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Abstract 
PbS quantum dot solar cells (QDSCs) have emerged as a promising low-cost solution 

processable solar energy harvesting device and demonstrated good air stability and 

potential for large-scale commercial implementation. PbS QDSC achieved a record certified 

efficiency of 12% in 2018 by utilizing an n+-n-p device structure. However, the p-type layer 

has generally suffered from low carrier mobility due to the organic ligand 1,2-ethanedithiol 

(EDT) that is used to modify the quantum dot (QD) surface. The low carrier mobility of EDT 

naturally limits the device thickness as the carrier diffusion length is limited by the low 

mobility. Herein, we improve the properties of the p-type layer through a 2-step hybrid 

organic ligand treatment. By treating the p-type layer with two types of ligands, 3-

mercaptopropionic acid (MPA) and EDT, the PbS QD surface was passivated by a 

combination of the two ligands, resulting in an overall improvement in open circuit voltage, 

fill factor and current density, leading to an improvement in cell efficiency from 7.0% to a 

champion cell efficiency of 10.4%. This achievement was a result of improved QD 

passivation and a reduction in interdot distance, improving charge transport through the p-

type PbS quantum dot film. 
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1. Introduction 
The earliest colloidal quantum dot (CQD) implementation in solar cells achieved an 

efficiency of 1-3% based on Schottky junctions 1,2. Since then, the structure of QDSCs has 

evolved from a simple metal-PbS-metal Schottky junction, to the current n+-n-p structure 3. 

This, along with improvements in the passivation and fabrication of the absorber layer via 

solution ligand exchange with halide ligands, has allowed the performance of QDSCs to 

improve to a PCE of 12% 4,5. However, challenges remain with the p-type PbS hole transport 

layer (HTL), which is a vital component of QDSC devices. 

The p-type quantum dot layer based on 1,2-ethanedithiol (EDT) treatment was first 

demonstrated by Luther et al. in 20086. This discovery enabled the formation of p-type 

solids after oxidation in air and formed a film with high electronic coupling that drastically 

improved electronic properties over PbS QDs capped with oleic acid. This makes EDT treated 

PbS QD film (PbS-EDT) a suitable HTL that can be implemented into high performance n+-n-p 

solar cell structures. Various optimizations have been performed on the EDT treatment with 

adjustments to the ligand concentration and treatment duration and the recipe differs for 

different publications 5,7,8. The current highest efficiency cells published have a power 

conversion efficiency (PCE) of 12.48% and use PbS-EDT as the HTL 5. However, these recent 

advancements have all been due to progress in improving the passivation of the absorber 

layer. 

To date, there is a lack of progress in improving the p-type PbS-EDT HTL for PbS 

QDSC. The passivation of PbS QDs with EDT has not fundamentally changed since it was first 

demonstrated in 20086,9. The key to a good HTL is to have sufficiently high p-doping 

concentration in order to increase the charge carrier concentration and form a wide 

depletion region when interfaced with an n-type absorber layer. Wider depletion regions 

can enable thicker devices to increase light harvesting that will boost the current output of 

the solar cell. One main drawback of PbS-EDT is the low carrier mobility. PbS-EDT thin films 

have a carrier mobility of around 10-4 cm2 V-1 s-1, which is one order of magnitude lower 

than PbS treated with 3-mercaptopropionic acid (MPA) and two orders of magnitude lower 

than halide treated PbS QD films10. As such, typical methods to increase doping 

concentration such as the introduction of impurity atoms have limited improvement as the 

mobility will be drastically reduced due to the impurity atoms. Hu et al. has demonstrated 
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that a 1.0% Ag-doping in PbS-EDT can improve the performance of QDSCs from a PCE of 

9.1% to 10.6% by improving the hole carrier density and p-type character11. 

While higher Ag doping concentrations further increases hole carrier density, the 

device performance peaked at 1.0% doping concentration due to a decrease in carrier 

mobility and diffusion length that negates the gain from improved charge carrier density. 

Furthermore, the improved hole mobility is still lower than that of the n-type QD layer. This 

is an inherent issue with EDT treatment as it has a low carrier mobility due the larger 

interdot distance. There is an urgent need to find an alternative p-type PbS material with 

improved charge transport such that the doping limit can be raised to further improve the 

charge carrier concentration and reduce carrier recombination velocity at the junction. 

