastur

Law Marčenko and Pastur [1967] in the literature of random matrix theory. Note

that Proposition 2.5 is a corollary of Proposition 2.4.

Proposition 2.4. Marčenko and Pastur [1967] Given H ∈ R
D×N , whose en-

tries are independent zero-mean real (or complex) random variables with vari-

ance 1/N and fourth moments of order O(1/N2), then as both D and N −→ ∞,

and D/N −→ γ, the empirical distribution of the eigenvalues of HHT converges

almost surely to a deterministic limiting distribution with density

fγ(λ) = max(1− 1/γ, 0)1(λ = 0) +

√
(λ+ − λ)(λ− λ−)

2πγλ
(2.52)

where

λ+ = (1 +
√
γ)2 and λ− = (1−√

γ)2 (2.53)

Proposition 2.5. Letting Σ̂ be the sample covariance, obtained by N i.i.d. sam-

ples of the standard Gaussian distribution N(0, I) in R
D, then as both D and

N −→ ∞, and D/N −→ γ ∈ (0, 1), the empirical distribution of the eigenvalues

of Σ̂ converges almost surely to a deterministic limiting distribution with density

fγ(λ) =

√
(λ+ − λ)(λ− λ−)

2πγλ
, (2.54)
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where

λ+ = (1 +
√
γ)2 and λ− = (1−√

γ)2. (2.55)

The proof of Lemma 2.2 is provided below.

Proof. By Proposition 2.3, we have

Σ̂0 =
1

N

c+1∑
i=1

n∑
j=1

(xi
j − x̄i)(x

i
j − x̄i)

T , (2.56)

where xi
j is sampled fromN(μi, I) and x̄i is the sample mean. Letting zij = xi

j−μi,

which means zij is sampled from the standard Gaussian distribution N(0, I), then

Σ̂0 can be rewritten as

Σ̂0 =
1

N

c+1∑
i=1

n∑
j=1

(zij − z̄i)(zij − z̄i)T , (2.57)

with z̄i ∼ N(0, 1
n
I). One property of Σ̂0 in (2.57) is that, as a random variable,

its distribution is invariant to orthogonal similarity transformation, i.e., Σ̂0 and

UΣ̂0U
T , where UTU = I have the same distribution. This is a result of the fact

that OT Σ̂0O corresponds to (2.57) in the case of replacing zij by Ozij and Uzij

has the same distribution with zij, i.e., the standard Gaussian distribution N(0, I).

Then, according to Theorem 3.2 in Edelman [1989], due to the invariant property

to orthogonal similarity transformation, the distribution of Σ̂0 is independent of

its eigenvectors U but only depends on its eigenvalues Λ(Σ̂0), and thus U should

be a random variable uniformly distributed on the set of all possible orthonormal

matrices. This completes the statements 1) and 2) in Lemma 2.2.
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In addition, (2.57) can be rewritten as

Σ̂0 =
1

N

c+1∑
i=1

n∑
j=1

zijz
iT
j − 1

c+ 1

c+1∑
i=1

z̄iz̄iT

=
1

N

c+1∑
i=1

n∑
j=1

zijz
iT
j − 1

(c+ 1)n

c+1∑
i=1

√
nz̄i

√
nz̄iT

=
1

N
G1G

T
1 − 1

N
G2G

T
2

= T1 + T2.

(2.58)

where G1 ∈ R
D×N , G2 ∈ R

D×(c+1), and both have entries i.i.d. from N(0, 1).

For the first term T1 =
1
N
G1G

T
1 , by Proposition 2.4, we know that the empirical

distribution of its eigenvalues converges almost surely to Fγ(γ) with density,

fγ(λ) =

√
(λ+ − λ)(λ− λ−)

2πγλ
, (2.59)

where γ = D/N and

λ+ = (1 +
√
γ)2 and λ− = (1−√

γ)2. (2.60)

For the second term T2 = 1
N
G2G

T
2 , clearly it has finite rank c + 1. According

to Tao [2012], a finite rank perturbation does not effect the convergence of the

empirical spectral distribution, i.e., limFN(λ(T1+T2)) = limFN(λ(T1)) = Fγ(λ).

This completes the proof.

2.6.3 Proof of Lemma 2.3

Proof. The condition that ξ is a unit-length random vector uniformly distributed

on the unit sphere S
D−1 can be replaced by ξ ∈ R

D and its entries are i.i.d.

samples from N(0, 1/D). This is because, in the later case, ξ/‖ξ‖ is uniformly

distributed on S
D−1, and in the limit ‖ξ‖2 a.s.−→ 1 due to the strong law of

large numbers. Then, we divide the proof into two steps. First, we show that

ξTΛ−1(Σ̂0)ξ
a.s.−→ ∫

λ−1dFγ(λ) and then we calculate the integral.

i) Recall λ− = (1 − √
γ)2, and let Λ

−1
(Σ̂0) = diag(min{λ−, λ−1

i (Σ̂0)}), i.e., a
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truncated version of Λ−1(Σ̂0) by clamping λ−1
i (Σ̂0) to be λ−1

− if λ−1
i (Σ̂0) ≥ λ−1

− .

Then, we divide the lefthand side of (2.24) into three terms

ξTΛ−1(Σ̂0)ξ − ξTΛ
−1
(Σ̂0)ξ, (2.61)

ξTΛ
−1
(Σ̂0)ξ − 1

D
Tr(Λ

−1
(Σ̂0)), (2.62)

and
1

D
Tr(Λ

−1
(Σ̂0))−

∫
λ−1dFγ(λ). (2.63)

Then, we show that all the three terms almost surely converge to zero.

For the first term, we have

0 ≤ξT (Λ−1(Σ̂0)− Λ
−1
(Σ̂0))ξ

≤‖ξ‖2max{0, λ−1
min(Σ̂0)− λ−1

− }.
(2.64)

Since λmin(Σ̂0)
a.s.−→ λ− Edelman and Rao [2005], we have

max{0, λ−1
min(Σ̂0)− λ−1

− } a.s.−→ 0. (2.65)

Then, by ‖ξ‖2 a.s.−→ 1, (2.64) and (2.65), we have

ξTΛ−1(Σ̂0)ξ − ξTΛ
−1
(Σ̂0)ξ

a.s.−→ 0. (2.66)

For the second term, since ‖Λ−1
(Σ̂0)‖ ≤ λ− for all D, i.e., it is uniformly

bounded, then we apply Theorem 3.4 in Tulino and Verdú [2004] and get

ξTΛ
−1

α (Σ̂0)ξ − 1

D
Tr(Λ

−1

α (Σ̂0))
a.s.−→ 0. (2.67)

For the third term, since dFγ(λ) is nonzero on the [λ−, λ+], it is sufficient to
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examine

1

D
Tr(Λ

−1
(Σ̂0))−

∫
λ−1dFγ(λ)

=

∫ ∞

0

min(λ−, λ−1)dFN(λ)−
∫ λ+

λ−
λ−1dFγ(λ)

=

∫ λ+

λ−
λ−1d(FN(λ)− Fγ(λ)) + λ−1

−

∫ λ−

0

dFN(λ) +

∫ ∞

λ+

λ−1dFN(λ).

(2.68)

Sine FN(λ)
a.s.−→ Fγ(λ) and λ−1 is bounded on [λ−, λ+], it holds Billingsley [1999]∫ λ+

λ−
λ−1d(FN(λ)− Fγ(λ)) =

a.s.−→ 0. (2.69)

Further, sine Fγ(λ−) = 0 and Fγ(λ+) = 1, it holds∫ λ−

0

dFN(λ) = FN(λ−)
a.s.−→ Fγ(λ−) = 0, (2.70)

and

0 ≤
∫ ∞

λ+

λ−1dFN(λ) ≤ λ−1
+ (1− FN(λ+))

a.s.−→ λ−1
+ (1− Fγ(λ+)) = 0. (2.71)

Thus,
1

D
Tr(Λ

−1

α (Σ̂0))−
∫

λ−1dFγ(λ)
a.s.−→ 0. (2.72)

ii) We now calculate the integral

I =

∫
λ−1dFγ(λ) =

∫ λ+

λ−

√
(λ+ − λ)(λ− λ−)

2πγλ2
dλ (2.73)

where λ+ = (1 +
√
γ)2 and λ− = (1−√

γ)2.

Letting λ = 1 + γ − 2
√
γ cos x, x ∈ [0, π] and substituting it into (2.73), we

have

I =
2

π

∫ π

0

sin2 x

(1 + γ − 2
√
γ cos x)2

dx. (2.74)
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Further, letting t = tan x
2
, we have

I =
2

π

∫ ∞

0

(
2t

1+t2

)2(
1 + γ − 2

√
γ 1−t2

1+t2

)2 2

1 + t2
dt

=
16

π

∫ ∞

0

t2(
(1 + γ)(t2 + 1)− 2

√
γ(1− t2)

)2 1

1 + t2
dt

=
16

π

∫ ∞

0

t2(
(1 +

√
γ)2t2 + (1−√

γ)2
)2 1

1 + t2
dt

=
16

π(1 +
√
γ)4

∫ ∞

0

t2(
t2 +

(
1−√

γ

1+
√
γ

)2
)2

1

1 + t2
dt.

(2.75)

Letting α =
1−√

γ

1+
√
γ
and by partial fraction, we have

∫ ∞

0

t2

(t2 + α2)2
1

1 + t2
dt =

∫ ∞

0

− 1
(1−α2)2

t2 + 1
dt

+

∫ ∞

0

1
(1−α2)2

t2 + α2
dt+

∫ ∞

0

− α2

(1−α2)

(t2 + α2)2
dt.

(2.76)

Denoting by I1, I2 and I3 the terms in the righthand side of (2.76), we have

I1 =

∫ ∞

0

− 1
(1−α2)2

t2 + 1
dt =

−1

(1− α2)2

∫ ∞

0

d arctan t =
−π

2(1− α2)2
, (2.77)

I2 =

∫ ∞

0

1
(1−α2)2

t2 + α2
dt =

1

α(1− α2)2

∫ ∞

0

d arctan
t

α
=

π

2α(1− α2)2
, (2.78)

I3 =

∫ ∞

0

− α2

(1−α2)

(t2 + α2)2
dt

=
−1

2(1− α2)

∫ ∞

0

d
t

t2 + α2
+

−1

2(1− α2)

∫ ∞

0

1

t2 + α2
dt

= 0 +
−π

4α(1− α2)
=

−π

4α(1− α2)
.

(2.79)

44



2. Asymptotic Generalization Analysis

Combining (2.75) to (2.79) and noticing α =
1−√

γ

1+
√
γ
, we get

I =
16

π(1 +
√
γ)4

( −π

2(1− α2)2
+

π

2α(1− α2)2
+

−π

4α(1− α2)

)
=

16

π(1 +
√
γ)4

π

4α(1 + α)2

=
1

1− γ
.

(2.80)

This completes the proof.

2.6.4 Proof of Lemma 2.4

Proof. By the same strategy as used in the proof of Lemma 2.3, we have ξTΛ−2(Σ̂0)ξ
a.s.−→∫

λ−2dFγ(λ). Below, we calculate the integral.

I =

∫
λ−2dFγ(λ) =

∫ λ+

λ−

√
(λ+ − λ)(λ− λ−)

2πγλ3
dλ, (2.81)

where λ+ = (1 +
√
γ)2 and λ− = (1 − √

γ)2. Letting λ = 1 + γ − 2
√
γ cosx,

x ∈ [0, π] and substituting it into (2.73), we have

I =
2

π

∫ π

0

sin2 x

(1 + γ − 2
√
γ cos x)3

dx. (2.82)

Further, letting t = tan x
2
, we have

I =
2

π

∫ ∞

0

(
2t

1+t2

)2(
1 + γ − 2

√
γ 1−t2

1+t2

)3 2

1 + t2
dt

=
16

π

∫ ∞

0

t2(
(1 + γ)(t2 + 1)− 2

√
γ(1− t2)

)3dt
=

16

π

∫ ∞

0

t2(
(1 +

√
γ)2t2 + (1−√

γ)2
)3dt

=
16

π(1 +
√
γ)6

∫ ∞

0

t2(
t2 +

(
1−√

γ

1+
√
γ

)2
)3dt.

(2.83)
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Letting α =
1−√

γ

1+
√
γ
, we have

∫ ∞

0

t2

(t2 + α2)3
dt =− 1

4

∫ ∞

0

d
t

(t2 + α2)2
+

1

4

∫ ∞

0

1

(t2 + α2)2
dt

=
π

16α3
.

(2.84)

Thus, by α =
1−√

γ

1+
√
γ
, we get

I =
16

π(1 +
√
γ)6

π

16α3
=

1

(1− γ)3
. (2.85)

This completes the proof.

2.6.5 Proof of Lemma 2.5

We need the following Proposition, which describes the operator norm of a large

Gaussian random matrix Edelman and Rao [2005].

Proposition 2.6. Letting G ∈ R
D×m with i.i.d. entries sampled from N(0, 1),

then as m/D −→ γ ∈ [0, 1],

1√
D
‖G‖ a.s.−→ 1 +

√
γ. (2.86)

The proof of Lemma 2.5 is provided below.

Proof. Since Λ is a between-class scatter matrix, it can be expressed as Λ =
1

c+1

∑c+1
i=1(μi − μ)(μi − μ)T , where μ = 1

c+1

∑c+1
i=1 μi. Letting M = [μ1, ...,μc+1]

and E ∈ R
(c+1)×(c+1) with all entries equal to 1

c+1
, we have Λ = 1

c+1
M(I −

E)(I − E)TMT . Similarly, we have Ŝ0 = 1
c+1

M̂(I − E)(I − E)TM̂T , with M̂ =

[μ̂1, ..., μ̂c+1]. According to Proposition 2.3, the population covariance matrix is

I, and thus we have M̂ = M +X, wherein the entries of X ∈ R
D×(c+1) are i.i.d.

samples from N(0, 1/n), with n being the training sample number for each class.

