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Abstract: Antenna arrays with shaped patterns have drawn significant attention for their
wide applications in radar, sonar and communication systems. The combination of genetic
algorithm (GA) and fast Fourier transform (FFT) has been used to synthesize shaped pattern
of antenna array’s factor without considering coupling effects. In this work, the GA-FFT
method is generalized by integrating with a new virtual active element pattern expansion
(VAEPE) method which approximates each active element pattern as the radiation pattern by
exciting several equally spaced virtual elements surrounding the real element position. The
generalized GA-FFT can be applicable for the shaped pattern synthesis of unequally spaced
linear arrays including mutual coupling and platform effect. Several synthesis examples
with different pattern shapes and different antenna structures are given to demonstrate the
effectiveness, accuracy and robustness of the proposed method.

1. Introduction

Antenna arrays with shaped patterns have many applications in radar, sonar and communication
systems. The synthesis of shaped power patterns is a highly nonlinear problem, and most of shaped
pattern synthesis methods can be considered as iterative optimization techniques, such as the al-
ternating projection method [1, 2], genetic algorithm (GA) [3–5], particle swarm optimization (P-
SO) [6, 7], differential evolution algorithm (DEA) [8, 9] and modified tabu search algorithm (MT-
SA) [10]. Despite the success of these techniques, they are usually time consuming since a large
number of repeated calculations of the pattern of the array are required. To overcome this problem,
some hybrid methods have been presented in which the fast Fourier transform (FFT) is adopted
to speed up the calculation of the pattern of the array at each iteration [11–13]. In particular, the
combination of FFT and GA presented in [11] can significantly improve the efficiency of the GA-
based synthesis method while maintains the flexibility of the GA optimization for dealing with the
synthesis constraints on the pattern shape, the dynamic range ratio (DRR) of excitation amplitude
and so on. However, due to the limitation of the FFT, the GA-FFT method can be only applied to
the synthesis of equally spaced array without considering element mutual coupling and platform
effect. Recently, the nonuniform FFT has been applied to accelerate the pattern calculation for an
unequally spaced array [14–16]. However, the nonuniform FFT deals only with the array factor,
and it cannot be applicable when the pattern of the array including coupling effects is considered.
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As is well known, the mutual coupling effect may be significant in practical antenna arrays.
There are plenty of papers talking about mutual coupling effects from different points of view
[17]. For example, many mutual coupling correction techniques have been presented in different
applications such as direction-of-arrival (DOA) estimation [18–22], adaptive beamforming [23–
25], antenna array manifold repairment [21,22,26] and static array pattern synthesis [7,12,27–31].
Due to the significance of the mutual coupling, incorporating the mutual coupling into the pattern
synthesis should be very useful. In this situation, the element pattern in the array should be replaced
with the active element pattern (AEP) which is defined as the pattern of the array when only
one element is excited and all the others are connected to matching loads [32, 33]. The AEP
usually differs from each other. Consequently, the FFT and nonuniform FFT synthesis techniques
cannot be applicable. Recently, we presented an active element pattern expansion (AEPE) method
[34]. This method approximates the active element pattern as a subarray’s pattern by exciting the
neighboring elements which have significant coupling effects. In this way, the pattern of an equally
spaced linear array including coupling effects can be efficiently calculated by using the FFT. With
the help of the AEPE, the GA-FFT is extended in [34] to synthesize a focused beam pattern of the
mutually coupled equally spaced array. However, since the AEPE method utilizes the neighboring
elements at real positions to expand the AEP, it is compatible with the FFT only in the case of
equally spaced arrays.

Here we introduce a virtual active element pattern expansion (VAEPE) method in which each
AEP is considered as the pattern by exciting several equally spaced virtual elements surround-
ing the real element position. By combining the VAEPE method, the GA-FFT can be further
generalized to synthesize unequally spaced arrays including coupling effects. This generalized
GA-FFT method can control the pattern shape and sidelobe level accurately by considering the
mutual coupling as well as platform effect. Several shaped pattern synthesis examples are given to
demonstrate the effectiveness and accuracy of the proposed method. The first example is to synthe-
size a flat-top power pattern for a 30-element dipole array, and then synthesizing a flat-top pattern
with part of mainlobe enhanced for special application is considered for the same array. Another
example is to synthesize a cosecant-squared pattern for a 13-element microstrip patch array. In ad-
dition, to evaluate the performance of the proposed method when considering the platform effect,
the cosecant-squared pattern synthesis example is double checked when the same array is mounted
in a complicated platform with several metal scatters.

