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Abstract 12 

A major challenge of the seawater reverse osmosis (SWRO) desalination process 13 

corresponds to the management of concentrated brine waste because discharging the brine back 14 

into the sea through submarine pipelines influences the marine ecosystem and incurs additional 15 

costs at coastal RO plants. A membrane distillation crystallizer (MDC) can further produce 16 

clean water and simultaneously recover valuable resources from the concentrated brine; this is 17 

more environmentally and economically optimal. The SWRO brine contains salts, which 18 

contribute to scaling development during the MDC operation. Hence, the main goals of this 19 

study include (i) observing the crystallization tendency of calcium sulfate (CaSO4) under high 20 

salinity and, (ii) examining other inorganic and organic compounds and operational conditions 21 

that affect the CaSO4 crystallization. The crystallization tendency of CaSO4 in SWRO brine 22 
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was examined with respect to different temperatures; changes in pH values; and in the presence 23 

of co-existing ions, chemical agents, and organic matters as well as physical factors. The results 24 

showed that the size and quantity of crystals formed increased with increasing heating 25 

temperatures. Furthermore, an increase in the pH values (from 5 to 9) increased the crystal size. 26 

At higher pH, the complexion of NaCl along with CaSO4 was created. Moreover, stirring 27 

enhanced CaSO4 crystal formation due to the kinetic mechanism.  28 

Keywords: Calcium sulfate; Crystallization; Membrane distillation crystallizer; Seawater 29 

reverse osmosis brine  30 

 31 

1. Introduction 32 

The demand for desalination technology based on seawater reverse osmosis (SWRO) 33 

process is continuously increasing with the global lack of potable water [1, 2]. However, 34 

SWRO generates a high amount of concentrated brine containing high salt concentration that 35 

causes serious environmental issues [3]. The treatment or disposal methods of SWRO brine are 36 

highly dependent on the location of the SWRO plant. For example, an inland SWRO plant 37 

requires brine disposal methods such as an evaporation pond and deep well injection. When 38 

SWRO brine is directly discharged into seawater, additional facilities are required to transport 39 

it, thereby incurring additional operational costs. Furthermore, the direct discharge of SWRO 40 

brine to sea influences the marine eco-system due to the high concentration of salt and 41 

chemicals in the SWRO brine [4]. Extant studies reported on the contamination of soil, ground 42 

water, and the marine eco-system by brine [4, 5]. Several researchers tested alternative methods 43 

for brine treatment and used methods mainly based on membrane technologies, such as forward 44 

osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD), to recover 45 
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valuable resources or energy from the brine while producing water, and subsequently resulting 46 

in the reduction of environmentally negative effect of brine on the ecosystem [6-13].  47 

The MD process is a promising technology for treating high salinity solution such as 48 

SWRO brine [12-14]. This is because MD is a mechanically and thermally driven desalination 49 

process that is operated by the vapor pressure difference between hot feed solution and cool 50 

permeate solution flowing across a micro-porous hydrophobic membrane. Thus, the effect of 51 

solution concentration on permeate flux is less than that of the other desalination processes [3, 52 

15]. Additionally, MD possesses several advantages including high rejection of non-volatile 53 

components, lower operational pressure when compared to that of reverse osmosis (RO), and 54 

lower operating temperature and smaller footprints when compared to those of conventional 55 

distillation processes [16-18]. Recently, a novel combined process, namely MD with a 56 

crystallizer (MDC), is highlighted with an increase in the interest to recover valuable resources 57 

from seawater [3, 19-23].  58 

Specifically, SWRO brine contains a higher concentration of valuable resources when 59 

compared to feed water (seawater). During the crystallization process, salts in the SWRO brine 60 

can be separated and used as a valuable resource. However, although these salts may be used 61 

as valuable resources, they may display a negative influence at high concentrations and 62 

especially when they are treated by using conventional treatment methods [24]. The application 63 

of MD enables in achieving a highly concentrated brine, and thereby generating a super-64 

saturation state for crystallization [25]. Theoretically, MD concentrates the feed solution to 65 

create a super-saturated solution to form crystals [22]. Meanwhile, the crystallization part of 66 

MDC mitigates the scaling phenomenon on membrane surface because salts are continuously 67 

removed as solid crystals in the crystallizer [19, 26].  68 
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 Despite the high potential of the MDC, fouling and scaling phenomena are inevitable. 69 