An alternative ligand to EDT that contributes a higher carrier mobility is MPA. MPA 

differs from EDT in that one of the thiol group has been replaced by a carboxylic acid. QD 

passivated with carboxylic acid ligands have better charge transport compared to thiols 12,13. 

Devices using MPA treated PbS quantum dot film (PbS-MPA) as HTL have shown mixed 

results. PbS-MPA heterojunction devices have demonstrated to have a higher JSC over PbS-

EDT devices 14. However, the gain in VOC of PbS-MPA over PbS-EDT did not seem to be 

reproducible in another study comparing MPA and EDT treatments across various device 

structures 15. The lower VOC of PbS-MPA over PbS-EDT devices were also observed in this 

work, although PbS-MPA still demonstrated improvements in JSC over PbS-EDT. Likewise, 

majority of PbS QDSC publications prefer EDT over MPA as a p-type ligand due to the 

superior VOC of PbS-EDT based devices, while the JSC shortfall is tackled through passivation 

and thickness improvements in the PbS-PbI2 absorber layer 4,5,16–19, including the world 

record 12.01% PCE device5. 

In this paper, we introduce a novel 2-step MPA and EDT hybrid ligand treatment 

method to capitalize on the high JSC characteristic in PbS-MPA devices and high VOC 

characteristic of PbS-EDT devices. The ligand exchange procedure is shown in Figure 1. The 

presence of the carboxylic group in MPA from the first treatment would help improve 

device performance through improvements in the conductivity and mobility by one order 

magnitude when compared to the thiols 10,13,14. The two-step treatment also introduces EDT 

as the primary passivating ligand to achieve a higher VOC, while still retaining MPA ligands 

for improved conductivity over pure PbS-EDT films. This results in an improvement in PCE 

from 7.0% for PbS-EDT devices and 8.4% for PbS-MPA devices to 10.4% for PbS-Hybrid 

devices. 

 



4 
 

 

Figure 1: Procedure for 2-step MPA and EDT hybrid ligand treatment. The conventional 

ligand exchange method for the p-type layer involves only one ligand treatment step 

conducted on an oleic acid capped PbS QD film. The method described in this work 

demonstrates that a solid layer can also be further treated with a 2nd step to alter and 

improve the film’s properties. 

2. Experimental section 
 

PbS CQD synthesis: The materials used were lead (II) oxide (PbO) (Sigma-Aldrich 99.999% 

trace metals basis), oleic acid (OA) (Sigma-Aldrich 90% technical grade), 1-octadecene (ODE) 

(Sigma-Aldrich 90% technical grade), bis(trimethylsilyl)sulfide (TMS) (Sigma-Aldrich synthesis 

grade), hexane (Chem-Supply ≥ 95%) and acetone (Ajax Finechem ≥ 99.5%). The synthesis 

of PbS QDs was based on a previous published recipe 20. The reactants 0.45 g PbO, 1.62 ml 

OA and 20 ml ODE were added to a 100 ml three-neck flask and degassed and stirred at 

60 °C for 2 hours and then 100 °C for 2 hours to form colorless Pb-oleate precursor solution. 

Once the solution is completely transparent and colorless, 140 µl TMS dissolved in 5 ml ODE 

was injected into the Pb-oleate solution at 80 °C and left heating for 10 s for QD nucleation 

and growth. After 10 s, the heating mantle was removed and turned off and the solution 

was allowed to naturally cool to room temperature. The PbS CQD solution was washed and 

precipitated with hexane and acetone with a volume ratio of 1:3. The precipitation was 

repeated twice and the PbS CQD was dried under vacuum for 30 minutes. 

 

MgZnO synthesis: The materials used were Zinc acetate dihydrate (Ajax Finechem ≥ 

99.5%), magnesium acetate tetrahydrate (Sigma-Aldrich ≥ 99% ReagentPlus®), anhydrous 

2-methoxyethanol (Sigma-Aldrich ≥99.8%) and monoethanolamine (Sigma-Aldrich ACS 

reagent ≥ 99.0%). 1g of zinc acetate dihydrate and 0.05g of magnesium acetate 

tetrahydrate were added to 10 ml of 2-methoxyethanol solvent and 280 µl of 

monoethanolamine complexant. The solution was stirred at 75 °C for 12 hours until all the 

precursors were dissolved into a clear homogenous sol-gel. 