The rest of this paper is organized as follows. Firstly we describe the idea of the VAEPE method
and the generalized GA-FFT method in Section 2. And then the synthesis examples with different
pattern shape requirements are presented in Section 3. Some conclusions are given in Section 4.

2. Formulation

2.1. The Virtual Active Element Pattern Expansion (VAEPE) Method

Let us consider an unequally spaced linear array of N elements, aligned along X-axis. The far-filed
array’s pattern can be written as

f(u) =
N∑

n=1

wngn(u)e
jβxnu (1)

where j =
√
−1, u = cos θ, and θ is the angle between the direction of observation and the linear

array. β = 2π/λ is the wavenumber in free space, λ is the wavelength, xn is the position of the
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nth element, and gn(u) is the phase-adjusted active element pattern (AEP) of the nth antenna at
an operating frequency (the coordinate system’s origin locates at each element). The AEP is the
array pattern by exciting only one element and connecting all the others to matching loads, and
all the AEPs can be obtained by measurement or full wave simulation. Obviously, the pattern
calculated by (1) has included both the mutual coupling between antenna elements and platform
effect. However, due to the unequal spacing and nonuniform platform effect, the AEPs are usually
different from each other. Consequently, the FFT technology can not be used directly, cannot the
NUFFT method either. For the unequally spaced array, the LS-AEPE method we presented in [34]
is still not suitable when followed by FFT directly.

real unequally spaced array

virtual equally spaced array

Fig. 1. Schematic of nonuniform array active element pattern expansion.

To overcome the problem mentioned above, we introduce a virtual AEP expansion (VAEPE)
method in which each AEP of a real antenna element is assumed to be the radiation pattern by
exciting several equally spaced virtual elements surrounding to the real element position, as shown
in Fig. 1. It should be emphasized that the virtual equally spaced array is just an equivalent model
instead of a real existence. Mathematically, the nth AEP gn(u) can be approximated as

gn(u) ≈ gs(u)
∑Q/2

q=−Q/2 cnqe
jβ(vn−xn+qd)u

= gs(u)e
jβ(vn−xn)u

∑Q/2
q=−Q/2 cnqe

jβqdu
(2)

where (Q + 1) is an odd positive integer which represents the expansion size for each AEP, d =
xN−x1

rN−1
is the element spacing of the virtual array, the over sampling factor r is a real number which

is always greater than 1, vn = [xn−x1

d
]d+x1 is the position of the nearest virtual element of the nth

real element, [x] denotes the nearest integer to x, and cnq is the excitation of the qth nearest virtual
element of the nth real element. gs(u) is called the virtual element pattern, and it is the same for
different virtual elements. We choose gs(u) as the average of all the phase-adjusted AEPs. That is,

gs(u) =
1

N

N∑
n=1

gn(u) (3)

In addition, cnq can be obtained by solving the following minimization problem:

min
cn

∥gn − Zncn∥22 (4)
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where
cn = [cn,−Q/2, cn,−Q/2+1, · · · , cn,Q/2]

T (5)

gn = [gn(u1), gn(u2), · · · , gn(uM)]T (6)

and

Zn =

 p1e
jβdu1(−Q/2) . . . p1e

jβdu1(Q/2)

...
...

pMejβduM (−Q/2) . . . pMejβduM (Q/2)

 (7)

pm = gs(um)e
jβ(vn−xn)um (8)

The least-square solution to the above problem is given by cn = (ZH
n Zn)

−1ZH
n gn. Furthermore,

the mathematical form in (5) is not a circulant form, because all the expansion coefficients for
different active element patterns are calculated separately and there does not exist a Toepliz matrix
structure due to complicated mutual coupling and platform effects in the unequally spaced antenna
array.