Note that the nonzero diagonal entries of Λ are λi, i = 1, 2, ..., c, and its

eigenvectors are ei, i = 1, 2, ..., c. Then, Λ = 1
c+1

M(I − E)(I − E)TMT implies

that M(I−E) has singular values
√

(c+ 1)λi, i = 1, 2, ..., c and I1:c = [e1, ..., ec]
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are the corresponding left singular vectors. Thus, denoting by Q ∈ R
(c+1)×c the

right singular vectors, QTQ = Ic, we have

M(I− E)Q =
[√

(c+ 1)λ1e1, ...,
√

(c+ 1)λcec

]
. (2.87)

Consequently, by M̂ = M+X, we have

M̂(I− E)Q

=
[√

(c+ 1)λ1e1, ...,
√
(c+ 1)λcec

]
+X(I− E)Q

= [ξ1, ..., ξc],

(2.88)

where ξi =
√

(c+ 1)λiei +X(I− E)Qi, i = 1, 2, ..., c. Then, by Ŝ0 =
1

c+1
M̂(I−

E)(I− E)TM̂T , we have for the first c eigenvectors V1:c of Ŝ0 that

V1:c = R(M̂(I− E))

= R(M̂(I− E)Q)

= R([ξ1, ..., ξc]).

(2.89)

Thus,

‖VT
1:cei‖ = ‖RT ([ξ1, ..., ξc])ei‖

≥ ‖RT (ξi)ei‖
=

1

‖ξi‖
|ξTi ei|

=
|eTi

√
(c+ 1)λiei + eTi X(I− E)Qi|

‖√(c+ 1)λiei +X(I− E)Qi‖

≥
√
(c+ 1)λi − |eTi X(I− E)Qi|√
(c+ 1)λi + ‖X(I− E)Qi‖

.

(2.90)

It can be verified that as N = (c+ 1)n −→ ∞

|eTi X(I− E)Qi| ≤ ‖eTi X‖ =

√√√√ c+1∑
j=1

X2
ij

a.s.−→ 0, (2.91)

where the inequality is due to ‖(I−E)Qi‖ ≤ ‖(I−E)‖‖Qi‖ ≤ 1 and the limit is
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because Xij follows the distribution N(0, 1
n
).

In addition, by Proposition 2.6 and letting G =
√
nX, we have

‖X‖ =
1√
n
‖G‖ a.s.−→

√
D

n
=

√
(c+ 1)D

N
−→

√
(c+ 1)γ. (2.92)

Thus,

‖X(I− E)Qi‖ ≤ ‖X‖ a.s.−→
√
(c+ 1)γ. (2.93)

Combining (2.107), (2.91) and (2.109), we obtain

lim
D/N−→γ

‖VT
1:cei‖2 ≥

λi

λi + γ
, a.s. (2.94)

This completes the proof.

2.6.6 Proof of Lemma 2.6

Proof. Recall Lemma 2.1 that δi = ‖RT (Λ−1(Σ̂0)U
TV1:c)U

Tei‖2. Denote by

�(UTei,R(Λ
−1(Σ̂0)U

TV1:c)) the angle between vectorUTei and subspace RT (Λ−1(Σ̂0)U
TV1:c),

we have

δi = cos2(�(UTei,R(Λ
−1(Σ̂0)U

TV1:c))). (2.95)

Two basic facts that hold for arbitrary vector x1, x2 and subspace X are

�(x1,X) ≤ �(x1,x2) + �(x2,X). (2.96)

and

�(x1,X) ≤ �(x1,x), if x ∈ X. (2.97)

Then, by using (2.96) and (2.97), we get

�(UTei,R(Λ
−1(Σ̂0)U

TVi))

≤�(UTei,U
TV1:cV

T
1:cei) + �(UTV1:cV

T
1:cei,R(Λ

−1(Σ̂0)U
TV1:c))

≤�(UTei,U
TV1:cV

T
1:cei) + �(UTV1:cV

T
1:cei,Λ

−1(Σ̂0)U
TV1:cV

T
1:cei)

=θ1 + θ2.

(2.98)
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Denoting θ = θ1 + θ2, since cos(x) is positive and decreasing on [0, π/2], x2 is

increasing on [0, 1], and δi is nonnegative, we have

δi ≥
{

cos2(θ), θ ≤ π
2

0, else

= max2{cos(θ), 0}.
(2.99)

It remains to calculate θ1 and θ2. For θ1, We have

cos2(θ1) =
|eiVT

1:cUUTV1:cei|2
‖UTV1:cVT

1:cei‖2
=

|eTi V1:cV
T
1:cei|2

eTi V1:cVT
1:cei

= ‖VT
1:cei‖2, (2.100)

which gives

θ1 = arccos(‖VT
1:cei‖). (2.101)

For θ2, as rescaling does not change the direction of a vector, we can rewrite θ2

as

θ2 = �(UT ξ,Λ−1(Σ̂0)U
T ξ), (2.102)

where

ζ =
V1:cV

T
1:cei

‖V1:cVT
1:cei‖

. (2.103)

Note that ζ is a unit-length random vector and is independent of U due to the

independency between V1:c and U. Then, we have

cos2(θ2) =
|ζTUΛ−1(Σ̂0)U

T ζ|2
‖Λ−1(Σ̂0)UT ζ‖2

=
(ζTUΛ−1(Σ̂0)U

T ζ)2

ζTUΛ−2(Σ̂0)UT ζ
. (2.104)

We have known, from Lemma 2.2, U is uniformly distributed on the set of all

orthonormal matrices in R
D×D, and ζ is a unit-length random vector independent

of U. Thus, ξ = UT ζ must be a unit-length random vector uniformly distributed

on the unit sphere S
D−1. Finally, (2.104) gives

θ2 = arccos

(
ξTΛ−1(Σ̂0)ξ

/√
ξTΛ−2(Σ̂0)ξ

)
. (2.105)

This completes the proof.
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2. Asymptotic Generalization Analysis

2.6.7 Proof of Corollary 2.1

Proof. It is sufficient to show that the results of Lemma 2.2 and Lemma 2.5 still

hold under the conditional (c+ 1)/D −→ 0.

First, in the proof of Lemma 2.2, we have shown in (2.58) that

Σ̂0 =
1

N
G1G

T
1 − 1

N
G2G

T
2

= T1 + T2.
(2.106)

where G1 ∈ R
D×N , G2 ∈ R

D×(c+1), and both have entries i.i.d. from N(0, 1).

Under the condition (c + 1)/D −→ 0, we have 1
D
rank(T2) −→ 0, which is a

sufficient condition Tao [2012] for that, as long as FN(λ(T1)) converges almost

surely to a deterministic distribution Fγ(λ), FN(λ(T1 + T2)) will also converge

almost surely to the same distribution. Thus, the result of Lemma 2.2 still holds.

Second, in the proof of Lemma 2.5, we have shown in (2.107) that

‖VT
1:cei‖ ≥

√
(c+ 1)λi − |eTi X(I− E)Qi|√
(c+ 1)λi + ‖X(I− E)Qi‖

=
λi − |eTi X(I−E)Qi|√

c+1

λi +
‖X(I−E)Qi‖√

c+1

.

(2.107)

Similar to (2.91), we have

|eTi X(I− E)Qi|√
c+ 1

≤ ‖eTi X‖√
c+ 1

=

√∑c+1
j=1 X

2
ij

c+ 1

a.s.−→ 0, (2.108)

since Xij ∼ N(0, 1/n). Further, by (2.109), we have

‖X(I− E)Qi‖√
c+ 1

≤ ‖X‖√
c+ 1

a.s.−→ γ. (2.109)

Therefore,

lim
D/N−→γ

‖VT
1:cei‖2 ≥

λi

λi + γ
, a.s. (2.110)

i.e., the result of Lemma 2.2 also holds.
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2. Asymptotic Generalization Analysis

2.6.8 Proof of Corollary 2.2

Proof. When D = o(N), we have D/N −→ 0, i.e, γ = 0. By calculation, we

have ηi = 1 in Theorem 2.1, and thus δi ≥ 1, a.s.. Besides, since it holds always

0 ≤ δi ≤ 1, we δi −→ 1, a.s..

2.6.9 Proof of Corollary 2.3

Proof. The proof is trivial since it holds always 0 ≤ δi ≤ 1.
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Chapter 3

Block-Diagonal Regularization

for Linear Discriminant Analysis

3.1 Introduction

We have known, from the asymptotic generalization analysis in Chapter 2, that in

order to obtain an acceptable generalization discrimination power Δ(Σ,WŴ∗),

LDA needs a rationally small dimensionality to training sample number ratio

γ = D/N . Practically, however, such requirement is not always satisfied. For

example, in face recognition Belhumeur et al. [1997], data usually have a high

dimensionality D (e.g., thousands), but the training sample number N can be rel-

atively small (e.g., hundreds). In such case, the sample covariance Σ̂ significantly

deviates from its population counterpart Σ and becomes singular if D > N , and

consequently the direct using of LDA is readily to fail.

Regularization provides a principal method for parameter estimation from

insufficient training samples. In the case of LDA, it has been shown that replac-

ing the sample covariance with regularized estimators can significantly improve

the performance Ye et al. [2006] Guo et al. [2007] Lu et al. [2005]. The most

commonly used regularization method in LDA is the Tikhonov regularization,

which replaces the sample covariance Σ̂ in Fisher’s criterion by Σ̂ + ρI, where

ρ > 0 serves as a tuning parameter. Analogous to the Tikhonov regularized

LDA, one can introduce other types of regularized covariance estimators to LDA.
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3. Block-Diagonal Regularization

In the literature of covariance estimation, a number of regularized estimation

methods have been proposed, e.g., the factor model based estimation Lv [2007],

the banded estimation Bickel and Levina [2008b], the thresholding estimation

Bickel and Levina [2008a], and the sparse inverse covariance matrix estimation

(also known as covariance selection) Dempster [1972] Friedman et al. [2008], to

name a few. However, derived from a covariance estimation point of view, these

regularization methods are designed on purpose for LDA, and to the best of our

knowledge, they have not been applied to LDA by any studies in the literature.

Motivated by the results in Chapter 2, we propose a new regularization

method for LDA, which is referred to as the block-diagonal regularization. Ac-

cording to the asymptotic generalization bound in Theorem 2.1, one efficient way

to improve the generalization ability of LDA is to reduce the dimension to train-

ing sample number ratio D/N . Variable partitioning provides a simple method

to reduce the ratio D/N , e.g., if we partition the variables into k groups with

equal size, then the ratio will be reduced by k times into D/(kN). In the block-

diagonal regularization, we first partition the variables into k groups and treat

the groups independently in covariance estimation. Therefore, instead of using

Σ̂, the block-diagonally regularized LDA uses Σ̂r = diag(Σ̂1, ..., Σ̂k), where Σ̂j is

the sample covariance of the j-th group.

We present theoretical justification of the proposed block-diagonally regular-

ized LDA, by examining its approximation and sample errors. Specifically, we

show that the approximation error is bounded by using the closeness between the

population covariance matrix and its block-diagonal approximation, and the sam-

ple error is bounded in terms of D, N , and k. We further propose two intuitive

methods for variable partitioning, where the first method is based on Laplacian

eigenmaps embedding and the second method uses an entirely random strategy.

Empirical evaluations show that the proposed block-diagonally regularized LDA

performs competitively compared with other types of regularized LDA, e.g., with

the Tikhonov regularization and the banded regularization.

In addition to regularization, there have been other methods in the literature

to extend LDA to deal with the insufficient training sample problem. The first

class of extensions is usually referred to as two-stage LDA, which first applies

an intermediate method, e.g., PCA (on the sample covariance) Belhumeur et al.
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3. Block-Diagonal Regularization

[1997] or QR decomposition (on the centralized class mean matrix) Ye and Li

[2005], to reduce the dimensionality to a proper case and then perform LDA

afterwards. Another class of extensions utilizes the pseudoinverse method to

deal with the singularity problem occurred when the training sample number

is less than the dimensionality Ye et al. [2004] Ye [2005]. Besides, null space

LDA Chen et al. [2000] and dual space LDA Wang and Tang [2004] were also

proposed to deal with the singularity problem, where the former only utilizes

the discriminative information of the null space of the sample covariance but the

latter utilizes the discriminative information of both the principal and null spaces

of the sample covariance. The rest of this chapter is organized as follows. Section

3.2 presents the block-diagonally regularized LDA, including the analysis on the

approximation and sample errors, as well as two intuitive methods for variable

partitioning. Section 3.3 reports empirical evaluations and the comparison with

other regularization methods. Technical proofs are arranged as appendixes in

Section 3.4.

3.2 Block-Diagonally Regularized LDA

Suppose the D variables are divided into k groups, each with a covariance matrix

Σj, j = 1, 2, ..., k. Then, we refer to

Σr = diag(Σ1,Σ2, ...,Σk). (3.1)

as a block-diagonal approximation of the original covariance Σ. We introduce

the following measurement

� = ‖Σ− 1
2 (Σ−Σr)Σ

− 1
2‖. (3.2)

to measure the closeness between Σr and Σ. Since Σ is nonsingular, � = 0 leads

to Σ = Σr. Through this section, we assume � < 1, which serves as a regularity

condition for theoretical analysis.
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3. Block-Diagonal Regularization

Empirically, an estimate of Σr is given by

Σ̂r = diag(Σ̂1, Σ̂2, ..., Σ̂k). (3.3)

where each Σ̂j, j = 1, 2, ..., k, is the corresponding sample covariance of the j-th

block Σj. By submitting Σ̂r into Fisher’s criterion, we get the block-diagonally

regularized LDA,

Ŵ∗
r = argmax

W
Δ(Σ̂r, Ŝ|W), (3.4)

where Ŝ is the unchanged sample between-class scatter matrix.

The performance of the block-diagonally regularized LDA (3.4) can be justified

by using the following error

E = Δ(Σ,S|W∗)−Δ(Σ,S|Ŵ∗
r), (3.5)

which measures the loss of discrimination power with respect to the population

optimal projection matrix W∗. In order to understand how the block-diagonal

regularization works in improving the performance of LDA, we further express

the error E as a summation of the approximation error Ea, which is independent

of the training samples, and the sample error Es, which depends on the training

samples. To this end, we need the following projection matrix,

W∗
r = argmax

W
Δ(Σr,S|W). (3.6)

Note that W∗
r is also independent of training samples. Then, by direct calcula-
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tion, we have

E =Δ(Σr,S|W∗
r)−Δ(Σr,S|Ŵ∗

r)

+ Δ(Σr,S|Ŵ∗
r)−Δ(Σ,S|Ŵ∗

r) + Δ(Σ,S|W∗)−Δ(Σr,S|W∗
r)

≤Δ(Σr,S|W∗
r)−Δ(Σr,S|Ŵ∗

r)

+ Δ(Σ,S|Ŵ∗
r)−Δ(Σr,S|Ŵ∗

r) + Δ(Σ,S|W∗)−Δ(Σr,S|W∗)

≤Δ(Σr,S|W∗
r)−Δ(Σr,S|Ŵ∗

r)

+
∣∣Δ(Σ,S|Ŵ∗

r)−Δ(Σr,S|Ŵ∗
r)
∣∣+ ∣∣Δ(Σ,S|W∗)−Δ(Σr,S|W∗)

∣∣
≤Δ(Σr,S|W∗

r)−Δ(Σr,S|Ŵ∗
r) + 2max

W

∣∣Δ(Σr,S|W)−Δ(Σr,S|W)
∣∣.