These phenomena are more evident with the SWRO brine treatment when compared to the 70 

desalination process [19, 27]. The SWRO brine contains calcium (Ca2+) based crystalline 71 

matters with a high concentration; calcium sulfate (CaSO4) and calcium carbonate (CaCO3) 72 

that possess low solubility [28]. Thus, Ca2+ based crystalline matters first precipitate in the 73 

form of crystals prior to reaching a super-saturation state of the target material. Hence,  the 74 

surface and pores of the MD membrane can be covered by these sparingly soluble salts  [29]. 75 

Previous studies investigated the scaling of CaSO4 and CaCO3 in the MD process [13, 30]. He 76 

et al. (2009) examined the effect of temperature and feed flow velocity on crystallization 77 

tendency in a direct contact membrane distillation (DCMD) process. Curcio et al. (2009) 78 

investigated the interaction between CaCO3 crystallization and biofouling in a high salinity 79 

solution. However, there is a lack of fundamental studies on the salts crystallization tendency 80 

due to various factors because most studies on Ca2+ scaling and fouling phenomenon focus on 81 

the membrane surface. It is important to understand Ca2+ crystallization tendency in terms of 82 

the influence of chemicals and physical factors.  83 

The characteristics of SWRO brine depend on feed water quality, the recovery ratio of 84 

the SWRO process, the pre-treatment methods of feed water, and the chemical cleaning 85 

methods of the membrane [1, 31-33]. The SWRO brine contains various ions and chemical 86 

components that are used in the pre-treatment processes and during membrane chemical 87 

washing in the RO process. Additionally, the concentration of these ions in the brine is double 88 

or higher than that in feed water [33]. The ionic interaction among the ions leads to the 89 

crystallization propensity of CaSO4 in the SWRO brine. Therefore, it is important to understand 90 

the influence of all ions on the crystallization tendency of CaSO4 for the stable operation of the 91 

MDC process. This also obtains reliable information on the ionic interaction for CaSO4 92 
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crystallization because it can act as a major foulant in the MD part of MDC process, thereby 93 

resulting in the degradation of process performance [34]. Moreover, physical factors, such as 94 

agitation (in feed tank) and stirring speed, can affect crystallization during the MDC process 95 

[35].  96 

Thus, the present study investigates the crystallization tendency of CaSO4 in the SWRO 97 

brine for different conditions: temperatures (50-80 ºC) and pH values (5-9). The study also 98 

examined the effect of (1) chemical factors (temperature, pH, NaCl concentration, and 99 

chemical agents); (2) organic matters (alginate (AA), humic acid (HA), and bovine serum 100 

albumin (BSA)); and (3) physical factors (agitation) on the CaSO4 crystallization. The crystal 101 

growth was evaluated in terms of the crystal size distribution (CSD) and calcium ion (Ca2+) 102 

removal efficiency (variation in the Ca2+ concentration before and after the crystallization).  103 
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2. Materials and Methods 104 

2.1 Preparation of feed solution  105 

In order to observe CaSO4 crystallization phenomenon in the high salinity solution, a 106 

synthetic feed solution containing high concentrations of calcium (Ca2+) and sulfate (SO4
2-) 107 

ions as approximately twice as seawater (to represent 50% recovered real SWRO brine) was 108 

prepared [36]. The stock solutions of sodium chloride (NaCl), sodium sulfate (Na2SO4), and 109 

calcium chloride dihydrate (CaCl2·2H2O) were prepared and used as a feed solution, and its 110 

composition is specified in Table 1. 111 

Table 1 Composition of the synthetic feed solution for the CaSO4 crystallization experiment. 112 

Ions Concentration (mg/L) 