2.2. Generalized GA-FFT for Synthesizing Shaped Pattern of Unequally Spaced
Coupled Linear Array

By integrating (1) with (2), we can reformulate the array pattern as

f(u) = gs(u)e
jβu(x1−Qd/2)

[rN ]+Q−1∑
l=0

ale
jβldu (9)

where
al =

∑
l=[

xn−x1
d

]+q+Q/2

−Q/2≤q≤Q/2

cnqwn (10)

By uniformly sampling (9) with um = m∆FFT = 2πm/Mβd for m = −M/2 : 1 : (M/2− 1), we
obtain that

f(um) = gs(um)e
jβum(x1−Qd/2)

[rN ]+Q−1∑
l=0

ale
j2πlm/M (11)

Clearly, the above summation can be evaluated by applying the standard FFT. Hence, the ar-
ray pattern including mutual coupling effect can be calculated by the FFT with the help of the
VAEPE method. For obtaining a pattern with M sampling points, this method requires only
(Q + 1)rN + K/2 log2 K + M complex multiplications provided that the radix-2 algorithm is
used (Q ≪ N , K = 2⌈log2M⌉, and ⌈x⌉ denotes the smallest integer greater than or equal to x).
However, we mention that direct summation of (1) with the same M sampling points costs MN
complex multiplications. As an illustration, in Fig.2 we plot the number of multiplications required
by direct summation versus that by the VAEPE-FFT when the parameters are chosen as M = 8N ,
r = 2 and Q = 6. As can be seen that the VAEPE-FFT costs much less multiplications especially
when the array with a large number of elements is considered. This is extremely useful for the
GA-based synthesis technique since a large number of array patterns for all the individuals at each
generation need to be calculated.

4



0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

N

N
o.

 o
f m

ul
tip

lic
at

io
ns

 

 

Direct Sum

VAEPE−FFT

×103

Fig. 2. The number of complex multiplications required (M = 8N , r = 2, Q = 6).

Then, the problem of synthesizing a linear array shaped power pattern by optimizing the exci-
tations can be formulated as follows,

minimize
wn

∥P (um)− Pd(um)∥22, um ∈ shaped region

subject to L(um) ≤ P (um) ≤ U(um), um ∈ [−1, 1]

max{wn}/min{wn} ≤ DRR

(12)

where P (u) = |f(u)|2 is the power pattern function to be synthesized, Pd(u) is the desired power
pattern function, L(u) is the lower bound, and U(u) is the upper bound. With appropriate choice
of Pd(u), L(u) and U(u), some complicated radiation requirements such as mainlobe shaping and
sidelobe level (SLL) control can be easily described. And the DRR constraint can be also added to
control the maximum-to-minimum excitation ratio.

As is well known, the power pattern synthesis is a highly nonlinear problem. Here we choose
the real-code GA algorithm presented in [34] as a global optimization tool. The optimization
variable is a 2N -dimensional vector for a N -element array. In this vector, the first N elements
are real-valued numbers ranging from 0 to 1 which represent the excitation amplitudes, and the
last N elements are real-valued numbers ranging from −π to π which represent the excitation
phases. However, for the pattern synthesis problem, we only need to care about the relative values
of the amplitudes and phases, which means that there are only (2N − 2) degrees of freedom for
the array with fixed element positions. The objective function is minimizing the error between
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desired pattern and synthesised pattern over the specified shaped region. Two constraints are used:
one is to control both the power pattern shape and sidelobe (SLL) distribution by presetting the
upper and lower bounds, and the other is to control the maximum-to-minimum excitation ratio if
required. In the synthesis, the calculation of array’s pattern for each individual in every generation
is accomplished by the FFT via VAEPE. This method significantly generalizes the original GA-
FFT to be suited for the synthesis of unequally spaced array including coupling effects. Therefore,
we call it the generalized GA-FFT method.