 

Device fabrication: The materials used were lead (II) iodide (PbI2) (Sigma-Aldrich 99%), 

dimethylformamide (Analar NORMAPUR 99.9%), 3-mercaptopropionic acid (Sigma-Aldrich 

99%), methanol (RCI Labscan Ltd ≥ 99.9%), 1,2-ethanedithiol (TCI >99.0%), and acetonitrile 

(RCI Labscan Ltd ≥ 99.8%). The QDSC device fabrication was based on a previous published 

recipe11. ITO glass was cleaned with detergent, deionized water and acetone with 

ultrasonication. The MgZnO sol-gel was spin-coated on ITO glass substrates at 3000 RPM for 

30 s then dried at 100 °C for 10 minutes and annealed at 360 °C for 20 minutes. The MgZnO 

film fabrication was repeated 3 times until ~130nm thickness was achieved. 

For absorber layer, a colloid containing 80 µl of PbS CQDs suspended in hexane at 30 mg/ml 

concentration was spin-coated on the MgZnO film at 3000 RPM for 30s, treated then with 

10 mM PbI2 in DMF for 50s via dip coating, and rinsed with acetonitrile and dried under N2 
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gas flow. This process was repeated 6 times until iodide capped QD (PbS-iodide) absorber 

layer with ~150 nm thickness was fabricated. 

 

For the HTL layers, 80 µl of PbS CQDs with a concentration of 15 mg/ml suspended in 

hexane was spin-coated at 3000 RPM for 30s on the substrate. Two ligands were used for 

this study, MPA and EDT. For PbS-MPA layer, the PbS-OA QD film was treated with 10% v/v 

MPA in methanol solution for 10 s followed by a methanol rinse. For PbS-EDT layer, the PbS-

OA film was treated with 0.02% v/v EDT in acetonitrile solution for 10 s followed by rinsing 

with acetonitrile. For the hybrid ligand treated layer (PbS-Hybrid), the same PbS-OA film was 

treated in 2-steps, i. e. by MPA treatment followed by EDT treatment using the same recipe 

described above. The fabrication was carried out in air. The PbS QDSC devices were 

annealed at 75 °C in air for 15 minutes to oxidize the HTL and help form a p-type film. The 

devices were stored in a desiccator box in dry air overnight to further facilitate oxidation 

and improve p-type properties of the HTL in order to achieve the best efficiencies. 100 nm 

of gold electrodes were then fabricated on top of the HTL via thermal evaporation. The 

absorber area of the device was 0.0314 cm2. 

 

Characterization: The optical absorption spectra of the PbS colloid were measured with the 

Perkin Elmer Lambda1050 UV/Vis/NIR spectrophotometer in ambient condition. The steady-

state photoluminescence (PL) spectra of PbS CQDs dispersed in hexane were measured by 

QuantaMaster 500 (Horiba) spectrofluorometer with an excitation from a xenon arc lamp at 

600 nm and detected by a InGaAs detector. The Fourier transform infrared spectroscopy 

(FTIR) measurements were carried out with a PerkinElmer FTIR Spectrometer in reflection 

mode. The Transmission electron microscopic (TEM) imaging was done on dilute OA-capped 

PbS QDs dropped onto a copper TEM grid. For treated TEM samples, MPA and EDT ligands 

with concentrations described in the previous section were dropped onto the copper grid 

that contains PbS QDs. There samples were then put in an oven for drying to remove any 

remaining solvents. TEM imaging was carried out on a Philips CM200 field emission TEM. 

The scanning electron microscopic (SEM) images of the cross section and surface 

morphology were taken with the FEI Nova NanoSEM 230 Field Emission SEM. The 

photoemission yield spectroscopy (PYS) was measured using a StelaNet SL3 Deuterium lamp 

as a light source and JobinYvon HR 250 monochromator with stepper motor to control the 

wavelength of the incident light, and the amplified photoemission current is measured by 

grounding the sample stage through a Keithley 617 Electrometer. 