Calcium (Ca2+) 1,620 

Sodium (Na+) 51,460 

Chloride (Cl-) 73,770 

Sulfate (SO42-) 11,520 

 113 

2.2 Batch crystallization experiment 114 

In order to examine the tendency of CaSO4 crystallization in the concentrated brine, 115 

batch experiments were conducted under same standard conditions with the exception of a 116 

single parameter that was changed to examine the effect of the specific parameter on crystal 117 

formation. The feed corresponds to a mixed solution of NaCl, Na2SO4, and CaCl2·2H2O. Given 118 

all the ions that are present, Ca2+ and SO4
2- are combined by an ionic electric bond force and 119 

precipitation in the form of CaSO4 crystals (Figure 1). The crystallization phenomenon is 120 
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influenced by chemical and physical factors. Hence, all experimental sets were initially 121 

conducted at a standard condition (heating temperature: 60 °C, pH 7, and stirring speeds: 200 122 

and 50 rpm). The high speed (200 rpm) was to homogeneous the solution and lower speed of 123 

50 rpm was to generate a crystallization. The temperature, pH value, and stirring speed 124 

conditions were altered to examine the effect of them individually on crystallization. In order 125 

to examine the effect of temperature on CaSO4 crystallization, feed solutions were heated in a 126 

water bath set at the following temperatures: 50 °C, 60 °C, and 80 °C. 127 

Essentially, a heating temperature of 60 °C was used and first tested with synthetic feed 128 

solution as shown in Table 1. A 500 mL feed solution was prepared in a beaker with pH 129 

adjusted by using 0.1M HCl and 0.1M NaOH. In order to examine the effect of temperature on 130 

CaSO4 crystallization, feed solutions were heated in a water bath set at the following 131 

temperatures: 50 °C, 60 °C, and 80 °C. Subsequently, feed solutions were mixed in a jar-tester 132 

at a high speed (200 rpm) for 2 min for complete mixing and then allowed to stand for 24 h at 133 

a room temperature with a stirring at low speed (50 rpm) for continuous mixing while 134 

facilitating crystallization. After 24 h, the crystals were separated from the solution by using a 135 

glass microfiber filter (Whatman, Grade GF/C, pore: 1.2 µm). 136 

 137 
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Figure 1 Crystallization procedure and analysis. 138 

 139 

2.3 Chemicals and solutions 140 

2.3.1 CaSO4 with other ions 141 

The effect of other ions on CaSO4 crystallization was investigated with sodium chloride 142 

(NaCl), bicarbonate (HCO3
-) (by using sodium bicarbonate (NaHCO3)), magnesium (Mg2+) 143 

(by using magnesium chloride hexahydrate (MgCl2·6H2O)), and potassium (K+) (by using 144 

potassium chloride (KCl)).  145 

2.3.2 Chemical washing agent 146 

The effect of alkaline reagents of ethylene diamine tetraacetic acid (EDTA) was used 147 

as a chemical washing agent in the membrane of a SWRO desalination plant to remove fouling 148 

on the membrane surface [37, 38].  149 

2.3.3 Coagulant 150 

Coagulation decreases biological materials in the feed water of the water treatment 151 

process and results in the reduction of biofouling potential to remove polysaccharide-like and 152 

protein-like organic matters [39]. The coagulants used in the study included FeSO4 and FeCl3, 153 

which were known as effective primary coagulants to neutralize the electric charges of particles 154 

in the water and cause the particles to attach together [40]. Typically, the coagulation chemicals 155 

that are used correspond to ferrous sulfate (FeSO4) and ferric chloride (FeCl3)). The effect of 156 

the above chemicals on CaSO4 crystallization was also examined. 157 
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2.3.4 Organic matter 158 

The effect of organic matter on CaSO4 crystallization in high salinity was also examined 159 

with model organic compounds of alginate (AA) (A7003, CAS NO. 9005-32-7, Sigma-Aldrich, 160 

St. Louis, MO), humic acid (HA) (53680, CAS No. 1415-93-6, Sigma-Aldrich, St. Louis, MO), 161 

and bovine serum albumin (BSA) (A2135, CAS No. 9048-46-8, Sigma-Aldrich, St. Louis, MO) 162 

to represent polysaccharides, humics, and proteins, respectively.   163 

 164 

2.4 Physical factors  165 

In both the water treatment process and the crystallization process, the mixing methods 166 

(physical mixer and aeration) are performed to maintain a homogeneous solution without 167 

polarization in a reactor and mitigate the membrane fouling of a membrane on the water 168 

treatment process. The application of physical devices generates kinetic energy and affects the 169 

formation and growth of CaSO4 crystals in the solution [35]. In the study, agitation (stirring) 170 

was used to evaluate the effect of mixing (intensity) on the CaSO4 crystallization tendency. 171 