3. Numerical Results

3.1. Flat-top Power Pattern Synthesis of an Unequally Spaced Dipole Array

As the first example, we consider to synthesize a flat-top power pattern for a 30-element array
whose element positions are given in Table 1 of [10]. Assuming all the elements are isotropic,
the excitation given by [10] can achieve a flat-top power pattern result satisfying the radiation re-
quirements. However, if consider a practical antenna array, there would exist significant deviation
between the synthesized pattern and the real one due to the presence of mutual coupling between
elements. In this example, we assume that each element is a dipole antenna, working at the fre-
quency of 1 GHz. Fig. 3 shows the geometry of this array. To compensate for the mutual coupling
effects, we use the active element pattern (AEP) for each element dipole which can be obtained by
full-wave simulation such as High-Frequency Structure Simulator (HFSS) software [35]. To apply
the proposed generalized GA-FFT, at first we use the VAEPE method to expand each AEP as the
pattern of some equally spaced virtual elements. The approximation error of the VAEPE method
can be calculated as the following

ϵ =

√√√√∑N
n=1 ∥gn(u)− gs(u)ejβ(vn−xn)u

∑Q/2
q=−Q/2 cnqe

jβqdu∥22∑N
n=1 ∥gn(u)∥22

(13)

Fig. 4 shows the error ϵ of the VAEPE method versus the (Q + 1) for different virtual element
spacing d = [0.4, 0.3, 0.2]λ (obtained at r = [1.25, 1.66, 2.47], respectively). As is expected, the
error ϵ decreases as Q gets larger for a fixed d. For a fixed Q, the error with d = 0.3λ is much lower
than that with d = 0.4λ. However, using a smaller d cannot reduce the error any more. This is
because that the virtual array with a smaller d can capture the variation of real antenna array current
distribution, but for a fixed Q, a smaller d means a reduced size of the virtual subarray used for
approximating the AEP. That is, the smaller aperture counteracts the improvement in accuracy by
smaller spacing. So, the parameter d cannot be too small. In this example and the following ones,
we use d = 0.3λ, and Q = 10. In this way, the unequally spaced dipole array is dealt to be a 60-
element virtual uniform array. Then, the generalized GA-FFT is applied to optimize the excitation
amplitudes and phases for this array to achieve the radiation requirements. The synthesized pattern
is shown in Fig. 5. As can be seen, this pattern is nearly the same as the method by combining
GA and direct summation method. For further comparison, Fig. 5 also shows the synthesized
pattern given in [10] and the one obtained by summing all the APEs of dipole antennas with the
same weights used in [10]. As can be seen, due to lack of considering the mutual coupling, the
real pattern deviates significantly from the synthesized one with isotropic elements. This proves
the accuracy of the proposed method which can include the mutual coupling and eliminate such
deviation.
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Fig. 3. Geometry of a 30-element unequally spaced dipole antenna array.
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Fig. 4. Interpolation error ϵ versus (Q+ 1) for different virtual spacing d.

Sometimes a more complicated shaped power pattern is desired. For example, the desired
radiation is a flat-top power pattern but with a part of mainlobe enhanced over a specified angle
region. This may happen in some special applications when longer signal transmission distance
or larger radiated power in a communication system should be obtained in a certain angle region.
Assume that the flat-top shaped power region is u ∈ [−0.390,−0.053] ∪ [0.053, 0.390], and the
pattern level in this region is 8 dB lower than the maximum power level that happens at u = 0.
The sidelobe level is required to be less than −25 dB for u ∈ [−1,−0.439] ∪ [0.439, 1]. In this
example, we set the upper and lower pattern bounds as shown in Fig. 6. The proposed generalized
GA-FFT is still effective, and the synthesized pattern is also shown in Fig. 6. As can be seen,
the obtained pattern is nearly the same as the one obtained by the combination of GA and direct
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summation method, and both meet the specified pattern bounds very well.
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Fig. 5. The flat-top patterns synthesized by the generalized GA-FFT and the GA-direct summation
method, the pattern given in [10] with isotropic elements, and the pattern obtained by using the
excitations in Table 1 of [10] with the active element patterns of the 30-element dipole array.