 

The light current density–voltage (J-V) curves of different devices were obtained using a 

Keithley 2400 (I-V) digital source meter under simulated AM 1.5G solar irradiation at 100 

mW/cm2 (Newport, AAA solar simulator, 94023A-U). Dark J-V measurements were also 

carried out in the same system using a dark enclosure. The mobility of the HTL was 

measured with a field effect transistor (FET) using an Agilent B1500A semiconductor 

characterization system. 
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3. Results and discussion 

3.1 IV performance of solar cell device 
 

 
Figure 2: (a) Schematic of the QDSCs . The HTL is the only variable being investigated in this 

work. (b) The current density-voltage (J-V) curves of champion devices for different HTL 

ligand treatments. The device with MPA and EDT hybrid ligand treated HTL achieves both 

high VOC and JSC, while the device with EDT treated HTL has a high VOC and MPA treated HTL 

has a high JSC.  
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Figure 3: (a) PCE, (b) JSC, (c) VOC and (d) FF variation between different solar cell devices with 

different HTLs. The hybrid ligand treatment produces higher performance and 

reproducibility of the VOC and FF. 

 

Treatment 
JSC 

(mA cm-2) 
VOC 

(mV) 
FF 
(%) 

RSH 
(Ω cm2) 

RS 
(mΩ cm2) 

PCE 
(%) 

MPA 
24.1 ± 0.2 

(25.1) 
557 ± 5 
(573) 

57.9 ± 1 
(61.1) 

3814 ± 529 
(7004) 

32 ± 2 
(23) 

7.8 ± 0.2 
(8.4) 

EDT 
21.6 ± 0.2 

(21.9) 
617 ± 4 
(635) 

47.5 ± 0.6 
(51.0) 

2654 ± 157 
(3698) 

51 ± 2 
(35) 

6.3 ± 0.1 
(7.0) 

Hybrid 
23.5 ± 0.2 

(25.3) 
617 ± 3 
(633) 

65.4 ± 0.2 
(66.8) 

11771 ± 439 
(14064) 

34 ± 2 
(22) 

9.5 ± 0.1 
(10.4) 

 

Table 1: Average JSC, VOC, FF, RSH, RS and PCE of solar cell device with different HTL as 

described. The values in brackets are the results from the best performing devices. 
 

For device J-V characteristic comparison, two reference cells with PbS-MPA and PbS-

EDT thin films as HTLs were used as a benchmark against the PbS-Hybrid devices. All other 

layers of the device are identical. The cross-sectional SEM image of the solar cell device is 

show in Error! Reference source not found..  

From the J-V curves shown in Figure 2b, it is clear that the PbS-EDT device has a 

superior VOC at 635 mV compared to PbS-MPA, which is also reflected in other comparison 

studies between MPA and EDT 15,21. This is likely due to the higher proportion of thiol groups 

in EDT that can be easily oxidized to achieve a higher doping concentration during air 

annealing to form a p-type film. The carboxylic group is inherently more resistant to 

oxidation and MPA devices have been shown to be more resistant to performance 

degradation compared to EDT devices when exposed to air [14]. Apart from doping via 

oxidation, direct addition of thiol ligands to carboxylic acid ligands was also demonstrated to 

significantly improve the VOC of a QD heterojunction solar cell by passivating exposed sulfur 

atoms on the QD surface 22. PbS-EDT has also shown to have a longer lifetime than PbS-

MPA14, possibly reducing carrier recombination. 

Note that EDT passivation is effective at a much lower concentration of 0.02% v/v, 

compared to MPA which requires 2% v/v for complete passivation. Based on hard and soft 

acid base theory (HSAB), thiolate is a soft base and should have a much stronger affinity 

with the borderline soft acid Pb2+ compared to carboxylate, which is a hard acid 23. This 

makes thiols a more potent passivating ligand compared to carboxylic acid. 

The shunt resistance for the PbS-EDT device is noticeable lower than the other two 

devices. From the SEM images as shown in Figure S6, some pin holes can be observed for 

PbS-EDT but not for PbS-MPA or PbS-Hybrid, which might be the cause of the small Rsh for 

PbS-EDT device. 

On the other hand, the PbS-MPA device has a better JSC at 25.1 mA cm-2 and a lower 

RS of 23 mΩ cm2 compared to PbS-EDT. This improvement is consistent with other studies 

on both heterojunction and n+-n-p device14,15,21. The higher JSC is due to the better charge 

transport of PbS-MPA over PbS-EDT14, and higher conductivity has been demonstrated to 

improve JSC and RS 11. 
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The PbS-Hybrid device successfully combine the characteristics of higher JSC and 

lower RS of PbS-MPA and higher VOC of PbS-EDT as shown in Figure 3 and Table 1. The 

champion device achieves a PCE of 10.4% with a VOC of 633 mV, JSC of 25.3 mA cm-2 and FF 

of 66.8%. The EDT treatment after MPA improves the VOC to EDT levels, indicating improved 

passivation of the HTL. 