(3.7)

Then, we define the Ea and Es as below,

Ea = 2max
W

∣∣Δ(Σr,S|W)−Δ(Σ,S|W)
∣∣, (3.8)

Es = Δ(Σr,S|W∗
r)−Δ(Σr,S|Ŵ∗

r). (3.9)

In the following two subsections, we will derive upper bounds of the approxima-

tion error Ea and the sample error Es, respectively.

3.2.1 On the Approximation Error

According to (3.8), the approximation error Ea comes from the difference between

Σ and Σr. Specifically, we have the following Theorem on Ea.

Theorem 3.1. Given the measurement � = ‖Σ− 1
2 (Σ − Σr)Σ

− 1
2‖ < 1, the ap-

proximation error Ea of the block-diagonally regularized LDA is bounded by

Ea ≤ 2�

1− �
Δ(Σ,S|W∗). (3.10)

Theorem 3.1 indicates the approximation error Ea is bounded by a factor
2�
1−�

with respect to the population discrimination power Δ(Σ,S|W∗). Thus,

whenever Σr gives a good approximation of Σ, we can expect a reasonable small

approximation error Ea.
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3.2.2 On the Sample Error

In this subsection, we examine the sample error Es of the block-diagonally regu-

larized LDA. For the convenience of analysis, we assume the sizes of the k groups

of variables are equal, i.e. each has a size D′ = D/k. Recall that

Es = Δ(Σr,S|W∗
r)−Δ(Σr,S|Ŵ∗

r). (3.11)

We intend to derive an asymptotic low bound of Es, with a similar strategy as

used in the asymptotic generalization analysis in Chapter 2. Again, we begin

with the simultaneous diagonalization proposition.

Proposition 3.1. There exists a nonsingular matrix X∗
r = [W∗

r V∗
r ], with W∗

r ∈
R

D×c and V∗
r ∈ R

D×(D−c), that simultaneously diagonalizes Σr and S, i.e.,

X∗T
r ΣrX

∗
r = I and X∗T

r SX∗
r = Λr, (3.12)

where Λr is a diagonal matrix, with only the first c diagonal entries being nonzero.

Further, Xr can be explicitly expressed as

X∗
r = Σ

− 1
2

r U∗
r, (3.13)

where U∗
r is from the eigendecomposition Σ

− 1
2

r SΣ
− 1

2
r = U∗

rΛrU
∗T
r ; and,

Δ(Σr,S|W∗
r) =

c∑
i=1

λri, (3.14)

where λri, i = 1, 2, ..., c, is the first c diagonal entries of Λr.

Then, we introduce the auxiliary estimates,

Σ̂0 = X∗T
r Σ̂rX

∗
r and Ŝ0 = X∗T

r ŜX∗
r. (3.15)

Note that Σ̂0 is more structured here than in Chapter 2. Specifically, by substi-
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tuting (3.13) into (3.15), we have

Σ̂0 = U∗T
r Σ

− 1
2

r Σ̂rΣ
− 1

2
r U∗

r

= U∗T
r diag(Σ

− 1
2

r1 Σ̂r1Σ
− 1

2
r1 ,Σ

− 1
2

r2 Σ̂r2Σ
− 1

2
r2 , ...,Σ

− 1
2

rk Σ̂rkΣ
− 1

2
rk )U∗

r

= U∗T
r diag(Σ̂01, Σ̂02, ..., Σ̂0k, )U

∗
r.

(3.16)

where Σ̂0j, j = 1, 2, ..., k, is the empirical estimate of the identity covariance

matrix ID′ .

By applying Lemma 2.2 to each individual Σ̂0j, we have the following lemma

on the eigenvalues and the eigenvectors of Σ̂0.

Lemma 3.1. Given the eigendecomposition Σ̂0 = UΛ(Σ̂0)U
T , then

U = U∗T
r diag(U1,U2, ...,Uk), (3.17)

Λ(Σ̂0) = diag(Λ(Σ̂01),Λ(Σ̂02)...,Λ(Σ̂0k)), (3.18)

where

1. Uj and Λ(Σ̂0j) are independent, j = 1, 2, ..., k;

2. Uj, j = 1, 2, ..., k, is uniformly distributed on the set of all orthonormal

matrices in RD′×D′
, i.e., follows the Haar distribution;

3. denoting the empirical spectral distribution of the eigenvalues of Σ̂0j, j =

1, 2, ..., k, by FN(λ), then as D′/N −→ γ′ ∈ (0, 1)

FN(λ)
a.s.−→ Fγ′(λ), (3.19)

where

dFγ′(λ) =
1

2πγ′

√
(λ+ − λ)(λ− λ−)

λ
, (3.20)

with

λ+ = (1 +
√
γ′)2 and λ− = (1−

√
γ′)2. (3.21)

From Lemma 3.1, one can see that asymptotically the eigenvalues of Σ̂0 are

spread on [(1 − √
γ′)2, (1 +

√
γ′)2]. Since γ′ = γ/k, this is more concentrated
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around 1 than the original case without block-diagonal regularization, where the

eigenvalue are spread on [(1−√
γ)2, (1 +

√
γ)2].

Analogous to Theorem 2.1, we have the following theorem on the sample error

of the block-diagonally regularized LDA.

Theorem 3.2. Given Σr = diag(Σ1,Σ2, ...,Σk), with an equal block size D′ =

D/k, then as both the dimensionality D and the training sample size N increase,

such that D/N −→ γ ∈ (0,∞) and γ/k ∈ (0, 1), the sample error Es of the

block-regularized LDA satisfies almost surely

Es ≤
c∑

i=1

(1− ηi)λri, (3.22)

where

ηi = max2
{
cos(arccos(

√
λri/(λri + γ)) + arccos(

√
1− γ/k)), 0

}
. (3.23)

Comparing Theorem 2.1 and Theorem 3.2, one can see that the term
√
1− γ

is replaced by
√
1− γ/k due to the block-diagonal regularization. This helps

reduce the sample error Es. Especially, in the extreme case where λri is sufficient

large and
√

λri/(λri + γ) ≈ 1, then we have 1 − ηi = γ/k. This implies that

smaller Es can be obtained by increasing the group number k. An illustration

of Theorem 3.2 is given in Figure 3.1, where we set λi = 50 and vary k from

1 to 20. The plots indicate that, when k increases a larger γ can be tolerated.

Therefore, given a sufficient large k, even when the dimensionality D is several

times of the training sample number N , we can still maintain an acceptable small

sample error.

3.2.3 Intuitive Variable Partitioning

To perform the block-diagonally regularized LDA, we need to partition the vari-

ables into k groups. At first sight, it is a variable clustering problem, i.e., accord-

ing to the correlation between variables we cluster them into k approximately

independent groups. However, this is unrealistic, because in the situation of

insufficient training samples we cannot obtain sufficiently accurate variable cor-
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Figure 3.1: The sample error of the block-diagonally regularized LDA.

relations to perform variable clustering. Instead, we propose two intuitive meth-

ods for variable partitioning, both of which are considerably simple but perform

favorably as shown by empirical evaluations.

The first method uses a deterministic partitioning method. Suppose the cor-

relation coefficients matrix is C. We treat the D variables as vertexes of a graph,

and define the adjacent matrix A as below

Aij = |Cij|α, (3.24)

where α > 1 is a penalization parameter, i.e., A large α penalizes the small

(absolute) correlation coefficients. Then, we utilize Laplacian eigenmaps Belkin

and Niyogi [2003] to get a 1-dimensional embedding ξ of theD variables, i.e., ξ is a
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vector in R
D . Specifically, the embedding ξ is an eigenvector of D− 1

2 (D−A)D− 1
2

associated with the smallest nonzero eigenvalues, wherein D is a diagonal matrix

with Dii =
∑

j Aij. We sort the variables according to their corresponding values

in ξ in an ascending order. Finally, we partition the sorted variables evenly into k

groups. One may consider using spectral clustering (also based on A) to partition

the variables into groups. However, empirical studies show that it is inferior to the

above described method, mainly because spectral clustering does not guarantees

the groups to be evenly small, and the large groups may lead to an large sample

error.

The second method uses a random partitioning method, i.e., we randomly

partition the D variables into k groups with a equal size. Clearly, the second

method is considerably simple and does not utilize any information of the covari-

ance or the correlation coefficients obtained from the training samples. However,

as shown later by empirical evaluations, the random partitioning method works

comparably with the deterministic method. This is consistent with our intuition

that when the training sample number is small the structural information from

covariance or correlation estimation can be highly inaccurate. Therefore, the en-

tirely randomized method can have comparable performance with the estimation

based method.

3.3 Empirical Evaluations

3.3.1 On Variable Partitioning

We evaluate the proposed block-diagonally regularized LDA, associated with the

two methods for variable partitioning, on face recognition experiments. Four

benchmark face image databases, “Feret”, “Orl”, “Pie”, and “Yale”, are used

in our experiments. The Feret database contains 13,539 face images from 1,565

individuals, with varying pose, facial expression and age. In our experiments, we

used a subset of it, containing 50 individuals with 7 images for each. The Orl

dataset Orl [1994] contains 400 images of 40 individuals.The images are taken

at different times, varying the lighting, facial expressions and facial details. The

Pie database from CMU contains 68 individuals and 41,368 face images in total
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with varying pose, illumination condition and expression. We used a subset of

PIE according to He et al. [2005], which contains all 68 subjects with 170 images

for each. The YALE database contains face images collected from 15 individuals,

each of which has 11 images with varying lighting condition and facial expression.

The data dimensionality for Feret, Orl, and Yale, are 1,600, i.e., each face image

has a size of 40× 40, while the data dimensionality for Pie is 1,024, i.e., each face

image has a size of 32×32. On Feret, Orl and Yale, we randomly select 80% data

for training and use the rest 20% for test, while on Pie we randomly select 10%

data for training and use the rest 90% for test.

The classification performance on the four datasets over 20 random train-

ing/test splits are shown by Figure 3.4 to Figure 3.5. From these results, we have

the following observations:

1. As the block number k increases until reaching an optimal k∗, the clas-

sification error rate decreases, and afterwards the classification error rate

increases again. This reflects the tradeoff between the approximation and

the sample errors. First, the sample error is dominated. Increasing k re-

duces the sampler error and thus leads to a lower classification error rate.

When the sample error is small enough, the approximation error becomes

dominated. Further increasing k increases the approximation and thus leads

to a higher classification error rate.

2. The random variable partitioning method works comparably well with the

deterministic partitioning method. Besides, the optimal block numbers k∗,

corresponding to the best classification error rate, are very close for these

two methods. As the random variable partitioning method does not uti-

lize any structural information of covariance or correlations, these results

confirm the importance of reducing the dimensionality to training sample

number ratio itself in improving the performance of LDA.
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Figure 3.2: Evaluation of the block-diagonally regularized LDA on the Feret

dataset

5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Blocks

Deterministic Partitioning

C
la

ss
ifi

ca
tio

n 
E

rr
or

 R
at

e

5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Blocks

Random Partitioning

C
la

ss
ifi

ca
tio

n 
E

rr
or

 R
at

e

Figure 3.3: Evaluation of the block-diagonally regularized LDA on the Orl dataset
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Figure 3.4: Evaluation of the block-diagonally regularized LDA on the Pie dataset

63



3. Block-Diagonal Regularization

12 24 36 48 60 72 84 96 109 121
0

0.05

0.1

0.15

0.2

0.25

Number of Blocks

Deterministic Partitioning
C

la
ss

ifi
ca

tio
n 

E
rr

or
 R

at
e

12 24 36 48 60 72 84 96 109 121
0

0.05

0.1

0.15

0.2

0.25

Number of Blocks

Random Partitioning

C
la

ss
ifi

ca
tio

n 
E

rr
or

 R
at

e

Figure 3.5: Evaluation of the block-diagonally regularized LDA on the Yale

dataset

3.3.2 On Comparison with Other Regularization Methods

In this subsection, we compare the proposed block-diagonally regularized LDA

with other types of regularized LDA. In the literature, the most commonly used

type of regularized LDA is based on the Tikhonov regularization Ye et al. [2006]

Guo et al. [2007]. Suppose the sample covariance matrix is Σ̂, the Tikhonov

regularized LDA optimizes the projection matrix by

Ŵ∗
t = argmax

W
Δ(Σ̂+ ρI, Ŝ|W), (3.25)

where ρ is a tuning parameter to tradeoff between the approximation and the

sample errors.

Another regularization method we intend to compare with is the banded esti-

mation of the covariance matrix Bickel and Levina [2008b] Wagaman and Levina

[2009]. It is based on the assumption that the population covariance matrix

belongs to the approximately banded family

{Σ : max
j

∑
i

{|Σij| :|i− j| > m} ≤ Cm−a for all k > 0,

and 0 < ε ≤ λmin(Σ)λmax(Σ) ≤ 1/ε},

where a, C, and ε are family parameters. Then, the banded estimator is given by

Σ̂B = Σ̂�B, with Bij = 1(|i− j| > k), (3.26)
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where � denotes the Hadamard (entry-wise) product between two matrices. Note

that in calculating B, we need the order of variables. To this end, we use the

Laplacian eigenmaps based method as described in Section 3.2.3 to get the order.

Further, a problem with (3.26) is that Σ̂B is not necessarily positive definite.

Therefore, we modify B as

Bij = e−
|i−j|2
σ2 , (3.27)

where σ is a tuning parameter. Note that B defined by (3.27) is positive definite,

and thus the Schur product theorem guarantees the banded estimator Σ̂B =

Σ̂�B to be positive definite. Accordingly, the LDA with banded regularization

optimizes the projection matrix by

Ŵ∗
b = argmax

W
Δ(Σ̂B, Ŝ|W). (3.28)

With the same experimental setting as in last subsection, we compare the

proposed block-diagonal regularization with the Tiknonov regularization and the

banded regularization. The parameters, k for the block-diagonal regularization,

ρ for the Tikhnonov regularization, and σ for the banded regularization, are

tuned with respect to the minimized test error. The classification performance

on the four face image datasets is shown by Figure 3.6. One can see that on

three out of the four datasets, i.e., Feret, Orl, and Yale, the proposed block-

diagonal regularization outperforms the Tiknonov regularization and the banded

regularization.
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Figure 3.6: Comparison of different regularization methods on the Feret, Orl, Pie,

and Yale dataset. Block-D, the block-diagonally regularized LDA with determin-

istic variable partitioning; Block-R, the block-diagonally regularized LDA with

random variable partitioning; Tikhnonov, LDA with the Tikhonov regularization;

and Banded, LDA with the banded regularization.