Agitation was applied in a jar tester at different speeds (0 rpm, 20 rpm, and 150 rpm) following 172 

a high speed (200 rpm for 2 min). Different stirring speeds (0 rpm, 20 rpm, and 150 rpm) were 173 

set to investigate the effect of mixing speed on the CaSO4 crystallization. 174 

 175 

2.5 Analyses 176 

Crystals generated with different factors at same standard condition were analyzed by 177 

using a field emission scanning electron microscopy-energy dispersive X-ray (FESEM-EDX, 178 
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Zeiss supra 55VP, Carl Zeiss AG) to examine the variation of crystal morphology and to 179 

identify the type of crystals. Inductively coupled plasma optical emission spectrometry (ICP-180 

OES, Optima7300DV- ICP-OES Perkin Elmer, US) was used to examine the variation in the 181 

ionic concentration in the feed following crystallization to measure the degree of forming 182 

CaSO4 crystals. Furthermore, a microscopy method was used to measure crystal size 183 

distribution (CSD). At least 150 crystals were randomly selected, and crystals were sized by 184 

microscopy with an image analyzer (ImagePro7).   185 



 11 

3. Results and Discussion 186 

3.1 CaSO4 crystal formation 187 

Generally, the CaSO4 crystal has six sides that enable it to grow in six directions as 188 

shown in Figure 2 [41]. In the study, for the purposes of simplicity, only growths in two 189 

directions were considered, namely [001] and [100]. Directions [001] and [100] are referred to 190 

as ‘Length’ and ‘Width’, respectively. 191 

Visible salt/crystal formation occurred during the experiment. The SEM-EDX analysis 192 

established the formation of CaSO4 crystals (Figure 3 (a)). Based on the crystal size 193 

distribution (CSD) analysis (Figure 3 (b) and (c)), the CaSO4 crystal length was in the range 194 

of 50-1000 µm with a width in the range of 10-140 µm. The CSD results indicated that the 195 

growth rate and comparative size of the CaSO4 crystals differed in the “Length” and “Width” 196 

directions. The growth rate towards the “Length” direction and comparative maximum size 197 

was faster and larger than those in the “Width” direction. Based on the initial and final Ca2+ 198 

concentrations of the solution (initial: 1,620 mg/L, and final: 1,158 mg/L), 28.5% Ca2+ removal 199 

efficiency was detected. The reduction/removal of Ca2+ was attributed to the CaSO4 formation 200 

and precipitation. 201 

 



 12 

Figure 2 Crystal morphology of CaSO4 [41]. 202 

 203 

 

(a) SEM-EDX analysis 

  

(b) CSD ‘Length [001]’ (c) CSD ‘Width [100]’ 
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Figure 3 SEM-EDX analysis and CSD analysis of CaSO4 crystal that was formed during 204 

the batch crystallization experiment. 205 

 206 

3.2. Influence of chemical factors 207 

3.2.1. pH and Temperature 208 

The influence of solution temperature (50 °C, 60 °C, and 80 °C) and pH (5 to 9) on 209 

CaSO4 crystallization was evaluated in terms of crystal CSD as well as the Ca2+ crystal 210 

formation rate. The results showed that an increase in the heating temperature aided in 211 

achieving higher Ca2+ reduction/removal efficiency (Figure 4). Conversely, there was no 212 

distinct trend of Ca2+ removal efficiency at different pH ranges (Figure 4). For example, at 213 

50°C, the Ca2+ removal at pH 9 was only 1.5% higher than that at pH 5. The results established 214 

that the influence of an increase in the solution temperature on the formation of CaSO4 215 

exceeded that of the solution pH value. This was attributed to the change in solubility with 216 

increases in the temperature. 217 

 218 
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Figure 4 Reduction efficiency of calcium ions in the feed solution after crystallization. 219 

A trend of broader CSD was observed at higher temperatures (Figure 5 (a) and (b)). 220 

For example, at a heating temperature of 50 °C, CSD was in the range of 50 to 900 µm while 221 

it ranged from 50 to 1,400 µm at 80 °C. With the increase in the heating temperature from 222 

50 °C to 80 °C, the average crystal size increased, and the ratio of the small crystal that were 223 

formed decreased. This tendency is similar to CaSO4 solubility at different temperatures. 224 