Despite the EDT treatment after the MPA treatment, the JSC and RS of PbS-Hybrid are 

relatively unchanged compared to PbS-MPA, which indicates that PbS-Hybrid device has a 

similar conductivity, charge generation and collection as PbS-MPA device. External quantum 

efficiency measurements as shown in Figure S8 indicates an overall improvement in charge 

collection for PbS-MPA and PbS-Hybrid devices over PbS-EDT. The high conductivity of PbS-

Hybrid can be attributed to the presence of a small amount of MPA ligands remaining on 

the PbS QD surface and the shorter interdot distance shown discussed in section 3.3. 

 

3.2 FTIR spectroscopic study on PbS QD surface passivation 

 

 
Figure 4: FTIR spectra of PbS QD thin films treated with various ligands. The spectra show 

the replacement of long chain ligands by short chain linking ligands by tracking the 

reduction in C-H and C-O stretch peaks which corresponds to the long carbon chain and 

carboxylic acid group respectively on OA. 

 

Ligand 
C-O asymmetric stretch 

Peak 
position 

Peak 
height 

MPA % 

MPA 1533 0.0116 100% 

Hybrid 1532 0.0020 18% 

EDT 1533 0.0004 0% 

 

Table 2: Percentage of MPA ligand coverage based on FTIR peak position and height of C-O 

asymmetric peak 
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To understand the nature of the hybrid ligand treatment, PbS-MPA, PbS-EDT and 

PbS-Hybrid thin films were characterized with FTIR spectroscopy. FTIR spectroscopy reveals 

the presence of organic ligands passivating the PbS QD surface for a dry PbS QD thin film 

absent of solvents and precursors. As seen from the FTIR spectra in Figure 4, OA molecules 

are efficiently removed by all ligand treatments. This is evidenced by the significant 

reduction of C-H stretch peaks at 2928 cm-1 and 2856 cm-1 whereby the long carbon chain 

OA ligands have been replaced by short carbon chain ligands. There is also a clear reduction 

of the C-O asymmetric and symmetric stretch peaks at 1533 cm-1 and 1414 cm-1 after 

treatment with MPA, EDT and hybrid ligand treatment. The MPA and hybrid ligand 

treatment both retain some C-O peak signal due to the presence of carboxylates from the 

MPA ligand. For PbS-MPA, there are no peaks at 1700 and 1300 cm-1 position, each 

belonging to the C=O stretch and C-O stretch peak, indicating that the carboxylic acid is fully 

deprotonated and the ligand bonds to the QD surface in carboxylate form. For EDT, there is 

no S-H peak at around 2550 cm-1 which indicates that the ligand is bound in its thiolate form 

to the QD surface24. 

Comparing the FTIR spectra of PbS-MPA and PbS-Hybrid, it is clear that hybrid ligand 

treatment results in the removal of MPA ligands, as evidenced by the significant reduction in 

both asymmetric and symmetric C-O stretch peaks; the addition of a 2nd step of EDT 

treatment in the hybrid ligand treatment removes majority of MPA ligands from the QD 

surface. The ability of EDT to remove and replace MPA ligands is consistent with the HSAB 

theory discussed previously. This demonstrates that the EDT treatment is effective even for 

a solid QD thin film linked with short chain MPA ligands. 

According to the Beer-Lambert law, absorbance is directly proportional to the 

concentration of the absorbing species. The percentage of MPA ligands that were replaced 

by EDT can be estimated by taking the ratio of the C-O stretch peak before and after EDT 

treatment. The C-O asymmetric stretch peak at 1531 cm-1 was chosen for the calculation as 

there is no overlap with EDT peaks in that region. The C-O symmetric stretch peak cannot be 

used as there is a wide peak at 1434 cm-1 for EDT which is very close to the 1388 cm-1 C-O 

symmetric peak for MPA. As seen in  

Table 2, based on the C-O asymmetric stretch peak height of PbS-Hybrid, it is 

estimated that only 18% of the MPA ligands from the 1st treatment step remains on the 

surface of the PbS QDs after the 2nd step of EDT treatment, indicating 82% of the MPA 

ligands have been replaced by EDT. 