3.4 Appendixes

3.4.1 Proof of Theorem 3.1

Proof.

Ea = 2max
W

|Δ(Σr,S|W)−Δ(Σ,S|W)|
= 2max

W

∣∣Tr((WTΣrW)−1WTSW)− Tr((WTΣW)−1WTSW)
∣∣ (3.29)

Recall that X∗ simultaneously diagonalize Σ and S. Then, by letting W =
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X∗V, VTV = I, we have

Ea = 2 max
VTV=I

∣∣∣Tr (((VTX∗TΣrX
∗V)−1 − I)VTΛV

) ∣∣∣
≤ 2 max

VTV=I
max

i

∣∣∣λi((V
TX∗TΣrX

∗V)−1 − I)
∣∣∣Tr(VTΛV)

≤ 2 max
VTV=I

max
i

∣∣∣λi((V
TX∗TΣrX

∗V)−1 − I)
∣∣∣Tr(Λ)

= 2 max
VTV=I

max{λmax((V
TX∗TΣrX

∗V)−1)− 1,

1− λmin((V
TX∗TΣrX

∗V)−1)}Tr(Λ)

= 2 max
VTV=I

max{λ−1
min(V

TX∗TΣrX
∗V)− 1,

1− λ−1
max(V

TX∗TΣrX
∗V)}Tr(Λ).

(3.30)

On λmax(V
TX∗TΣrX

∗V), we have

λmax(V
TX∗TΣrX

∗V) ≤ λmax(X
∗TΣrX

∗) = λmax(Σ
− 1

2ΣrΣ
− 1

2 )

= λmax(I−Σ− 1
2 (Σ−Σr)Σ

− 1
2 )

≤ 1 + ‖Σ− 1
2 (Σ−Σr)Σ

− 1
2‖.

(3.31)

Similarly, on λmax(V
TX∗TΣrX

∗V), we have

λmin(V
TX∗TΣrX

∗V) ≥ λmin(X
∗TΣrX

∗) = λmin(Σ
− 1

2ΣrΣ
− 1

2 )

= λmin(I−Σ− 1
2 (Σ−Σr)Σ

− 1
2 )

≥ 1− ‖Σ− 1
2 (Σ−Σr)Σ

− 1
2‖.

(3.32)

Substituting (3.31) and (3.32) to (3.30), and noticing ‖Σ− 1
2 (Σ−Σr)Σ

− 1
2‖ =

ρ < 1, we get

Ea ≤ 2max

{
‖Σ− 1

2 (Σ−Σr)Σ
− 1

2‖
1− ‖Σ− 1

2 (Σ−Σr)Σ
− 1

2‖
,

‖Σ− 1
2 (Σ−Σr)Σ

− 1
2‖

1 + ‖Σ− 1
2 (Σ−Σr)Σ

− 1
2‖

,

}
Tr(Λ)

≤ 2‖Σ− 1
2 (Σ−Σr)Σ

− 1
2‖

1− ‖Σ− 1
2 (Σ−Σr)Σ

− 1
2‖

Tr(Λ).

(3.33)

By using the fact Tr(Λ) = Δ(Σ,S|W∗), we complete the proof.
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3.4.2 Proof of Theorem 3.2

Proof. Suppose the eigendecompositions Σ̂0 = UΛ(Σ̂0)U
T and Ŝ0 = VΛ(Ŝ0)V

T ,

by using Lemma 2.1, we have

Δ(Σr,S|Ŵ∗) =
c∑

i=1

δiλri, (3.34)

where

δi = ‖RT (Λ−1(Σ̂0)U
TV1:c)U

Tei‖2. (3.35)

By using the same proofing steps as in the proof of Lemma 2.6, we have

δi ≥ max2{cos(θ1 + θ2), 0}, (3.36)

and

θ1 = arccos(‖VT
1:cei‖), (3.37)

θ2 = arccos

(
ξTΛ−1(Σ̂0)ξ

/√
ξTΛ−2(Σ̂0)ξ

)
, (3.38)

where ξ = UT ζ and ζ is a unit-length random vector independent of U.

For θ1, note that Lemma 2.5 actually is valid even when γ ∈ (0,∞) because

(2.92) holds for any γ > 0, and thus we have ‖VT
1:cei‖2 = λri/(λri + γ) and

θ1 = arccos(
√

λri/(λri + γ)). (3.39)

For θ2, we need to calculate ξTΛ−1(Σ̂0)ξ and ξTΛ−2(Σ̂0)ξ. By using Lemma

3.1, we have

ξ = UT ζ = diag(UT
1 ,U

T
2 , ...,U

T
k )U

∗
rζ. (3.40)

Letting U∗
r = [U∗T

r1 ,U
∗T
r2 , ...,U

∗T
rk ]

T , we have

ξ = [ξT1 , ξ
T
2 , ..., ξ

T
k , ]

T , (3.41)

where

ξj = UT
j ζj and ζj = U∗

rjζ. (3.42)
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From Lemma 3.1, UT
j follows the Haar distribution, and thus, conditioned on

ζj,
1

‖ζj‖ξj is a unit-length random vector on the sphere S
D/k−1. Then, by using

Lemma 2.3 k times, we have

ξTΛ−1(Σ̂0)ξ =
k∑

j=1

ξTj Λ
−1(Σ̂0j)ξj

=
k∑

j=1

‖ζj‖2(ξj/‖ζj‖)TΛ−1(Σ̂0j)(ξj/‖ζj‖)

=
k∑

j=1

‖ζj‖2 1

1− γ/k

=
1

1− γ/k

k∑
j=1

‖U∗
rjζ‖2

=
1

1− γ/k
‖ζ‖2

=
1

1− γ/k
.

(3.43)

With the similar procedure and by using Lemma 2.4, we have

ξTΛ−1(Σ̂0)ξ =
1

(1− γ/k)3
. (3.44)

Substituting (3.43) and (3.44) into (3.38), we get

θ2 = arccos(
√
1− γ/k). (3.45)

This completes the proof.
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Chapter 4

Max-Min Distance Analysis for

Parametric SLDR

4.1 Introduction

Parametric methods consist of a major subcategory in SLDR. By modeling with

certain probability distribution families, e.g., the homoscedastic or heteroscedas-

tic Gaussian distributions, parametric SLDR generally has a low model com-

plexity in density estimation and a low computational cost in optimizing the

projection matrix. Due to these advantages, parametric SLDR has been applied

to wide range of areas, from speech analysis spe [1998] and image retrieval He

et al. [2008] to face recognition Belhumeur et al. [1997] Kim and Kittler [2005].

A major problem with existing parametric SLDR methods, including LDA and

its many extensions, is that when the dimensionality of the learned subspace is

low, close class pairs tend to merge. This is referred to as the “class separation”

problem in the literature Tao et al. [2009]. A number of methods have been

developed to address this problem in recent years, which be categorized into the

following categories:

• The first category contains weighting scheme based methods. For example,

Lotlikar and Kothari [2000] proposed the fractional step LDA (FS-LDA),

which reduces the space dimensionality by using a series of fractional steps

and meanwhile uses weighting functions to emphasize the discrimination
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4. Max-Min Distance Analysis

power between close class pairs. Loog et al. [2001] proposed the approximate

pairwise accuracy criterion (aPAC). Similar to FS-LDA, aPAC also puts

higher weights on close class pairs, and additionally it provides a way to

calculate the weight by referring to the Bayes error.

• The second category is general mean based methods. These methods are

motivated by the fact that Fisher’s criterion in LDA is equivalent to max-

imizing the arithmetic mean of the discrimination power of all class pairs.

By replacing the arithmetic mean by other mean functions, e.g., the geo-

metric mean and the harmonic mean, the obtained criteria automatically

emphasize close class pairs and thus give rise to a better class separation

than LDA. The geometric and the harmonic mean based subspace selection

methods (GMSS and HMSS) were developed in Tao et al. [2009] and Bian

and Tao [2008], respectively.

• The methods in the third category are based on Bayes error minimization.

In general, Bayes error minimization is intractable due to the hardness of

calculating the Bayes error, though it is theoretically the most favorable for

dimension reduction. However, exception exits in special cases. For exam-

ple, Schervish [1984] proposed a method to select the one-dimensional Bayes

optimal subspace in a three-class problem represented by homoscedastic

Gaussian distributions. And most recently, Hamsici and Martinez [2008]

generalized Schervish’s method to multiclass problems, and showed that

the one-dimensional Bayes optimal subspace is achievable given the order

of the class means located in the one-dimensional Bayes optimal subspace.

Since the order of locations of means are unknown in advance, enumeration

of the order is needed in their method. Further, they also proposed a greedy

algorithm to sequentially select orthogonal one-dimensional subspaces so as

to compose a subspace of higher dimensionality.

In this chapter, we propose a new method for parametric SLDR based on the

homoscedastic Gaussian assumption, termed max-min distance analysis (MMDA).

MMDA optimizes the projection matrix by maximizing the minimum pairwise

distance among all class pairs in the dimension reduced space. Thus, it duly

considers the separation of all classes. Unfortunately, MMDA is hard to optimize
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4. Max-Min Distance Analysis

directly due to the non-smoothness of the objective function and the orthonormal

constraints. Therefore, we derive an approximate algorithm for MMDA by using

the sequential convex relaxation technique. On both synthetic data experiments

and face recognition experiments, we show that MMDA performs competitively

compared with the state-of-the-art parametric SLDR methods.

Note that for a c + 1-class problem represented by homoscedastic Gaussian

distributions, the c-dimensional subspace learned by LDA contains the entire dis-

crimination power. Thus, for any method based on the homoscedastic Gaussian

assumption, including aforementioned MMDA, GMSS, HMSS, aPAC, FS-LDA,

we can first perform LDA and then perform the method in the dimension re-

duced space of LDA. After performing LDA, the data dimensionality becomes

c and the sample covariance becomes Ŵ∗Σ̂Ŵ∗ = Ic, where Ŵ∗ is the projec-

tion matrix learned by LDA. Thus, we can assume the sample means μ̂i ∈ R
c,

i = 1, 2, ..., c+ 1, and the sample covariance Σ̂ = Ic.

The rest of this chapter is organized as follow. In Section 4.2, we present the

MMDA criterion, and discuss its relationship to other criterions. In Section 4.3,

we derive an approximate algorithm to solve MMDA by using sequential convex

relaxation technique. Section 4.4 presents empirical evaluations on both synthetic

and real datasets.

4.2 Max-Min Distance Analysis

4.2.1 MMDA Criterion

Given the sample covariance matrix Σ̂ = Ic, we define the discrimination power

between class ωi and ωj in the subspace W ∈ R
c×d, d < c, by

Δ(ωi, ωj|W) = Tr(WTDijW), 1 ≤ i < j ≤ c+ 1, (4.1)

where

Dij = (μ̂i − μ̂j)(μ̂i − μ̂j)
T (4.2)

is called the distance matrix between ωi and ωj. Since Tr(W
TDijW) = ‖WT (μ̂i − μ̂j)‖2,

the pairwise discrimination power Δ(ωi, ωj|W) is the squared distance between
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the two class means in the subspace W.

Then, the MMDA criterion is defined by

max
WTW=Id

min
1≤i<j≤C

Δ(ωi, ωj|W). (4.3)

In (4.3), the inner minimization chooses the minimum pairwise (squared) distance

of all class pairs in W, while the outer maximization maximizes this minimum

pairwise distance. This explains the name of MMDA. Let the optimal value and

solution of (4.3) be Δopt and Wopt, respectively. We have

Δ(ωi, ωj|Wopt) ≥ Δopt, for all i �= j, (4.4)

which guarantees the separation (as best as possible) of any class pairs in the

selected low dimensional subspace.

Figure 4.1 shows the results of MMDA on a toy example, which is a three-class

problem and requires a 1-dimensional subspace to separate these three classes.

Varying the 1-dimensional subspace, by changing its angle with respect to the

horizontal direction, the three pairwise distances change, and the minimum dis-

tance among the three classes is maximized at the direction about 115 degrees,

i.e., the direction of MMDA subspace. The corresponding class distributions (his-

tograms) after projected onto the MMDA subspace are shown in Figure 4.1 (c),

which shows that all classes are well separated from the others.

Remark 4.1. MMDA criterion (4.3) can be interpreted by the minimax decision

rule. For a binary classification, e.g., between classes ωi and ωj, we can define

a loss function as �(ωi, ωj|W) = e−Δ(ωi,ωj |W). Thus, a minimax decision can be

made by minimizing the maximum binary classification loss

min
WTW=Id

max
1≤i<j≤C

�(ωi, ωj|W). (4.5)

Since e−(·) is a monotonically decreasing function, minimax decision rule (4.5) is

equivalent to the MMDA criterion (4.3).
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(c) Histogram of three classes projected
onto the MMDA direction

Figure 4.1: MMDA for three Gaussian distributions on the 2-dimensional space.

4.2.2 Relationships with Other Criteria

Here, we discuss the relationships between MMDA and other criteria, including,

LDA Rao [1948], GMSS Tao et al. [2009], HMSS Bian and Tao [2008], and BLDA

Hamsici and Martinez [2008].
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4.2.2.1 MMDA vs. LDA, GMSS and HMSS

According to Loog et al. [2001], Fisher’s criterion in LDA is equivalent to maxi-

mizing the sum of the pairwise discrimination powers of all class pairs, i.e.,

max
WTW=Id

∑
1≤i<j≤c+1

Δ(ωi, ωj|W), (4.6)

which follows the fact that S = 1
(c+1)2

∑
1≤i<j≤c+1 Dij. The criterion (4.6) puts

equal weights on all class pairs, and thus close class pairs are sacrificed in the

optimization and tend to be merged together in the selected low dimensional

subspace.