3.2. Cosecant-squared Power Pattern Synthesis of an Unequally Spaced Patch Array

In the second example, we consider to synthesize a cosecant-squared power pattern for a 13-
element unequally spaced array whose element positions are given in Table 2 of [36]. Assume
that the element antenna is a microstrip patch antenna operating at the frequency of 10 GHz. The
geometry of this antenna array is shown in Fig. 7. Due to the element pattern modulation and mu-
tual coupling of microstrip antenna elements, the real array’s pattern with the excitations of [36]
obtained with ideally isotropic elements falls below the prescribed lower bound in the shaped re-
gion, as shown in Fig. 8. We now apply the generalized GA-FFT to synthesize this pattern. In this
example, the dynamic range ratio (DRR) is constrained to be less than 6.9 . The obtained pattern
is also shown in Fig. 8. As can be seen, this pattern including mutual coupling strictly meets the
prescribed upper and lower bounds, and the mainlobe shape as well as sidelobe distribution are
controlled very well. In addition, this result is again very close to the one obtained by combining
GA and direct summation. Note that the obtained DRR is 6.9, which is just equal to its bound.
This value is much less than the DRR of 11.1 obtained in [36].
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Fig. 6. The synthesized flat-top power pattern with a part of mainlobe enhanced over a specified
region for the 30-element dipole array.
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Fig. 7. Geometry of a 13-element unequally spaced microstrip patch antenna array.

3.3. Cosecant-squared Power Pattern Synthesis of the Nonuniform Patch Array in
Complicated Environment

As the last example, we check the effectiveness of the proposed method for the array in an inho-
mogeneous platform environment. Assume that the same microstrip antenna array as in the second
example is mounted on a metal platform with several metal scatters, as shown in Fig. 9. In this
situation, the AEPs will be significantly affected by the platform and scatters, and can be much
different depending their locations. We still use the proposed VAEPE method to deal with all these
AEPs and apply the generalized GA-FFT to synthesize the same desired pattern as in the second
example. With the synthesized excitations, the patterns using approximate AEPs and real AEPs as
well as the pattern obtained by HFSS are shown in Fig. 10 for comparison. As can be seen, the
synthesized pattern with the approximate AEPs completely meets the prescribed bounds in both
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Fig. 8. The cosecant-squared patterns synthesized by the generalized GA-FFT and the GA-direct
summation method, the pattern given in [36] with isotropic elements, and the pattern obtained by
using the excitations in Table 2 of [36] with the active element patterns of the 13-element microstrip
antenna array.

mainlobe and sidelobe regions. The pattern with real AEPs has a slight degradation in the low
sidelobe region (i.e., −30 dB SLL region) due to the complex platform environment effect, but it is
in general acceptable. In addition, this pattern matches very well with the HFSS simulation result.
This shows the robustness of the proposed method for practical problems.

Fig. 9. The 13-element unequally spaced microstrip patch antenna array mounted on a metal
platform and surrounded with some scatters.
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Fig. 10. The cosecant-squared patterns calculated using the approximate AEPs and real AEPs and
the pattern from HFSS simulation, all with the same excitations synthesized by the generalized GA-
FFT for the 13-element microstrip antenna array mounted in a metal platform with some scatters.

4. Conclusion

We have generalized the GA-FFT by integrating with a virtual active element pattern expansion
(VAEPE) method. The generalized GA-FFT can be applied to synthesize unequally spaced linear
antenna arrays including mutual coupling as well as platform effect, while maintains the similar
computational complexity of the original GA-FFT. Numerical examples are given for synthesizing
flat-top power pattern with/without a part of enhanced mainlobe for a 30-element dipole array, a
cosecant-squared power pattern for a 13-element microstrip patch array, and the same cosecant-
squared pattern for the same array but mounted in a complicated platform with several metal scat-
ters. The synthesis results show that the generalized GA-FFT method by including the coupling
effects can achieve satisfactory accuracy performance in controlling the pattern shape and sidelobe
distribution, even for the antenna array surrounded with metal scatters.

Finally, it should be noted that the proposed VAEPE-FFT technique can be also combined
with some other optimization algorithms such as differential evolution (DE) and particle swarm
optimization (PSO) algorithms. Hence, this technique would be very useful in many problems
related to antenna array pattern calculation.
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