The replacement MPA ligands with EDT justifies the improved VOC of the PbS-Hybrid 

device. The built-in voltage of a PbS-EDT device can be improved through surface oxidation 

by air annealing dithiol treated PbS 9. The replacement of MPA ligands with EDT increases 

the abundance of air sensitive thiol groups for oxidation and this increased oxidation 

improves the hole doping concentration responsible for the higher VOC of the device. 

Considering that most of the ligands in the PbS-Hybrid film are EDT, the reduced 

presence of MPA ligands may not be sufficient to justify the high JSC and RS characteristics of 

the PbS-Hybrid device, which match PbS-MPA device performances. This suggests that there 

are other contributors that can improve the interdot coupling that are independent of the 

presence of carboxylates such as interdot distance. In summary, the FTIR spectra show a 

clear replacement of MPA ligands by EDT in the hybrid ligand treatment, demonstrating that 
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EDT is the main ligand passivating the PbS QD surface, while about 18% of MPA ligands 

remain on the QD surface. 

 

3.3 TEM study on interdot distance 

 

Interdot distance has been shown to play a key role in determining the mobility and 

conductivity of QD thin films. The impact of ligand type and interdot distance to 

photovoltaic performance has been discussed comprehensively in Wang and co-workers’ 

review paper 25. Study of different lengths of dithiol ligands on PbSe QDs have shown an 

exponential increase in mobility as ligand length is reduced 26. Investigation on Cu2-xSe QDs 

functionalized by dithiol ligands has also shown that the conductivity of Cu2-xSe thin films 

increases as the carbon backbone length is reduced 13. Under the dithiol family of ligands, 

EDT is the shortest with only 2 carbon backbone and is unsurprisingly the most commonly 

used ligand for the HTL in order to maximize film conductivity and mobility. 

However, the dithiol ligand has an inherent problem of forming longer chain dimers 

when exposed to air which reduces mobility and conductivity. Weidman et. al. has observed 

an unusual trend whereby EDT treated QD film has a larger interparticle spacing of 1.2 nm 

than that of longer chain 1,4-butane dithiol treated film with an interparticle spacing of 0.8 

nm 27. This goes against the otherwise linear decreasing trend of interdot distance with 

decreasing carbon chain length of the ligand27,28. This anomaly in the trend was similarly 

observed by Lynch et. al. who also observed a detrimental effect on conductivity due to the 

dimerization of EDT 13, which is illustrated in  

Figure 5a. They proposed that performing the ligand exchange in air will result in the 

oxidation of the thiol functional group and the formation of sulfur-sulfur bond between two 

thiols on different QDs, effectively doubling the ligand length, i.e. dimerization. Performing 

the ligand exchange in an inert environment does not completely eliminate this effect, 

showing the high sensitivity of EDT even under low oxygen concentration environment13. 
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Figure 5: Ligand bonding between QDs for different treatment types and their molecular 

structures. (a) EDT treatment forms an EDT dimer with a disulfide linkage. (b) MPA 

treatment forms two overlapping MPA ligands. (c) Hybrid ligand treatment forming the 

proposed EDT monomer bond. The short interdot distance for the hybrid ligand is likely due 

to bridging by only one EDT monomer as opposed to the EDT dimer for EDT treated PbS 

QDs. 
 

To understand the impact of hybrid ligand treatment to the interdot distance using 

TEM imaging, slightly larger QDs i.e. 4.5 nm in diameter were synthesized and treated with 

the appropriate ligands and observed under the TEM. The QDs used were larger than those 

synthesized for QDSC device in order to facilitate clear imaging. The larger QDs were 

synthesized by increasing the OA:PbO mole ratio from 2.5:1 to 14:1, which yields a QD size 

of 4.5 nm with a narrow size distribution as shown in Error! Reference source not found.. 

After the images were taken as shown in  

Figure 6, the QD diameter and QD centre-to-centre distance were measured using an 

algorithm written in python and the OpenCV software packages. The interdot distance is the 

difference between the average centre-to-centre distance and the average diameter as 

shown in Error! Reference source not found.. 
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Figure 6: TEM images of 4.5 ± 0.6 nm PbS CQDs functionalized by the ligands of (a) OA, (b) 

EDT, (c) MPA, and (d) and (e) hybrid ligands. The measured interdot distance is 2.9 ± 0.4 nm 

for PbS-OA, 1.2 ± 0.1 nm for PbS-EDT, 1.1 ± 0.2 nm for PbS-MPA, and 0.6 ± 0.2 nm for PbS-

Hybrid. (e) shows PbS QDs multilayered superlattice matrix after hybrid ligand treatment 

with highly ordered self-assembled regions, which dominates most of the TEM imaging of 

the hybrid ligand samples. Such dense regions were not found in the PbS-EDT and PbS-MPA 

samples. (f) shows the interdot distance between PbS QDs treated with EDT, MPA and 

hybrid ligands. The PbS-Hybrid QDs show the shortest interdot distance as the QDs are only 

bridge by one EDT monomer as oppossed to an EDT dimer for PbS-EDT sample. 