To improve the separation of close class pairs, GMSS and HMSS utilize the

geometric and the harmonic means to replace the arithmetic mean in (4.6), which

are defined as

max
WTW=Id

∏
1≤i<j≤c+1

Δ(ωi, ωj|W), (4.7)

max
WTW=Id

[ ∑
1≤i<j≤c+1

(Δ(ωi, ωj|W))−1

]−1

, (4.8)

Due to the characteristic of the geometric and the harmonic means, they adap-

tively put large weights on close class pairs, and thus can achieve better class

separation than LDA.

However, all criteria above still suffer from the limitation that the separation

of all class pairs cannot be guaranteed. Figure 4.2 shows the corresponding results

of LDA, GMSS, and HMSS on the toy example shown in Figure 4.1. It can be

observed that LDA tends to merge class 2 and class 3 together, and, by contrast,

GMSS and HMSS give improved class separation. However, unlike MMDA, none

of them is able to separate all class pairs.
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(b) Histogram of three classes projected

onto the LDA direction
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(c) Plots of pairwise distance and the

geometric-mean pairwise distance
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(d) Histogram of three classes projected

onto the GMSS direction
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(e) Plots of pairwise distance and the

harmonic-mean pairwise distance
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(f) Histogram of three classes projected

onto the HMSS direction

Figure 4.2: LDA, GMSS, and HMSS for three Gaussian distributions on the

2-dimensional space.
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4.2.2.2 MMDA vs. the Bayes Optimal Criterion

Blow, we compare MMDA and the Bayes optimal criterion, i.e., Bayes error

minimization. We apply the three-class problem in Schervish [1984], which con-

tains three standard Gaussian distributions in the 2-dimensional space, and show

the difference between MMDA 1-dimensional subspace and the Bayes optimal

1-dimensional subspace. According to Hamsici and Martinez [2008], the Bayes

optimal 1-dimensional subspace can be obtained by

min
v

Φ
(
vT (μ1 − μ2)/2

)
+ Φ

(
vT (μ2 − μ3)/2

)
, (4.9)

where μi, i = 1, 2, 3, are the class means, the vector v represents the 1-dimensional

subspace, and Φ(·) is the cumulative distribution function of the standard Gaus-

sian distribution. It is required that vTμ1 ≤ vTμ2 ≤ vTμ3, according to [10].

Let ‖μ1 − μ2‖ = d12, ‖μ2 − μ3‖ = d23, and the angle between vectors (μ1 − μ2)

and (μ2 − μ3) be α0. Then (4.9) can be rewritten as a maximization problem

with respect to the angle α between (μ2 − μ3) and v, i.e.,

max
α

Φ (−d12 cos(α)/2) + Φ (−d23 cos(α0 − α)/2) . (4.10)

By taking derivative of (4.10) with respect to α, and setting it to be zero, we

arrive at the Bayes optimal solution αopt and

exp
(− (d12 cos(αopt))

2 /8
)

exp
(− (d23 cos(α0 − αopt))

2 /8
) =

d23 sin(α0 − αopt)

d12 sin(αopt)
= γopt (4.11)

In general, γopt �= 1, and suppose γopt > 1 without loss of generality, which

implies d12 cos(αopt) < d23 cos(α0 − αopt). It shows that the minimum pairwise

distance is determined by min{d12 cos(αopt), d23 cos(α0−αopt)}, and thus one can

increase the minimum distance by moving α from αopt to zero, until d12 cos(αopt) =

d23 cos(α0 − αopt) for a certain α, or letting α = 0 if this equation cannot be

achieved. Therefore, the Bayes optimal criterion does not maximize the minimum

distance of all class pairs, though it minimizes the over-all classification error. In

contrast, MMDA duly concerns the separation of all classes. Figure 4.3 shows

the corresponding results of BLDA on the toy example used in Figure 4.1.
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Figure 4.3: BLDA for three Gaussian distributions on the 2-dimensional space.

4.3 Sequential Convex Relaxation

The optimization problem in MMDA (4.3) is hard to solve directly. First, the

inner minimization is over discrete variables i and j, which makes the objective

function for the outer maximization nonsmooth. Second, the orthonormal con-

straints are also difficult to deal with in general, except for the spectrum analysis

based problems, such as PCA Jolliffe [2002] and LDA Fisher [1936] Rao [1948].

In this section, we propose to solve (4.3) approximately, by developing a sequen-

tial convex relation based algorithm. Specifically, each convex relation leads to a

semidefinite programming (SDP) problem, for which efficient solver exists when

the size of the problem is moderate.

4.3.1 Global SDP Relaxation

Recall the optimization problem of MMDA

max
W

min
1≤i<j≤c+1

Tr(WTDijW)

subject to WTW = Id.
(4.12)

By introducing a matrix variable X = WWT and an auxiliary scale variable t,

and further utilizing the invariant property of trace, Tr(WTDijW) = Tr(DijX),
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we can equivalently transform (4.12) into

min −t

subject to Tr(DijX) ≥ t, 1 ≤ i < j ≤ c+ 1

X = WWT

WTW = Id.

(4.13)

The objective function and the trace constraints in (4.13) are easy to deal with,

since they are linear with respect to (t,X). The difficulty still lies in the complex

constraints on X. Next, we introduce a theorem, with which we can relax these

constraints into convex ones.

Theorem 4.1. Overton and Womersley [1992] Let Ω1 = {X : X = WWT ,WTW =

Id} and Ω2 = {X : Tr(X) = d, 0 � X � Ic}, wherein W is of the size c by d, and

X has dimension of c by c. The second condition 0 � X � I means that both X

and I−X are positive semidefinite. Then Ω2 is the convex hull of Ω1, and Ω1 is

the set of extreme points1 of Ω2.

According to Theorem 4.1, Ω2 is a convex relaxation of Ω1, and it is the

tightest convex relaxation since Ω2 is the convex hull of Ω1. Using this result, we

can relax (4.13) to the convex problem below

min −t

subject to Tr(DijX) ≥ t, 1 ≤ i < j ≤ c+ 1

Tr(X) = d

0 � X � Ic.

(4.14)

Problem (4.14) is a semidefinite programming (SDP) problem, though not in

a canonical form. We call it the global SDP relaxation of MMDA, in contrast

to the local SDP relaxation developed afterwards. Denote by Xopt the optimal

solution of (4.14). If Xopt has rank d, then the eigenvectors associated to nonzero

eigenvalues consist of the optimal solution of MMDA (4.12). However, in general,

the rank of Xopt is not exactly d, and to get a c × d projection matrix W, we

1A point x of a convex set S is an extreme point if only if it cannot be expressed as a convex
combination of other points in S̄, which is the closure of S.
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eigendecomposeXopt and use its first d eigenvectors to construct an approximately

optimal solution Wapp of (4.12).

4.3.2 Local SDP Relaxation

The key point of the above global SDP relaxation is to relax the original

feasible set Ω1 to its convex hull. Though such relaxation is commonly used

in many problems d’Aspremont et al. [2007], it could be relatively loose. This

is because Ω1 only contains extreme points of Ω2, or in other words, too many

infeasible points are contained in Ω2. To address this problem, we develop a local

SDP relaxation below, which makes relaxation only around a properly selected

initial point X0 in Ω1. The Theorem 4.2 below will be used in constructing the

local SDP relaxation.

Theorem 4.2. Let Ω1 be the same as in Theorem 3.1, and Ω3 = {X : Tr(X) =

d, 0 � X � Ic, det(X + δIc) = (1 + δ)dδc−d}. Then, Ω3 is equivalent to Ω1, for

any δ > 0.

Proof. Let the eigenvalues of X be λi, 1 ≤ i ≤ c, and then the constraints in Ω3

is equivalent to 0 ≤ λi ≤ 1,
∑

i λi = d, and
∏

i (λi + δ) = (1 + δ)dδc−d. Both the

left hand side and the right hand side of the last equation on λi are polynomial

functions of δ, and the right hand side has only root of 0 or −1. Thus, λi should

be either 0 or 1 to keep the equality between the two polynomial functions, which

meets the orthonormal constraints in Ω1. The equivalence between Ω1 and Ω3

is immediate. It can be further proved that det(X + δIc) ≤ (1 + δ)dδc−d, for

Tr(X) = d, 0 � X � Ic. This completes the proof.

Based on Theorem 4.2, we consider a local convex relaxation around a given

point X0 in Ω3 (which is also in Ω1), and particularly we set X0 = WappW
T
app,

wherein Wapp is the projection matrix obtained from the global convex relaxation

(4.14). The only nonconvex condition in Ω3 is the determinant constraint, so we

apply the first order Taylor expansion to approximate det(X+ δI), which gives

det(X+ δIc) ≈ det(X0 + δIc) + det(X0 + δIc)Tr
(
(X0 + δIc)

−1(X−X0)
)
.

(4.15)
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Since we are only interested in a point X ∈ Ω3, i.e., in the original feasible set, it

is reasonable to restrict

det(X+ δIc) = det(X0 + δIc) = (1 + δ)dδc−d, (4.16)

which together with (4.15) implies

(1 + δ)dδc−d
∣∣Tr ((X0 + δIc)

−1(X−X0)
)∣∣ ≤ ε, (4.17)

where ε is an upper bound on the high order infinitesimal of the expansion (4.15).

Rearranging (4.17), we get{
tr
(
(X0 + δIc)

−1X
) ≤ (1 + η)tr

(
(X0 + δIc)

−1X0

)
tr
(
(X0 + δIc)

−1X
) ≥ (1− η)tr

(
(X0 + δIc)

−1X0

)
,

(4.18)

where η = ε/δc−d. In (4.18), the parameter δ specifies the normal direction of

the hyper-plane given by the linear term tr
(
(X0 + δI)−1X

)
: when δ approaches

to zero, this direction becomes parallel to the eigenspace associated with the 0

eigenvalue of X0; when δ approaches to infinity, no particular direction is pre-

ferred. In this paper, we set δ = 1, which implies we set a 2 to 1 weighting ratio

on the eigenspaces associated with 0 and 1 eigenvalues of X0.

By combining (4.18) with (4.14), we get the local SDP relaxation of (4.12)

around an initial point X0

min −t

subject to tr (AijX) ≥ t, 1 ≤ i < j ≤ c+ 1

tr(X) = d

0 ≤ X ≤ Ic

tr
(
(X0 + Ic)

−1X
) ≤ (1 + η)tr

(
(X0 + Ic)

−1X0

)
tr
(
(X0 + Ic)

−1X
) ≥ (1− η)tr

(
(X0 + Ic)

−1X0

)
.

(4.19)

In (4.19), the parameter η controls the volume of the feasible set determined by

the local relaxation (i.e., the pair of inequalities). The smaller η is, the smaller the

volume of the feasible set of (4.19) will be, and when η is exactly 0, the feasible

set of (4.19) will degenerate to a single point X0. Alternatively, if η = ∞, the
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last two inequalities in (4.19) will be satisfied automatically, and in this case the

local SDP relaxation reduces to the global relaxation.

4.3.3 Iterative Local SDP Relaxation

Further, we suggest using (4.19) iteratively. Suppose the optimal solution of

(4.19) in the k-th iteration is X
(k)
opt, we construct the projection matrix W

(k)
app by

using the first d eigenvectors of X
(k)
opt. Then, we set X

(k+1)
0 = W

(k)
appW

(k)T
app in (4.19)

and do the next iteration. In addition, the parameter η(k) in the iterations is set

as a decreasing sequence to 0, analogous to an “annealing” process. According

to the previous discussion on the parameter η, the feasible set of (4.19) shrinks

with the decreasing of η(k). When η(k) decreases to 0, the feasible set of (4.19)

will converge to a particular single point X
(k)
0 , and thus we can get a converged

projection matrix W
(k)
app. In this chapter, we set η(k) as a sequence starts from

10−2 and decreases to 10−6 in 20 iterations. Algorithm 1 summarizes the pseudo

code for the iterative Local SDP relaxation procedure above.

Algorithm 1 Iterative Local SDP Relaxation for MMDA

Input: Sample means data μ̂i, i = 1, 2, ..., c+ 1.
Output: Projection matrix W ∈ R

c×d.

Step 1. Calculate distance matrix Dij, 1 ≤ i < j ≤ c+ 1, by (4.2).
Step 2. Solve the global SDP relaxation (4.14), obtaining Xopt. Construct

Wapp by the first d eigenvectors of Xopt. Let X
(1)
0 = WappW

T
app.

Step 3. Set η(k), k = 1, 2, ..., K, as a decreasing sequence to 0.
for k = 1 to K do
Solve the local SDP relaxation (4.19) with η = η(k), and X0 = X

(k)
0 ,

obtaining X
(k)
opt. Construct W

(k)
app by the first d eigenvectors of X

(k)
opt. Let

X
(k+1)
0 = W

(k)
appW

(k)T
app .

end for
Step 5. Set W = W

(K)
app .

Remark 4.2. The original MMDA problem (4.12) is nonconvex and thus has

multiple local optima. However, it is worth emphasizing that its feasible set

(equivalent to Ω1) only contains extreme points of its convex hull Ω2, and thus
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has no interior point, which makes conventional gradient based methods difficult

to be applied, because any finite step line search will exceed the feasible set.

Remark 4.3. Algorithm 1 requires solving several SDP problems and thus is

generally time-consuming compared against conventional spectral decomposition

based dimension reduction algorithms, such as PCA and LDA. The worst case

computational complexity of interior-point methods for SDP is O(m2
0n

2
0), where

m0 is the number of variables and n0 is the size of the problem. For the proposed

local SDP relaxation (4.19), m0 = c(c+1)/2+1, wherein c(c+1)/2 is the number

of independent variables in the symmetric matrix X and 1 is for the variable t,

and n0 = 2c+c(c+1)/2+4, wherein 2m is for the two-side inequality 0 � X � I,

c(c + 1)/2 is the number of trace inequalities Tr(DijX) ≥ t, 1 ≤ i < j ≤ c + 1,

and 4 is for the trace equality Tr(X) = d, which leads to 2 inequalities, and the

last 2 trace inequalities in (4.19). Thus, the computational complexity of (4.19)

is O(c8), determined by the class number c + 1. Therefore, the SDP relaxation

based algorithm is applicable for moderate class number c + 1. Empirically, we

found that for c ≤ 50, our algorithm is acceptably efficient. In future work, we

will consider developing more efficient algorithm for problems with large class

number c + 1. So far, we use off-the-shelf package to solve the SDP problem in

MMDA. One of these solvers is SDPA-M Fujisawa et al. [2000], which can tackle

SDP problems with size of thousands or even tens of thousands for low rank or

sparse problems.1 On face recognition experiments in Section 4.4.2, the training

time of Algorithm 1 is within 10 minutes, all implemented on a PC with 3.4

GHz CPU frequency and 2 GB memory. Besides, for moderate size problems,

e.g., on the synthetic dataset experiments in Section 4.4.1, the disciplined convex

programming MATLAB software CVX Grant and Boyd Grant and Boyd [2010]

is also applicable.