Specifically, CaSO4 exhibits a lower solubility at temperatures exceeding 40 °C [42]. It was 225 

expected that solubility is an important factor in the formation and growth of CaSO4 crystals. 226 

In the case of pH, with respect to high pH values of the feed solution, CSD exceeded the low 227 

pH values (Figure 5 (c) and (d)). This was especially evident in the case of the CSD width. 228 

For example, at the same heating temperature of 60 °C, the CSD width at pH 5 ranged from 50 229 

µm to 650 µm while it ranged from 50 µm to 1150 µm at pH 9. Moreover, the portion of small 230 

size crystals at a high pH value was lower than that at a low pH value  231 

  

(a) Length [001] relative to temperature (b) Width [100] relative to temperature 
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(c) Length [001] relative to pH (d) Width [100] relative to pH 

Figure 5 Crystal size distribution (CSD) at different heating temperatures and pH values. 232 

 233 

3.2.2 Concentration of NaCl 234 

Actual seawater brine solution is highly saline with a NaCl concentration in the range 235 

of 35 g/L to 55 g/L. Thus, it is important to evaluate the influence of salinity on the formation 236 

of CaSO4. The tendency of CaSO4 formation in the presence of NaCl (35 g/L and 150 g/L) and 237 

in absence of NaCl were examined at a fixed pH of 7 and a temperature of 60 °C. 238 

The presence of salt reduced the formation of the CaSO4 crystal. The solution 239 

containing 35 g NaCl/L to 150 g NaCl/L resulted in 33.1% to 35.3% of Ca2+ removal efficiency. 240 

Comparatively, Ca2+ removal efficiency was 69.7% in the absence of NaCl. The influence of 241 

NaCl in reducing the formation of CaSO4 was attributed to the ionic interference of Na+ and 242 

Cl-.  243 

In terms of CSD, the presence of NaCl increased the size of CaSO4 crystals that were 244 

formed. As shown in Figure 6, in the absence of NaCl in the solution, relatively small crystals 245 

were observed (both “Length” and “Width”). In comparison, in the presence of NaCl in the 246 
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solution, CSD in both directions were higher, and the dominant crystal size increased. Thus, 247 

the CaSO4 crystal size increased with increases in the NaCl concentration.  248 

  

(a) Length [001] (b) Width [100] 

Figure 6 Crystal Size Distribution (CSD) with different salt concentrations in the feed 249 

solution. 250 

 251 

3.2.3 Effect of inorganic ions. 252 

3.2.3.1 Sole ion 253 

The addition of inorganic ions, such as Mg2+, K+, and HCO3
-, in the solution led to the 254 

growth of other crystals with CaSO4 crystals (Figure 7). The EDX analysis indicated that Na+ 255 

was detected in the crystals that were formed along with Ca2+ and SO4
2- with the addition of 256 

Mg2+ in the solution (Figure 7 (a)). Nevertheless, Mg2+ peaks were not detected in the EDX 257 

spectral. However, the addition of Mg2+ resulted in a significantly reduced Ca2+ removal 258 

efficiency (19.8±0.2%) when compared to the solution without any ion additions (29.5±0.6%) 259 

(Figure 8). The results implied that Mg2+ affected the formation of CaSO4 crystals. 260 

Theoretically, Mg2+ can also combine with SO4
2- in the solution and precipitate in the form of 261 
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crystal (magnesium sulfate (MgSO4)). The electronegativity influences a combination of 262 

covalent linkages [43]. It is a measure of the tendency of an atom to attract a bonding a pair of 263 

electrons. Specifically, the electronegativity of Mg2+ exceeds that of Ca2+ (Mg2+: 1.31 vs Ca2+: 264 

1.00) [43, 44]. Hence, the ionic bonding force of Mg2+ with electrons exceeds that of Ca2+. 265 

Thus, an amount of SO4
2- that can be combined with Ca2+ decreased because SO4

2- was 266 

attracted by Mg2+. However, Mg2+ did not form crystals with SO4
2+ due to its much higher 267 

solubility when compared with that of a CaSO4 crystal. The solubility of MgSO4 (351 g/L @ 268 

20 °C, 548 g/L @ 60 °C) significantly exceeds that of CaSO4 (2.55 g/L @ 20 °C, 2.44 g/L @ 269 