 

From  

Figure 6fError! Reference source not found., PbS-EDT QDs show the largest interdot 

distance of 1.2 ± 0.1 nm after exchanging the original ligands of OA by EDT, which matches 

literature 27. This value is double the molecular length of EDT, suggesting EDT molecules are 

dimerized as shown in Figure 5a. The interdot distance of PbS-MPA sample  is 1.1 ± 0.2 nm, 

consistent with literature 27. The molecule length of MPA was calculated to be 6.7 Å from 

software simulations using the MMFF94Fs model for energy minimization 29. This implies 

that the QDs in PbS-MPA film are separated by two MPA molecules as shown in Figure 5b.   

As can be seen in  

Figure 6f, the hybrid treatment significantly reduces the interdot distance to 0.6 ± 

0.2 nm. Since the hybrid treatment is a 2-step treatment, i.e. an MPA treatment followed by 

an EDT treatment, the interdot distance is firstly reduced from 2.9 nm for PbS-OA to 1.1 nm 

with the 1st MPA ligand treatment. At this point, the QDs are separated by two MPA 

molecular lengths.  The 2nd step of the treatment with EDT introduces a slightly shorter 
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ligand with a length of 6.1 Å to further reduce the interdot distance by displacing MPA. 

Unlike the direct treatment of EDT on PbS-OA, treating PbS-MPA QDs with EDT does not 

lead to EDT dimerization that is responsible for the large interdot distance, allowing the QDs 

to directly couple by just one EDT ligand length as shown in Figure 5c. It is likely that the 

more densely packed PbS-MPA layer prevents the diffusion of excessive amounts of EDT 

ligands between QDs that drives the oxidation of thiols to disulfides. The reduction in 

interdot distance for PbS-Hybrid helps enhance interdot coupling and improves the mobility 

and conductivity of hybrid ligands over longer interdot distance such as PbS-EDT. This 

mobility and conductivity gains translate into the JSC and RS improvements of the QDSC 

devices using PbS-Hybrid as the HTL over PbS-EDT which will be elaborated in a later 

section.  

The hybrid ligand treatment also yields a densely packed and highly self-assembled 

3D structures shown in  

Figure 6e that are not seen in the TEM images of MPA or EDT treated PbS QD film. 

This demonstrates that the reduced interdot distance by the hybrid ligand treatment allows 

for high degree of ordering. Single ligand treatment of PbS QDs tend to yield localize short 

range ordering of QDs separated by empty space, resembling a web of QDs such as the ones 

shown in  

Figure 6b and c, which drastically reduces charge transport throughout the PbS QD 

film. 

  

3.4 Conductivity and mobility 

 

To observe the changes in the conductivity of PbS QD film with different treatment, a 

Schottky junction with an ITO/PbS/Au device structure was fabricated and the dark J-V was 

measured. The resistance was determined from the slope of the J-V curve at current = 0. 

The thickness of the device was estimated to be 70 nm and the device area is 0.0314 cm2. 

The conductivity was then calculated from the following equation: 
1

𝜎
= 𝜌 = 𝑅

𝐴

𝑙
 

where σ is conductivity, ρ is resistivity, R is resistance, A is area of the device, and l is 

thickness of the device. 
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Figure 7: Conductivity of PbS QDs treated with MPA, EDT and Hybrid ligands 

 

The conductivity of the PbS QD film treated by hybrid ligands lies between EDT and 

MPA-treated samples, as shown in Figure 7. This is a marked improvement over EDT despite 

the PbS-Hybrid containing 82% EDT ligands as inferred from the FTIR spectra. This confirms 

that the reduction in interdot distance resulted in an improvement to the conductivity of 

the film. However, the increase in conductivity falls short of PbS-MPA, indicating that the 

functional group on the QD surface plays an equally significant role in determining the 

conductivity. The conductivity trends well with the JSC performance of the three devices, 

further confirming the impact of conductivity towards JSC. 