Remark 4.4. Iterative using of the convex relaxation is a common used tech-

nique in solving problems with rank constraints Dattorro [2008] and low rank

approximations Fazel et al. [2003]. MMDA (4.12) can be casted into a rank con-

strained problem by adding to (4.14) the constraint rank(X) = d . With the rank

1Low rank or sparse SDP problem refers to the case where the constraint matrices are low
rank or sparse.
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constraint the set Ω2 becomes equivalent to the set Ω1, and thus (4.14) is no more

a relaxation but an equivalent problem of (4.12). The iterative method used in

this paper is different from those used in Dattorro [2008] and Fazel et al. [2003].

The proposed method approximately solves a max-min optimization problem,

while that in Dattorro [2008] solves the feasible problem with a rank constraint

and thus is not applicable for MMDA. The log-det heuristic in Fazel et al. [2003]

is similar to what we have done in the local convex relaxation, but they are in-

trinsically different. It is utilized as the objective to encourage low rank solution

in Fazel et al. [2003] while it serves as a local constraint in this paper. Besides, it

is worth emphasizing that both methods Dattorro [2008] and Fazel et al. [2003],

and the proposed method in this paper, cannot guarantee a global optimal solu-

tion in general cases. Indeed, the applying of SDP relaxation to rank constrained

optimization is still under investigation.

4.4 Empirical Evaluations

4.4.1 Experiments on Synthetic Datasets

In this section, we conduct statistical experiments on synthetic datasets to demon-

strate the effectiveness of MMDA.

4.4.1.1 Data Generation and Evaluation Methods

Two sets of synthetic data are generated. For the first set, we consider a 7-

class classification problem represented by homoscedastic Gaussian distributions

in R
10. The common covariance matrix is set as I10, while the class means are

randomly sampled from a 10-dimensional Gaussian distribution with zero mean

and a covariance matrix 2I10. We sample the class means 500 times, and for each

time of their realizations we generate 200 samples for each of the 7 classes, 100

for training and the rest 100 for test. Thus, we have 500 independent groups of

training and test samples. We refer to this dataset as the uniformly distributed

dataset. For the second dataset, we use the same procedure to generate the

data, except that when we sample the means of the 7 classes from the Gaussian

distribution we add a bias of 10 to the first dimension of the means of the first
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three classes. Such bias enforces the first three classes to be distant from the

rest four, which is useful to test whether the subspace selection methods will be

affected by the nonuniform distribution of classes. And we refer to this dataset

as the nonuniformly distributed dataset.

We compared MMDA against four other methods, i.e., the conventional LDA,

and the recently developed GMSS Tao et al. [2009], HMSS Bian and Tao [2008],

and BLDA Hamsici and Martinez [2008]. In all experiments, we first select the

subspace with varying dimensionality from 1 to 6 by performing different methods

on the training dataset, and then do classification on the test dataset by using the

nearest mean (NM) classifier on the dimension reduced subspace. We evaluate

the performance of different methods from three aspects: 1) the separation of all

class pairs, i.e, the minimum pairwise distance in the selected low dimensional

subspace; 2) the average classification error rate with the standard deviation; and

3) a 2-dimensional graphical representation of data distribution.

4.4.1.2 Results and Analyses

The minimum pairwise distances in the low dimensional subspace obtained by

different methods are averaged over the 500 independent trials, and shown in

Figure 4.4. It can be observed that, when the dimensionality is less than the class

number (7), the minimum pairwise distances achieved by different methods are

different. Specifically, LDA performs the worst, which gives the smallest minimum

pairwise distance. GMSS and BLDA are comparable to each other, HMSS is

relatively better, and MMDA performs the best. In addition, GMSS is still readily

affected by the distributions of classes in the original space. For the uniformly

distributed dataset, GMSS is superior to BLDA on most dimensions. When

the classes are nonuniformly distributed by added bias, then the performance of

GMSS degrades to be nearly overlapped with BLDA. Besides, for 1-dimensional

subspace, the minimum pairwise distance achieved by the Bayes optimal method

BLDA is larger than GMSS and HMSS. This implies that lower classification

error generally requires larger minimum pairwise distance (though not necessarily

maximized).

The test results by different methods on the two synthetic datasets are sum-

86



4. Max-Min Distance Analysis

1 2 3 4 5 6
0

1

2

3

4

5

6

Subspace Dimensionality

A
ve

ra
ge

 M
in

im
um

 P
ai

rw
is

e 
D

is
ta

nc
e

LDA
GMSS
HMSS
BLDA
MMDA

(a) The uniformly distributed dataset

2 3 4 5
0

1

2

3

4

5

6

7

Subspace Dimensionality

A
ve

ra
ge

 M
in

im
um

 P
ai

rw
is

e 
D

is
ta

nc
e

LDA
GMSS
HMSS
BLDA
MMDA

(b) The nonuniformly distributed dataset

Figure 4.4: Evaluation on synthetic datasets by minimum pairwise distance.

marized in Figure 4.5, including the average classification error rate and the stan-

dard deviation. To get a clear view of the differences among different methods, we

plot these results in the log scale. In the 6-dimensional case, all methods perform

equally, this is consistent with the fact that the c-dimensional subspace selected

by LDA contains the entire discrimination power for a c+1-class problem. How-

ever, when the dimensionality becomes lower, LDA performs worse than all other

methods. One can see that except the 1-dimensional case, MMDA has the most

competitive performance, with GMSS, HMSS and BLDA performing moderately.

In the 1-dimensional case, BLDA performs the best since it utilizes Bayes opti-

mal criterion. However, when dimensionality increases, its performance degrades,

because it utilizes a greedy method to construct high-dimensional subspaces and

thus is no more Bayes optimal.

87



4. Max-Min Distance Analysis

1 2 3 4 5 6
10−3

10−2

10−1

100

Subspace Dimensionality

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
E

rr
or

 R
at

e

LDA
GMSS
HMSS
BLDA
MMDA

(a) The uniformly distributed dataset

1 2 3 4 5 6
10−3

10−2

10−1

Subspace Dimensionality

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 C

la
ss

ifi
ca

tio
n 

E
rr

or

LDA
GMSS
HMSS
BLDA
MMDA

(b) The uniformly distributed dataset

1 2 3 4 5 6
10−3

10−2

10−1

100

Subspace Dimensionality

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
E

rr
or

 R
at

e

LDA
GMSS
HMSS
BLDA
MMDA

(c) The nonuniformly distributed dataset
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(d) The nonuniformly distributed dataset

Figure 4.5: Evaluation on synthetic datasets by the average classification error

rate and the standard deviation.

We randomly select one group of training data from each of the two synthetic

datasets, and used them to demonstrate the capability of different methods in

selecting a 2-dimensional subspace for the graphical representation of data. The

corresponding results are shown by Figure 4.6 and Figure 4.7, respectively. From

these graphs, one can see that LDA is unable to separate all classes, while GMSS,

HMSS and BLDA only give improved separation. However, in both cases, MMDA

clearly separates all classes. Besides, comparing Figure 4.6 and Figure 4.6, one

can see that that LDA, GMSS and BLDA are more likely to be affected by the

nonuniform distribution of classes, while HMSS and MMDA are more robust.
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Figure 4.6: 2-Dimensional data representation on the uniformly distributed

dataset.
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Figure 4.7: 2-Dimensional data representation on the uniformly distributed

dataset.
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4.4.2 Experiments on Face Recognition

We apply MMDA to face recognition and compare it against LDA, GMSS and

HMSS. We do not perform BLDA in this experiments, as it needs too many

computational costs due to the enumeration of the order of different class centers’

locations. Here, we use the same four benckmark datasets as used Chapter 3, i.e.,

“Feret”, “Orl”, “Pie”, and “Yale”, and adopt the same experimental setting. For

a brief description of these datasets and the experimental setting, please refer to

Section 3.3.

On each dataset, we first perform LDA with the block-diagonal regularization

(using the deterministic variable partition), and use it as the baseline method

for comparison. Then, we perform GMSS, HMSS, and MMDA, for further di-

mension reduction. The performance of different methods are shown by Figure

4.8, where the best dimensionality for each method is tuned according to the

average performance over 20 random trials. From these results, we have two ob-

servations: 1) though all based on homoscedastic Gaussian assumption, GMSS,

HMSS and MMDA show improved performance over LDA; 2) MMDA achieves

the best performance because it duly guarantees the separation of all classes.
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Figure 4.8: Evaluation on face recognition experiments
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Chapter 5

Minimizing Asymptotic Nearest

Neighbor Classification Error for

Nonparametric SLDR

5.1 Introduction

In previous chapters, all the SLDR methods studied, including LDA Fisher [1936]

Rao [1948] and its extensions, e.g., aPAC Loog et al. [2001], GMSS Tao et al.

[2009], HMSS Bian and Tao [2008] and MMDA, assume data are sampled from

homoscedastic Gaussian distributions. Certainly, as we have already seen, such

assumption provides considerable feasibility for both theoretical analysis and al-

gorithmic design. However, in practice, real world data are usually distributed

by more general distributions. If homoscedastic Gaussian distributions fit the

data well, though not exactly, above mentioned methods are still preferable and

may have acceptable performance. This is because simple models generally have

better generalization ability with finite training samples. But when the fitness is

highly invalid, these methods will not be applicable any more.

One popular way to extent above methods is based on the heteroscedastic

Gaussian assumption, i.e., allowing different classes of data to have distinct co-

variance matrices. A number of SLDR methods have been proposed in this di-

rection, using different approaches to measure the discrimination power among

93



5. Minimizing NN Error

heteroscedastic Gaussian distributions. For example, Decell and Mayekar [1977],

De la Torre and Kanade [2005], and Tao et al. [2009] use the Kullback-Leibler

divergence as the measurement, Loog and Duin [2004] and Saon and Padmanab-

han [2001] use the Chernoff distance or the Bhattacharyya bound, and Nenadic

[2007] defines the so-called μ-measure for the same purpose.

In order to deal with more general data distributions, nonparametric method

has been introduced to SLDR. Fukunaga and Mantock [1983] proposed the first

nonparametric SLDRmethod, called nonparametric discriminant analysis (NDA).

Maximizing mutual information (MMI) is another nonparametric SLDR method

proposed in Torkkola [2003]. In contrast to the heuristic treatment in NDA, MMI

follows a more principal approach. First, it uses the kernel method to estimate

the probability density of each class, and then it optimizes the projection matrix

by maximizing the mutual information between class labels and the transformed

samples in the dimension reduced space. The motivation behind MMI is that

maximizing the mutual information is equivalent to minimizing the conditional

entropy, and the latter can be deemed as a proxy of the Bayes optimal criterion

since the conditional entropy provides an upper bound of Bayes error.

This chapter proposes a new method for nonparametric SLDR, which op-

timizes the projection matrix by minimizing the asymptotic nearest neighbor

classification error (MNNE). According to Cover and Hart [1967], the asymp-

totic nearest neighbor classification error (briefly NN error) upper bounds Bayes

error by a factor of at most 2. Therefore, MNNE can be regarded as a proxy

of the Bayes optimal criterion for SLDR. One of our contributions is that we

prove MNNE is superior to MMI and minimizing the Bhattacharyya in terms

of the closeness to the the Bayes optimal criterion. We derive an algorithm for

MNNE, based on kernel density estimation and a gradient descent method on the

Grassmann manifold. Empirical evaluations on real datasets show the promis-

ing performance of MNNE compared with to the state-of-the-art nonparametric

SLDR methods.

The rest of this chapter is organized as follows. In Section 5.2, we present

MNNE and show its superiority as a proxy of the Bayes optimal criterion. In

Section 5.3, we derive an algorithm for MNNE. Section 5.4 reports experimental

results on real datasets.
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5.2 Minimizing NN Error as a Proxy of the Bayes

Optimal Criterion

Suppose the joint probability distribution of the problem to be study is p(x, y),

where x ∈ R
D and y ∈ {1, 2, ..., c}. The conditional density of the i-th class is

given by pi(x) � p(x|y = i), and the corresponding prior probability is given

by πi � p(y = i). We intend to learn a projection matrix W ∈ R
D×d, d < D,

such that after the transform z = WTx, the conditional densities, p(z|y = i),

i = 1, 2, ..., c, are well separated from one another. For convenience, we still use

pi(z) to denote p(z|y = i). Then, the posterior probability of y after observing z

is given by

ηi(z) � p(y = i| z) = πipi(z)

p(z)
, (5.1)

where

p(z) =
m∑
i=1

πipi(z) (5.2)

is the marginal density.

According to Cover and Hart [1967], the NN error on p(z|y = i), i = 1, 2, ..., c,

is given by

Pnn(W) = 1−
c∑

i=1

Eη2i (z), (5.3)

where the expectation is taken with respect to p(z). Note that the NN error

Pnn(W) is a function of the projection matrix W. It can be shown that Pnn(W)

provides a lower and an upper bound of Bayes error Cover and Hart [1967]

P ∗ � 1− E

(
max

i
ηi(z)

)
, (5.4)

i.e.,

P ∗ ≤ Pnn ≤ P ∗
(
2− c

c− 1
P ∗
)
. (5.5)

Thus, we can optimize W by minimizing Pnn(W), i.e., treating NN error mini-

mization as a proxy of the Bayes optimal criterion.
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5.2.1 Compared to Mutual Information

Information theory plays an important role in statistical pattern recognition For

SLDR, Torkkola [2003] proposed the maximizing mutual information criterion

(MMI), which optimizes the projection matrix W by maximizing the mutual

information I(Y ;Z) between the class label y and the dimension reduced sample

z.