60 °C) [45, 46]. This is used to account for the reduction in CaSO4 crystals production. 270 

Therefore, it is necessary to consider the same since a high quantity of Mg2+ presents in the 271 

feed (0.22M as Mg2+) simulated the SWRO brine. 272 

The EDX analysis showed that the addition of K+ to the solution did not change the 273 

CaSO4 crystal formation (Figure 7 (b)). Similarly, the addition of K+ did not significantly 274 

change the Ca2+ removal efficiency, and thus the Ca2+ removal efficiency remained in the range 275 

of 32±1%, and it was closely similar to the solution without any added ions. The presence of 276 

K+ did not significantly influence the CaSO4 formation due to its lower electronegativity (0.82). 277 

Furthermore, when HCO3
- ions were added to the bulk solution, the other crystals 278 

formed in a globular form were observed in conjunction with CaSO4 crystals. The EDX 279 

mapping image showed that they did not contain Na+ and Ca2+ in the globular crystals (Figure 280 

7 (c)). Thus, the crystals with a globular shape were neither NaCl crystals nor CaSO4 crystals. 281 

Nevertheless, the addition of HCO3
- to the solution did not significantly change the Ca2+ 282 

removal efficiency, and therefore the Ca2+ removal efficiency remained in the range of 283 

30.5±1.7% that was similar to that of the solution without any additional ions (Figure 8).  284 
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 285 

 

(a) Calcium with the addition of magnesium 

  

 (b)  Calcium with the addition of potassium (c) Calcium with the addition of bicarbonate 

Figure 7 SEM-EDX data of crystal shape and components with the addition of ions at 60 286 

°C. 287 
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 288 

Figure 8 The reduction efficiency of calcium ions in the feed solution after crystallization 289 

with the addition of inorganic ions. 290 

 291 

At the same heating temperature (60 °C), the CSD differed based on the existence of 292 

specific ion in the feed solution. The CSD was higher when other ions were not added into the 293 

feed solution; and the CSD ranged from 50 µm to 1,200 µm (Figure 10). However, when K+, 294 

Mg2+ and HCO3
- were incorporated, the CSD ranged from 50 µm to 800 µm (with K+), from 295 

50 µm to 850 µm (with Mg2+), and from 50 µm to 900 µm (with HCO3
-). This implies that 296 

these ions influenced the growth of CaSO4 crystal. Thus, the ions interfere with the growth of 297 

CaSO4 crystals. 298 

 299 
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(a) Length [001] (b) Width [100] 

Figure 9 Crystal size distribution (CSD) with the addition of inorganic ions. 300 

 301 

3.2.3.2 Chemical washing agents 302 

In the SWRO process, chemical washing agents are employed to remove organic 303 

fouling, biofilm, and inorganic scaling [47]. The chemicals remain in the wastewater from 304 

SWRO process and are subsequently treated together with the SWRO brine. The presence of 305 

these chemicals in the SWRO brine may play a role in influencing the growth and size of CaSO4 306 

crystal formation. In the study, the changes in CaSO4 crystal formation in the presence of 307 

EDTA chemical washing in the solution and at a fixed temperature of 60 °C and a stirring speed 308 

of 50 rpm was evaluated. The pH value of solution changed due to the addition of EDTA (pH 309 

3.82 and 4.71). As shown in Figure 10, this did not significantly influence the formation and 310 

growth of crystals (27.01±0.53%) with addition of EDTA. The CSD and calcium ion rejection 311 

were almost similar in the absence and presence of EDTA (26.54%). 312 
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(a) Length [001] with EDTA (b) Width [100] with EDTA 

Figure 10 Crystal size distribution (CSD) with chemical washing agent. 313 

 314 

3.2.3.3 Coagulation chemicals for pre-treatment 315 

Flocculation is often used as a pre-treatment for RO process to remove colloidal and 316 

dissolved organic foulants. FeSO4 and FeCl3 are widely used as coagulants. In the study, the 317 

effect of these two coagulants on CaSO4 crystallization was investigated at a fixed pH of 7 and 318 

a temperature of 60 °C. As shown in Figure 11, the CSD of CaSO4 was affected by the presence 319 

of both the coagulants (FeSO4 and FeCl3). In the case of the “Length” direction, the CSD 320 

became narrow, and small crystals were detected in presence of coagulants. However, it did 321 

not influence the CSD of the “Width” direction. Iron and chloride ions were not detected in the 322 

crystals that were formed (Figure 13). As mentioned in section 3.1.3.1, the added ions can be 323 

combined with other ions in the formation of crystals. For example, the addition of Mg2+ 324 

influences CaSO4 crystal formation (Figure 9). However, Fe2+ did not influence it although 325 

iron ions exhibit a higher electronegativity when compared with magnesium and calcium ions 326 