 

Treatment 
Mobility 

(cm2 V-1 s-1) Reference 

MPA 0.00510 14 
EDT 0.00018 this work 

Hybrid 0.00120 this work 

Table 3: Mobility of PbS QDs treated with MPA, EDT and Hybrid ligands 
 

To further identify the contribution towards improved conductivity, the mobility of 

PbS-Hybrid and PbS-EDT films were measured by fabricating a PbS thin film field effect 

transistor and the results are shown in Table 3. Similar to the conductivity trend, the 

mobility of PbS-Hybrid is in between PbS-MPA and PbS-EDT, suggesting that the mobility is 

likely the main contributor to the improvement in conductivity of the film. 

There are possibly two contributions towards the improvement of conductivity and 

mobility of PbS-Hybrid sample. First is the reduction in the interdot distance compared to 

PbS-EDT sample due to the lack of dimerization of EDT. The shorter interdot distance can 

increase carrier tunnelling probability between QDs hence improving film’s mobility and 

conductivity26,28. Secondly, the mobility is also enhanced due to the presence of small 

amounts of the carboxylate functional group from the remaining MPA ligands as shown by 

the FTIR results. The mobility and conductivity of QDs capped with carboxylic acids ligands 

with similar ligand lengths have been previously reported to be superior to those capped by 

thiols 12,13. 
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3.5 Ionisation energy 

The improved JSC of PbS-Hybrid can be further interpreted from the changes to the 

valence band edge of the p-type PbS films. The valence band edge of PbS-EDT, PbS-MPA and 

PbS-Hybrid is determined from the ionization energy of the film. The ionization energy was 

measured using photoelectron yield spectroscopy (PYS), which is suitable for quantum 

dots30 and ultra-thin buffer layers31. This method is especially suitable for ligand exchanged 

p-type quantum dots with low mobility and thickness. 

 

Sample 
Ionisation energy 

(eV) 

PbS-EDT 4.94 

PbS-MPA 4.87 

PbS-Hybrid 4.85 

Table 4: Ionisation energy measured using PYS 
 

For the PbS-Hybrid film, the ionisation energy closely matches with that of MPA as 

shown in Table 4. This contrasts with the large reduction in MPA ligands shown in the FTIR 

results. The PbS-Hybrid film retains the ionisation energy of MPA with the presence of just a 

minority amount of MPA. When there are two species of ligands on the surface, likely 

additional shallower valence states from the MPA ligand contribute to the overall shallower 

ionisation energy of the PbS-Hybrid sample. The shallower ionisation energy of PbS-MPA 

and PbS-Hybrid prevents the backflow of holes into the absorber layer, thus improving the 

hole transport properties and reducing recombination. With a lower recombination, both 

PbS-MPA and PbS-Hybrid devices show enhanced JSC over PbS-EDT. 

 

Note that the ionisation energy of all species is about 0.2-0.3 eV shallower compared 

to the reported value measured by UV photoelectron spectroscopy (UPS) 32, perhaps due to 

the inherent charging problem for samples measured with UPS. However, both the 

measurements here and in literature show a similar trend of MPA having a shallower 

ionization potential32. Comparison between oleic acid and octadecyl thiol also show a 

similar 0.05 eV reduction in ionization energy30. 

4. Conclusion 
 

This work demonstrates a novel method to produce closely packed p-type QD thin 

films with a short interdot distance of ~0.6 nm using the 2-step hybrid ligand treatment. This 

is the first observation of a 0.6 nm interdot distance with EDT as a dominant ligand, as 

confirmed by TEM imaging. EDT ligands have previously been only observed in its dimer 

form with an interdot distance of 1.2 nm.  The 2-step hybrid ligand exchange works by using 

MPA as an intermediate ligand to prevent dimerization of the EDT ligands during the EDT 

ligand exchange step. This yields a film that has improved interdot coupling and 

conductivity. As shown in the J-V results, the devices based on PbS-Hybrid HTL have 

demonstrated significant improvement in JSC and FF compared to that of the PbS-EDT 

device, while the VOC and FF have improved compared to that of PbS-MPA devices. The best 
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performing PbS-Hybrid device has achieved a PCE of 10.4% which demonstrates an 

improvement by 23% over PbS-MPA device (PCE of 8.4%) and 48% compared to PbS-EDT 

device (PCE of 7%). 
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