According Cover and Thomas [1991], the mutual information can be decom-

posed into

I(Y ;Z) = H(Y )−H(Y |Z), (5.6)

wherein H(Y ) is the entropy of the prior probability p(y = i), and

H(Y |Z) = −
∫

p(z)

(∑
y

p(y| z) log (p(y| z))
)
dz (5.7)

is the (averaged) conditional entropy of y given z. Thus, maximizing the mutual

information I(Y ;Z) is equivalent to minimizing the conditional entropy H(Y |Z).
It has been shown that H(Y |Z) is upper and lower bounded by Bayes error P ∗

Hellman and Raviv [1970] Fano [1961], i.e.,

P ∗ ≤ 1

2
H(Y |Z) ≤ 1

2
H(P ∗) +

1

2
P ∗ log(m− 1), (5.8)

where the righthand side inequality is known as the Fano’s inequality Fano [1961],

and H(P ∗) = −P ∗ log(P ∗) − (1 − P ∗) log(1 − P ∗) is the entropy of P ∗. Thus,

(5.6) and (5.8) suggest that maximizing mutual information I(Y ;Z) is equivalent

to minimizing an upper bound of Bayes error P ∗.

From above discussions, we see that both Pnn and 1
2
H(|Z) provide an upper

bound of P ∗. However, by the following Theorem 5.1, we show that the bound

provided by Pnn is tighter.

Theorem 5.1. Given P ∗, Pnn, and
1
2
H(Y |Z), the following inequalities hold

P ∗ ≤ Pnn ≤ 1

2
H(Y |Z). (5.9)

Proof. The lefthand side inequality in (5.9) is due to the optimality of Bayes
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Figure 5.1: (a) The conditional NN error rnn(z) and half the posterior entropy
1
2
H(Y |Z = z) in binary classification. (b) Upper and lower bound of Bayes error

P ∗ by the NN error Pnn and half the conditional entropy 1
2
H(Y |Z) in binary

classification.

error, and thus we only need to prove the righthand side inequality. According

to (5.7), the conditional entropy H(Y |Z) can be rewritten as

H(Y |Z) = E (H(Y |Z = z)) . (5.10)

By (5.10) and (5.3), it is sufficient to show that

1−
c∑

i=1

η2i (z) ≤
1

2
H(Y |Z = z). (5.11)

We prove (5.11) using mathematical induction. When c = 2, it holds

1− η21 − η22 ≤ 1

2
(−η1 log η1 − η2 log η2). (5.12)

Figure 5.1 (a) gives an illustration of (5.12), and the rigorous proof is given in

Section 5.5. Next, we suppose (5.11) holds for c = m and prove the case for

c = m+ 1.
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According to Ash [1965], it holds

H(η1, η2, ..., ηm, ηm+1) = H(η1, η2, ..., ηm−1, ηm + ηm+1)

+ (ηm + ηm+1)H

(
ηm

ηm + ηm+1

,
ηm+1

ηm + ηm+1

)
.

(5.13)

By combining (5.11) and (5.13), we have

1− η21 − η22−, ...,−η2c + η2c+1

=1− η21 − η22−, ...,−(ηc + ηc+1)
2 + 2ηmηm+1

≤1

2
H(η1, η2, ..., ηc−1, ηm + ηm+1) + 2ηmηm+1

=
1

2
H(η1, η2, ..., ηm, ηm+1)

− 1

2
(ηm + ηm+1)H

(
ηm

ηm + ηm+1

,
ηm+1

ηm + ηm+1

)
+ 2ηmηm+1.

(5.14)

Since ηm + ηm+1 ≤ 1, we have

2ηmηm+1 ≤ 2ηmηm+1

ηm + ηm+1

=(ηm + ηm+1)

(
2

ηm
ηm + ηm+1

ηm+1

ηm + ηm+1

)
=(ηm + ηm+1)

(
1−

(
ηm

ηm + ηm+1

)2

−
(

ηm+1

ηcy + ηm+1

)2
)

≤1

2
(ηm + ηm+1)H

(
ηm

ηcy + ηm+1

,
ηm+1

ηm + ηm+1

)
,

(5.15)

where the last inequality is obtained by treating ηm
ηm+ηm+1

and ηm+1

ηm+ηm+1
as the

posterior probabilities in case of c = 2 and applying (5.12). Finally, (5.14) and

(5.15) give

1− η21 − η22−, ...,−η2m − η2m+1 ≤
1

2
H(η1, η2, ..., ηm, ηm+1). (5.16)

We have proved that Pnn provides a tighter upper bound of P ∗ than 1
2
H(Y |Z).
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Reversely, by taking binary classification for example, we show that the uncer-

tainty of P ∗ given Pnn is smaller than given 1
2
H(Y |Z). As P ∗ cannot exceed Pnn

and 1
2
H(Y |Z), we are interested in an lower bound of P ∗. To this end, we con-

vert1 (5.5) and (5.8) to lower bounds of P ∗, and plot them as functions of Pnn and
1
2
H(Y |Z) in Figure 5.1 (b). One can see that given Pnn the largest uncertainty

of P ∗ (i.e., the largest deviation from the upper bound to the lower bound of P ∗)

is 0.123, while the largest uncertainty of P ∗ is 0.157 given 1
2
H(Y |Z).

5.2.2 Compared to Bhattacharyya Bound

For binary classes, the Bhattacharyya Bound is defined by

B =
√
π1π2

∫ √
p1(z)p2(z)dz. (5.17)

In multiple classes problem, it can be extended to Saon and Padmanabhan [2001]

B =
∑

1≤i<j≤c

√
πiπj

∫ √
pi(z)pj(z)dz. (5.18)

It has been proved that the Bhattacharyya Bound B in (5.18) provides an upper

bound for the Bayes error P ∗. By the following Theorem 5.2, we show that Pnn

is tighter than B in bounding P ∗.

Theorem 5.2. Given P ∗, Pnn and B, the following inequality holds

P ∗ ≤ Pnn ≤ B. (5.19)

1Since the Fano’s inequality cannot be convert to lower bound of P ∗ analytically, we used
numerical method.
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Proof. We only need to show Pnn ≤ B. By (5.18), we have

B =
∑

1≤i<j≤c

√
πiπj

∫ √
pi(z)pj(z)dz

=

∫ ∑
1≤i<j≤c

√
πiπjpi(z)pj(z)

p(z)p(z)
p(z)dz

= E

( ∑
1≤i<j≤c

√
ηi(z)ηj(z)

)
.

(5.20)

Further, by (5.3), we have

Pnn = E

(
1−

c∑
i=1

η2i (z)

)
= E

(
2

∑
1≤i<j≤c

ηi(z)ηj(z)

)
. (5.21)

Thus, it is sufficient to show∑
1≤i<j≤c

√
ηi(z)ηj(z) ≥ 2

∑
1≤i<j≤c

ηi(z)ηj(z). (5.22)

Actually, this holds according to the following arguments.∑
1≤i<j≤c ηi(z)ηj(z)∑

1≤i<j≤c

√
ηi(z)ηj(z)

≤ max
1≤i<j≤c

ηi(z)ηj(z)√
ηi(z)ηj(z)

= max
1≤i<j≤m

√
ηi(z)ηj(z) ≤ max

1≤i<j≤c

ηi(z) + ηj(z)

2

≤ max
1≤i<j≤c

1

2
=

1

2
.

(5.23)
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5.3 Algorithm

In this section, we derive an algorithm for MNNE, i.e., minimizing the NN error

Pnn (5.3). First, we rewrite Pnn as below

Pnn(W) =1−
c∑

i=1

Eη2i (z) = 1−
c∑

i=1

∫
η2i (z)p(z)dz

=1−
c∑

i=1

∫
ηi(z)

p(z, y = i)

p(z)
p(z)dz

=1−
c∑

i=1

∫
ηi(z)p(z, y = i)dz

=1− Ep(z,y)ηy(z).

(5.24)

Accordingly, MNNE can be formulated as the optimization below,

max
WTW=Id

J(W) = Ep(z,y)ηy(z). (5.25)

where the orthonormal constraints ensures W not to be degenerated.

5.3.1 Kernel Density Estimation

In practice, we have no access to the true joint distribution p(z, y) and the pos-

terior probability ηi(z). Thus, to implement MNNE (5.25), we have to esti-

mate J(W) empirically. Suppose we have a training dataset D = {(xj, yj)|j =

1, 2, ..., n}. With projection matrix W, we have zj = WTxj, j = 1, 2..., n. By

using the plug-in method, an empirical estimate of J(W) is given by

Ĵ(W) =
1

n

n∑
j=1

η̂yj(zj) =
1

n

n∑
j=1

p̂(zj|y = yj)p̂(y = yj)

p̂(zj)
. (5.26)

In (5.26), p̂(y = yj) is easy to be estimated by using frequency of each class in

the training dataset, i.e.,

p̂(y = yj) =
nyj

n
, (5.27)

where nyj is the number of training samples in the class that (xj, yj) belongs to.
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For p̂(zj|y = yj) and p̂(zj), we apply kernel based density estimation. Specif-

ically, we use the Gaussian kernel

Kh(u) = h−d(2π)−d/2 exp

{
− 1

2h2
uTu

}
, u ∈ R

d, (5.28)

where h is a bandwidth to be determined. Using the leave-one-out principle, we

have the following kernel based estimates Parzen [1962]

p̂(zj|y = yj) =
1

nyj − 1

∑
yk=yj ,k 
=j

Kh(zj − zk), (5.29)

p̂(zj) =
1

n− 1

∑
k 
=j

Kh(zj − zk). (5.30)

Now, two problems still remain: first, how to select the bandwidth h; second,

how to minimize Ĵ(W) under the orthonormal constraints WTW = Id. We will

address these two problem in following subsections.

5.3.2 Bandwidth Selection

We derive a convenient formula to select the bandwidth h used in the estimates

given in (5.29) and (5.30). In particular, we use the asymptotic mean squared

error (AMISE) criterion Silverman [1986], which trades the squared bias off the

variance of the estimator,

AMISE(H) =
1

4
μ2
2(K)

∫
[tr{HTHp(u)H}]2du+

1

ndet(H)
‖K‖22, (5.31)

where Hp(u) is the Hessian of the density p(u) to be estimated, K is the kernel

function, H is the bandwidth matrix, and n is the sample size. In our case, K is

the Gaussian kernel and the bandwidth matrix is H = hId. Since the true density

p(z|y) is unknown, we adopt the commonly used rule-of-thumb Silverman [1986]

to replace the unknown true density by a reference density q(z), e.g., a Gaussian

distribution with its covariance matrix equal to the sample covariance. To sim-

plify calculation, we conduct whitening preprocessing before applying MNNE so

that the sample covariance is identity matrix, and thus q(z) = N(0, I). Based
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on above discussions, AMISE (5.31) for the conditional density p(z|y = i) can be

simplified as,

AMISE(h) =
2d+ d2

2d+4πd/2
h4 +

1

2dπd/2nihd
, (5.32)

where ni is the training sample number of the i-th class. Taking the derivative

with respect to h and setting it as 0, we get the optimal hopt that

hopt =

(
4

d+ 2

)1/d+4

n
−1/(d+4)
i . (5.33)

Moreover, since the same bandwidth is used for all conditional densities p(z|y =

i), i = 1, 2, ..., c, we further replace ni in (5.33) by n/c to balance the training

sample number of different classes, which gives the final bandwidth

hopt =

(
4m

(d+ 2)n

)1/d+4

. (5.34)

Note that 5.34 is obtained only from a theoretical viewpoint and involves

many approximations. For better performance, one can use hopt as an initial guess

and find the best bandwidth for the problem at hand by using cross-validation

around hopt. However, in all experiments in this chapter, we found that hopt works

favorably.

5.3.3 Optimization on the Grassmann Manifold

Empirical, MNNE needs to solve the following optimiazation

min
WTW=Id

Ĵ(W) =
1

n

n∑
j=1

p̂(zj|y = yj)p̂(y = yj)

p̂(zj)
. (5.35)

A basic algorithm for solving (5.35) is the gradient descent method combined

with projection onto the feasible set WTW = Id. Specifically, in each iteration,

we first update

Wk+1 ← Wk + τ∇Ĵ(W)
∣∣
W=Wk

, (5.36)
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where τ is the learning rate, and then conduct Gram-Schmidt orthogonalization

on Wk+1. Such algorithm is commonly used in many works Tao et al. [2009]

Torkkola [2003]. However, it has a key drawback that the objective value Ĵ(Wk)

is not necessarily monotonically decreasing due to the orthogonalization.

Note that the orthonormal constraint WTW = Id actually defines a Grass-

mann manifold GD,d Edelman et al. [1998]. If we perform gradient descent on

GD,d, then the orthonormal constraint can be automatically satisfied. Suppose

the current solution from the k-th iteration isWk, and the corresponding gradient

∇J(W)
∣∣
W=Wk

is given by

∇J(W)
∣∣
W=Wk

=
1

n

n∑
j=1

p̂(y = yj)

p̂(zj)
∇p̂(zj|y = yj)

∣∣
W=Wk

− 1

n

n∑
j=1

p̂(y = yj)p̂(zj|y = yj)

p̂2(zj)
∇p̂(zj)

∣∣
W=Wk

,

(5.37)

where

∇p̂(zj|y = yj)
∣∣
W=Wk

=
1

(nyj − 1)h2

∑
yk=yj ,k 
=j

Kh(zj − zk)(zj − zk)(zj − zk)
TWk,

(5.38)

and

∇p̂(zj)
∣∣
W=Wk

=
1

(n− 1)h2

∑
k 
=j

Kh(zj − zk)(zj − zk)(zj − zk)
TWk. (5.39)

Instead of performing line search in the direction of −∇J(W)
∣∣
W=Wk

, we first

projection ∇J(W)
∣∣
W=Wk

onto GD,d, which is given by Edelman et al. [1998]

Tk = ∇Ĵ(W)
∣∣
W=Wk

−WkW
T
k∇Ĵ(W)

∣∣
W=Wk

, (5.40)

and then, perform search along the geodetic determined by Wk and Tk on GD,d.

According to Edelman et al. [1998], the geodetic is given by

g(t) = WkV cos(Σt)VT +U sin(Σt)VT , (5.41)
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whereUΣVT is the compact singular value decomposition (SVD) of Tk. Suppose

the minimum point of (5.41) is tmin, we can update the projection matrix by

Wk+1 = g(tmin).

Algorithm 2 summarizes the pseudo code of the Grassmann manifold based

gradient descent method.

Algorithm 2 Grassmann Manifold based Gradient Descent Method for MNNE

Initialization: W0 such that WT
0 W0 = Id. , T0 = G0 − W0W

T
0 G0, and

H0 = −G0.
for k=0,2,... do
Step. 1 Calculate gradient ∇Ĵ(W)

∣∣
W=Wk

by (5.37) and its projection Tk

by (5.40).
Step. 2 Perform compact SVD Tk = UΣV.
Step. 3 Minimize Ĵ(g(t)) over t, where

g(t) = WkV cos(Σt)VT +U sin(Σt)VT .