(Fe3+: 1.83, Mg2+: 1.31, Ca2+: 1.00). It is expected that concentration of iron ion is not 327 

sufficiently high to influence the ionic bond force with sulfate ions (2.0 mM as Fe3+ in feed). 328 
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In case of the magnesium ions, a very high amount of magnesium ions was added into the feed 329 

(0.22 M as Mg2+). Additionally, the solubility of FeSO4 and FeCl3 significantly exceeds that of 330 

CaSO4 (FeSO4: 256 g/L @ 20 °C, and FeCl3: 920 g/L @ 20 °C). 331 

In terms of the formations of crystal, each coagulant exhibits a different effect. When 332 

FeCl3 was added, the amount of calcium that was rejected was almost same (27.9%) as that 333 

given the non-addition of coagulant (28.5%). Conversely, the rejection ratio of calcium ions 334 

(42.7%) increased when FeSO4 was added. This indicates that FeSO4 simulates the formation 335 

of crystals due to the presence of sulfate ions. The results indicated that the addition of sulfate 336 

ions influenced the formation of CaSO4 crystal. Increased CaSO4 crystals were formed in the 337 

presence of SO4
2- in the feed solution. Overall, both the coagulant chemicals negatively 338 

influenced crystal growth in the “Length” direction.  339 

  

(a) Length [001] (b) Width [100] 

Figure 11 Crystal Size distribution (CSD) of CaSO4 in the presence of a coagulant. 340 
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 341 

Figure 12 EDX data of CaSO4 crystals in the presence of a coagulant. 342 

 343 

3.3. Effect of organic matter 344 

 Organic matters, such as polysaccharide, protein, and humic, are found in seawater and 345 

SWRO brine. Here, HA, BSA, and AA represent the humic, proteins, and polysaccharide (the 346 

common model organic foulant in brine). As shown in Figure 13, when organic matters (HA, 347 

BSA and AA) are added in a feed solution, the CSD in the “Length” direction became narrower, 348 

and the dominant crystals size became smaller. In contrast, CSD (in “Width” direction) did not 349 

change significantly with the addition of organic matters. This revealed that all three organic 350 

matters that were used prevented the growth of crystals in the length direction. In the case of 351 

the HA addition, the rejection ratio of Ca2+ increased to approximately 10% although they did 352 

not influence the growth of crystals (Ca2+ rejection efficiency: 29.0% @ Non-addition, 38.5% 353 

@ addition of HA, 30.8% @ addition of AA, 31.1% @ addition of BSA). This is potentially 354 

due to the reduction of electrostatic repulsion between Ca2+ [48, 49]. Additionally, HA 355 
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possesses a negative charge [50]. It plays the role of a bridge between Ca2+ and HA (bridging 356 

effect and/or complexation). Hence, Ca2+ adsorbs onto the HA compound. It causes a higher 357 

rejection of the Ca2+ in a solution than the Ca2+ rejection ratio given non-addition. 358 

  

(a) Length [001] (b) Width [100] 

Figure 13 Crystal Size Distribution (CSD) in the presence of organic matter. 359 

Table 2 Calcium ion rejection efficiency in presence of organic matter. 360 

Organic matter Calcium rejection efficiency (%) 

No addition  29.01 

Humic acid (HA) 38.45 

Alginate (AA) 30.76 

Bovine serum albumin (BSA) 31.13 

 361 

3.4. Effect of physical factors 362 

In the submerged membrane process, physical methods, such as agitation, aeration, and 363 

vibration are applied to reduce the fouling phenomenon and to agitate (mix) the solution [51]. 364 

Additionally, the crystallization tendency is significantly influenced by physical factors such 365 

as agitation speed. Furthermore, it is important to operate the crystallizer at an appropriate 366 
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agitation speed [35, 52]. In this section, three different agitation speeds (0 rpm, 20 rpm (as the 367 

lower speed), and 150 rpm (as the higher speed)) were applied. 368 

As shown in Figure 14, CSD was influenced by the agitation intensity (or mixing 369 

speed). The dominant crystals size of CSD increases in the “Length” direction when the 370 

agitation intensity increased. This indicates that the hydrodynamic conditions are more suitable 371 

for crystal growth at a higher agitation intensity. In this case, a better suspension of crystals 372 

was provided by higher agitation intensity. Thus, the surface area that is exposed to the solution 373 

for mass transfer between crystal surface and solution increased. As shown in Figure 15, 374 

suspension crystals in the solution were evenly distributed with higher agitation intensity. In 375 

comparison, crystals were formed towards the bottom side at a lower agitation intensity. 376 

However, in the case of the “Width” direction, the dominant size of crystal increases at the low 377 

mixing speed of 20 rpm although the dominant size decreased at a higher agitation intensity. 378 

This may be due to crystal breakage that is caused by collisions between crystals and impeller 379 

of jar-tester or wall of batch cell [35]. At a higher agitation speed, the probability of collision 380 

of crystals increased with increases in the collision power. This can lead to a higher degree of 381 

breakage of crystals. A lower dominant size of crystals at higher agitation intensity was 382 

detected in the case of the “Width” direction. It is assumed that the crystal side of the “Width” 383 

direction (side 120) exhibits a weaker solidity when compared with the dimension of “Length” 384 

direction (side īıı) (Figure 2). At a high mixing, the increase in the effective surface of the 385 

crystal, which is contacted to solution, increases the formation ratio of crystals. However, the 386 

formation ratio is not significantly different at lower (20 rpm) and higher (150 rpm) agitation 387 

intensities (Ca2+ rejection ratio: 11.7% @ 0 rpm, 27.2% @ 20 rpm, and 28.9% @ 150 rpm).  388 
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(a) Length [001] (b) Width [100] 

Figure 14 Crystal Size Distribution (CSD) at different mixing velocities. 389 

  

(a) At lower agitation intensity (20 rpm)  (b) At higher agitation intensity (150 rpm) 

Figure 15 Suspension of crystals at different agitation intensities.  390 
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4. Conclusions 391 

In this study, the crystallization tendency of CaSO4 in saline solution was examined 392 

with different factors at the same standard condition such as chemical factors (temperature, pH, 393 

NaCl concentration, and chemical agents), organic matters (AA, HA and BSA) and physical 394 

factors (agitation). It is important to possess a good understanding of the suitable control of 395 

chemical and physical factors for crystal formation in the MDC process. Crystallization is an 396 

effective approach to reduce scaling and fouling and to recover valuable resources from brine. 397 

Based on the results of this study, the following conclusions were obtained: 398 

• The size and amount of CaSO4 crystals increased at a higher solution temperature. At 399 

the increased solution temperature (80 °C), 32.5±2.6% Ca removal efficiency was 400 

achieved when compared to 22.2±0.7% at a lower temperature (50 °C). The pH did not 401 

play a significant role in the amount of CaSO4 that was formed but a higher pH enabled 402 

an increase in the size of CaSO4 crystals  403 

• The presence of NaCl reduced the formation of CaSO4 and the Ca2+ removal efficiency 404 

was reduced. 405 

• The presence of Mg2+ reduced the Ca2+ removal efficiency, and this is attributed to the 406 

strong electronegativity of Mg2+ when compared to that of Ca2+. The presence of K+ and 407 

HCO3- did not play a significant role in the CaSO4 formation. In comparison, FeSO4 408 

stimulates the formation of CaSO4 crystal because it includes a SO42+. 409 

• In the presence of organic matter, the CSD in the “Length” direction decreased, and the 410 

formation of crystal was slightly improved. In the presence of HA, the Ca2+ rejection 411 

increased by bridging the effect between Ca2+ and HA. 412 
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• Agitation positively affects the formation and growth of crystals, and it is controlled by 413 

adjusting the agitation intensity. A higher agitation intensity (150 rpm) is suitable 414 

because it provides a sufficient suspension of crystals. 415 

 416 
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