Step. 4 Update Wk+1 = g(tmin).
Step. 5 Stop if |Ĵ(Wk+1 − Ĵ(Wk)|/|Ĵ(Wk)| < ε.

end for

5.4 Empirical Evaluations

In this section, we evaluate the performance of MNNE and compare it with other

nonparametric SLDR methods.

5.4.1 Bandwidth Selection

We evaluation the proposed bandwidth selection method for MNNE on two

datasets, “BreastCancer” and “‘Wine”, both from the UCI machine learning

repository Blake and Merz [1998]. The BreastCancer dataset contains 699 in-

stances from 2 classes in R
9, while the Wine dataset contains 178 instances

from 3 classes in R
13. On each dataset, we randomly select 80% samples for

training and use the rest 20% for test. On each dataset, we first reduce the

dimensionality to 2 by performing MNNE, and then use the NN rule as a classi-

fier for classification. The bandwidth hopt is calculated by using (5.33), where
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d = 2, c = 2 and n = 560 for the BreastCancer dataset, and m =3 and

n = 142 for the Wine dataset. We train MNNE with different bandwidths

h = {4hopt, 3hopt, 2hopt, hopt, hopt/2, hopt/3, hopt/4}. The training NN error P̂nn

is calculated by

P̂nn = 1− Ĵ(Wopt), (5.42)

where Ĵ(Wopt) is the optimal objective value of (5.26). Figure 5.2 shows the

training NN error and test NN error under different bandwidth h. One can see

that, on both datasets, as bandwidth h varies from 4hopt to hopt/4, the training

NN error P̂nn generally decreases. Especially, on the Wine dataset, the training

NN error becomes nearly zero when the bandwidth h is smaller than hopt/2.

This reflects the fact that small bandwidth will make the model better fit the

training data. However, the performance on the test data is not necessarily

improved by using a small bandwidth. The test performance on the BreastCancer

dataset is quite stable around hopt, while the test performance on the Wine dataset

becomes slightly worse when the bandwidth h is smaller than hopt/2, which implies

overfitting may have occurred. These results confirm the validity of the proposed

bandwidth selection method.

4 3 2 1 1/2 1/3 1/4
0

0.02

0.04

0.06

0.08

0.1

Bandwidth(×hopt)

Training NN Error
Test NN Error

(a) BreastCancer

4 3 2 1 1/2 1/3 1/4
0

0.04

0.08

0.12

0.16

0.2

Bandwidth(×hopt)

Training NN Error
Test NN Error

(b) Wine

Figure 5.2: Evaluation of MNNE with respect to bandwidth selection.
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5.4.2 Experiments on UCI Machine Learning Repository

We evaluate the effectiveness of MNNE for SLDR by using data classification

and visualization experiments on six datasets from the UCI machine learning

repository Blake and Merz [1998]. We compare MNNE with CC Loog and Duin

[2004], NDA Fukunaga and Mantock [1983], MMI Torkkola [2003], kernel dis-

criminant analysis (KDA) Mika et al. [1999], and LDA Fisher [1936] Rao [1948].

NDA and MMI are nonparametric methods and thus distribution-free. KDA is

also a distribution-free method, but instead of using nonparametric method it

utilizes the kernel trick, which assumes that data follow homoscedastic Gaussian

distributions in a high-dimension feature space induced by a reproducing kernel.

CC is a parametric method based on heteroscedastic Gaussian assumption.The

parameters of NDA and MMI are determined by 10-fold cross-validation on the

training dataset, while the parameter of KDA is determined by the homoscedastic

criterion in You et al. [2011].

5.4.2.1 On the ImageSeg Dataset

The “ImageSeg” dataset is commonly used for performance evaluation of SLDR

methods. It contains 2,310 samples from 7 classes in R
19. We randomly split

the whole dataset into training and test sets at a ratio of 80% to 20%. The

average performance over ten independent random splits is used for performance

evaluation. Principal component analysis (PCA) Jolliffe [2002] is performed in

each training round, keeping 99.9% of the total variance. Whitening preprocessing

is applied before all SLDR methods. The NN rule and SVM with the Gaussian

kernel are used as classifier for classification in the dimension reduced space.

Figure 5.3 shows the experimental results. A first observation is that LDA

performs nearly optimal on dimensionality 6, after which all methods have almost

equal performance. This implies that the dataset can be properly modeled by

homoscedastic Gaussian distributions. However, when the dimensionality is lower

than 6, these methods perform differently. In particular, from dimensionality 1

to 3, MNNE performs better than the other methods, because its closeness to

the Bayes optimal criterion. NDA does not work well on this dataset, while CC,

KDA and MMI only performs moderately.
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Figure 5.3: Performance evaluation on the ImageSeg dataset. Lines denote aver-
age classification error rates and bars denote standard deviations.

Figure 5.4 shows 2-dimensional visualizations of the dataset (represented by

a training dataset) obtained by using different methods. One can see that MMI

and MNNE perform better than other methods in terms of class separation.

Between MMI and MNNE, while both separate most classes, MNNE provides

more concentrated visual results, i.e., data are more concentratively distributed

with their respective classes in the 2-dimensional visualization obtained by MNNE

than in that obtained by MMI. As a result, MNNE has a classification error rate

of 0.08, which is lower than 0.13 of MMI.
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Figure 5.4: 2 dimensional visualization of data from the ImageSeg dataset.
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5.4.2.2 On the TicTacToe Dataset

The “TicTacToe” dataset contains 958 samples from 3 classes in R
9. Different

from ImageSeg, the TicTacToe dataset is highly non-Gaussian, and all 3 classes

have multi-modal. We randomly split the whole dataset into training and test sets

at a ratio of 80% to 20%. The average performance over ten independent random

splits is used for performance evaluation. Figure 5.5 shows the performance of

different methods. Due to the multi-modal property, LDA which is based on the

homoscedastic Gaussian assumption does not perform well. CC also fails due

to the parametric (heteroscedastic Gaussian) assumption. NDA and MMI show

improved performance over LDA and CC due to the nonparametric characteristic.

However, they are inferior to MNNE in terms of lower classification error rate and

higher confidence (smaller standard deviation). This can be explained via the 2

dimensional visualizations obtained by using NDA, MMI and MNNE. Figure 5.6

shows that NDA, MMI, and MNNE are able to reveal the multi-modal feature of

the dataset, but the data are only concentratively distributed with their respective

classes in the result obtained by MNNE. The concentrative property helps give a

lower classification error with and a higher confidence.
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Figure 5.5: Performance evaluation on the TicTacToe Dataset. Lines denote

average classification error rates and bars denote standard deviations.
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Figure 5.6: 2 dimensional visualization of data from the TicTacToe dataset.
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5.4.2.3 On More Datasets

Four more datasets from the UCI machine learning repository Blake and Merz

[1998] are used in our experiments, including “BalanceScale”, containing 625 sam-

ples from 3 classes in R
4, “Car”, containing 1728 samples from 4 classes in R

6,

“Ecoli”, containing 336 samples from 8 classes in R
8, and “Wine”, containing

178 samples from 3 classes in R
13. Similar to the above two experiments, we

randomly split each dataset into training/test (80%/20%) datasets. The average

performances over ten independent splits are shown in Table 5.1. One can see

that, on the first two datasets, nonparametric methods (NDA, MMI, and MNNE)

generally outperform parametric methods (LDA, CC). On the Ecoli dataset, LDA

performs competitively, which implies the dataset can be well modeled by ho-

moscedastic Gaussian distributions. On all dataset, MNNE shows promising

performance.
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Table 5.1: Performance evaluation on the BalanceScale, Car, Ecoli, and Wine
datasets: average classification error rate (standard deviation, best dimensional-
ity)

(a) By NN rule

BalanceScale Car Ecoli Wine

LDA 0.1246 (0.0254, 2) 0.0855 (0.0390, 3) 0.1832 (0.0320, 6) 0.0351 (0.0223, 2)

CC 0.1183 (0.0366, 1) 0.0448 (0.0108, 6) 0.1982 (0.0350, 7) 0.0162 (0.0342, 10)

NDA 0.1174 (0.0313, 3) 0.0341 (0.0155, 4) 0.1866 (0.0296, 6) 0.0054 (0.0114, 7)

MMI 0.1138 (0.0368, 2) 0.0364 (0.0120, 5) 0.1892 (0.0304, 5) 0.0108 (0.0140, 6)

MNNE 0.1111 (0.0297, 3) 0.0337 (0.0101, 5) 0.1868 (0.0336, 4) 0.0088 (0.0228, 9)

KDA 0.1300 (0.0428, 2) 0.0607 (0.0420, 3) 0.2162 (0.0361, 7) 0.0889 (0.0316, 2)

(b) By SVM

BalanceScale Car Ecoli Wine

LDA 0.1040 (0.0281, 2) 0.0806 (0.0217, 3) 0.1359 (0.0202, 7) 0.0378 (0.0228, 2)

CC 0.1056 (0.0254, 1) 0.0260 (0.0059, 6) 0.1349 (0.0183, 6) 0.0297 (0.0199, 2)

NDA 0.0892 (0.0183, 3) 0.0263 (0.0117, 4) 0.1337 (0.0278, 6) 0.0102 (0.0228, 7)

MMI 0.0889 (0.0216, 2) 0.0247 (0.0092, 4) 0.1359 (0.0202, 7) 0.0297 (0.0153, 6)

MNNE 0.0679 (0.0113, 2) 0.0239 (0.0092, 5) 0.1359 (0.0202, 7) 0.0216 (0.0171, 10)

KDA 0.1092 (0.0388, 2) 0.0554 (0.0277, 3) 0.1544 (0.0373, 6) 0.0507 (0.0214, 2)
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5.5 Appendix

Proof of (5.12): Since η1 + η2 = 1, we have 1 − η21 − η22 = 2η1η2. Letting x = η1

and 1− x = η2, (5.12) is equivalent to

f(x) = x log

(
1

x

)
+ (1− x) log

(
1

1− x

)
− 4x(1− x) ≥ 0, x ∈ [0, 1]. (5.43)

Due to the symmetry of (5.43) with respect to x and 1−x, it is sufficient to prove

that f(x) ≥ 0 on the half interval [0, 1/2]. First, it is straightforward to calculate

that f(0) = 0 and f(1/2) = 0. Then, we show that f(x) first increases and then

decreases on [0, 1/2], which together with f(0) = 0 and f(1/2) = 0 guarantees

f(x) is nonnegative on [0, 1/2]. This can be done by checking

f ′(x) = log(1− x)− log x− 4(1− 2x) and f ′′(x) = 8− 1

x(1− x)
. (5.44)

Note that f ′′(x) monotonically increases from f ′′(0) = −∞ to f ′′(1/2) = 4 on

[0, 1/2]. Thus f ′(x) must first decreases and then increases on [0, 1/2]. In addi-

tion, f ′(0) = +∞ and f ′(1/2) = 0, and thus there must exist x∗ ∈ (0, 1/2) such

that f ′(x) is positive on [0, x∗) and negative on (x∗, 1/2), with f ′(x∗) = 0. This

means f(x) first increases and then decreases on [0, 1/2], and thus completes the

proof.
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Chapter 6

Conclusions

6.1 Summary of This Thesis

In this thesis, we have contributed to supervised linear dimension reduction

(SLDR) from both theoretical and algorithmic aspects. To summarize, we have

the following conclusions:

1. When the dimensionality D and the training sample number N are both

large (actually 100 is sufficient according to empirical study), the gener-

alization performance of LDA for a fixed problem is only affected by the

dimensionality to training sample number ratio γ = D/N . Specifically, if

the population discrimination power of the problem at hand is sufficient

(larger than 10), then γ = 0.2 is enough for LDA to preserve about 70% of

the discrimination power.

2. When the training sample number N is deficient compared to the dimen-

sionality D, i.e., the ratio γ = D/N is large, the generalization performance

of LDA can be improved by block-diagonal regularization. In particular, the

sample error of the block-diagonally regularized LDA decreases as the num-

ber of variable groups increases. Empirically, the block-diagonally regular-

ized LDA performs competitively compared with other types of regularized

LDA, e.g., with the Tikhonov regularization and the banded regularization.

3. A major problem of existing parametric SLDR methods, including LDA

and its extensions, is that the dimensionality of the learned subspace is low
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close classes cannot be well separated. This problem can be overcome by

the max-min distance analysis (MMDA), which optimizes the projection

matrix by maximizing the minimum pairwise distance among all class pairs

in the dimension reduced space and thus duly considers the separation of

all classes.

4. In nonparametric SLDR, it usually needs to define a proxy criterion to

approximate the Bayes optimal criterion for projection matrix optimiza-

tion. In the literature, the state-of-the-art proxy criterion for nonparamet-

ric SLDR is maximizing mutual information (MMI). However, minimizing

the asymptotic nearest neighbor classification error (MNNE) is better than

MMI in terms of the closeness to the Bayes optimal criterion.

6.2 Future Works

6.2.1 SLDR for Structured Data

In this thesis, we have studied SLDR from both theoretical and algorithmic per-

spectives. These studies are considerably general, which do not make assumptions

or utilize prior knowledge on data structure. In one direction of future work, we

will consider SLDR for structured data. Spatial and/or time structured data are

common in practical applications, e.g., face images, traffic trajectories and time

series. How to explore the structural information of data to improve the accu-

racy and the robustness of SLDR is a fundamental and valuable problem. There

have been relevant studies in the literature, e.g., on functional data James and

Hastie [2001] and stationary times series Shumway and Unger [1974]. However,

a comprehensive study, especially from the theoretical viewpoint, has not been

conducted. A number of important issues to be addressed are: 1) how to esti-

mate data structure robustly with finite training samples, 2) how to integrate

structural information into SLDR, and 3) how to justify the performance of a

structural SLDR method theoretically.
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6.2.2 SLDR for Compressed Data

Compressed sensing (CS) Candés et al. [2006] Donoho [2006] has been an emerging

research direction in the signal processing field, which departs from the conven-

tional transformation-based signal processing theories and techniques. It proves

that under the (approximate) sparsity assumption, which can be satisfied by most

natural signals, the information of a signal can be recovered from a relatively small

number of random measurements. The practical application of CS, though still

under development, will change not only the fields of signal processing and com-

munications but also pattern recognition and other related areas. In one of our

future works, we will try to establish new theories of SLDR for CS based data

analysis.
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