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Abstract 

Background Fatty acid oxidation defects are rare autosomal recessive disorders with variable clinical manifestations 
and outcome. Early detection by systematic neonatal screening may improve their prognosis. Long-term outcome 
studies of these disorders in the Middle East and North Africa region are limited. The purpose of this study is to report 
the diagnostic challenges and outcome of fatty acid oxidation defects in a major tertiary care center in Lebanon, 
a resource-constrained country in the Middle East.

Methods A retrospective review of charts of all fatty acid oxidation defects sequential patients diagnosed and fol-
lowed at our center was conducted. Collected data included: parental consanguinity, age at diagnosis, clinical pres-
entation, biochemical profile, confirmatory diagnosis, treatment and outcome. A genotype–phenotype correlation 
was also performed, when available.

Results Seven types of fatty acid oxidation defects were identified in a total of 34 patients from 21 families. Most 
families (79%) were consanguineous (first-degree cousins). The majority were diagnosed when clinically symp-
tomatic (78%), at various ages between 10 days and 19 years (average: 2 years). Follow-up duration spanned 
between 2 months and 15 years (average: 5 years). The remainder of the patients were detected while still asympto-
matic by systematic neonatal screening (9%) or due to positive family history (9%). The most common defect was car-
nitine transporter deficiency (50%) with an exclusive cardiac presentation related to a founder variant c.981C > T, 
(p.Arg254*) in the SLC22A5 gene. Medium chain acyl-CoA dehydrogenase deficiency was found in 13% only, which 
could be explained by the absence of systematic neonatal screening. Rare gene variants were detected in very long 
chain and multiple acyl-CoA dehydrogenase deficiency. The worse prognosis was observed in very long chain acyl-
CoA dehydrogenase deficiency. The overall survival at last follow-up reached 75% with a complete reversal of symp-
toms with treatment in most patients (63%), despite their late diagnosis.

Conclusions Our experience highlights the diagnostic challenges and outcome of fatty acid oxidation defects 
in a resource-constrained country with high consanguinity rates. Physicians’ awareness and systematic neonatal 
screening are key for diagnosis. Larger genotype–phenotype studies are still needed to understand the natural history 
of these rare diseases and possibly improve their outcome.
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Introduction
Fatty acid oxidation (FAO) defects are a group of rare 
autosomal recessive metabolic diseases caused by enzy-
matic deficiency of fatty acids transport, β-oxidation, 
or electron transfer in the mitochondria. These mainly 
include: (1) carnitine cycle defects: carnitine transporter 
defect (CTD) or primary carnitine deficiency, carnitine 
palmitoyl-CoA transferase-I (CPT-I), carnitine-acyl-
carnitine translocase (CACT), and carnitine palmitoyl-
CoA transferase II (CPT-II) deficiencies, (2) β-oxidation 
defects: very long chain acyl-CoA dehydrogenase 
(VLCAD), long chain hydroxyacyl-CoA dehydrogenase 
(LCHAD), mitochondrial trifunctional protein (MTP), 
medium chain acyl-CoA dehydrogenase (MCAD) and 
short chain acyl-CoA dehydrogenase (SCAD) deficien-
cies, (3) electron transfer defects affecting electron 
transfer flavoprotein and electron transfer flavoprotein 
ubiquinone oxidoreductase, leading to multiple acyl-CoA 
dehydrogenase (MAD) deficiency [1]. The most common 
long chain FAO (LC-FAO) defects include carnitine cycle 
(CTD, CPT-I, CACT, CPT-II), mitochondrial β-oxidation 
(VLCAD, LCHAD, MTP) and electron transfer MAD 
deficiencies [2].

At times of prolonged fasting, fatty acids represent the 
main source of energy for major organs like the liver, 
brain, heart and skeletal muscles. Hence, most FAO 
defects share clinically similar presentations with various 
degrees of severity. These include hepatomegaly, psycho-
motor delay, heart failure symptoms, myalgia and exercise 
intolerance, while peripheral neuropathy and retinopathy 
may be observed specifically in LCHAD and MTP defi-
ciencies [1]. Furthermore, life-threatening complications 
and even death can rapidly occur in all patients [2].

Biochemical investigations may show hypoketotic 
hypoglycemia, hyperammonemia, lactic acidosis, ele-
vated liver enzymes and/or creatine phosphokinase dur-
ing acute metabolic decompensations [3]. Diagnosis 
relies on specific abnormal patterns of blood acylcarni-
tine and/or urine organic acids profiles. Further confir-
mation can be achieved by molecular genetic testing and/
or enzymatic assays [4]. Treatment is mainly preventive, 
based on avoidance of hypoglycemia during prolonged 
fasting or catabolic stress. Dietary management and sup-
plementation with L-carnitine and/or triheptanoin and/
or riboflavin are tailored depending on the FAO defect 
type [5].

Early recognition of these fatal disorders is crucial for 
preventive and timely treatment [1]. The introduction 
of expanded neonatal screening by Tandem Mass Spec-
trometry in high-income countries in the early 1990’s 
unveiled a highly heterogeneous incidence of FAO 
defects ranging between 0.9 and 15.2 per 100,000 [6]. In 

some Arab countries with high rates of consanguinity, 
like in Qatar, FAO defects incidence reaches 28/100,000 
[7]. In Lebanon, in the absence of a systematic expanded 
neonatal screening program in the country, an estimated 
incidence of 6.4/100,000 was reported [8]. The impor-
tance of systematic neonatal screening for FAO defects, 
mainly for MCAD deficiency and some long-chain fatty 
acid oxidation defects was shown to improve the out-
come [2, 9]. Long-term outcome studies of FAO defects 
are available from various high-income countries, like 
Canada [2], United States [10], some European countries 
[11], and Eastern Asia [12, 13]. However, studies from 
the Middle East and North Africa are scarce, with few 
reports from Saudi Arabia [14, 15].

The aim of this 15-year retrospective study is to report 
the diagnostic challenges and long-term outcome of 
FAO defects in a major tertiary care center in Lebanon, a 
resource-constrained country in the Middle East.

Materials and methods
A retrospective chart review of all sequential patients 
with FAO defects followed at the American University of 
Beirut Medical Center, between February 2008 and Feb-
ruary 2023, was conducted.

Collected data for each FAO defect type included initial 
clinical presentation, diagnosis, treatment and outcome. 
Clinical manifestations were categorized into cardiac, 
hepatic, neurological, or sudden infant death syndrome. 
Expanded neonatal screening and acylcarnitine profile on 
dried blood spots, plasma total and free carnitine levels, 
urine organic acids chromatography, genetic testing and/
or enzyme assay on fibroblasts were all referred to estab-
lished laboratories outside Lebanon. A genotype–pheno-
type correlation was also performed, when available. The 
outcome was determined based on the last clinical evalu-
ation and classified as either asymptomatic or sympto-
matic with cardiac, and/or hepatic, and/or neurological 
complications, and/or death.

Microsoft Excel version 2208 was used for data analy-
sis. This study was approved by the Institutional Review 
Board at the American University of Beirut, Lebanon.

Results
A total of 34 patients from 21 families were diagnosed 
with FAO defects and followed at the American Univer-
sity of Beirut Medical Center, during the study period 
(Tables 1, 2).

Seven types of FAO defects were identified: (1) carni-
tine cycle (CT and CPT-IA), (2) β-oxidation (VLCAD, 
MTP, MCAD, and SCAD), and (3) electron transfer 
(MAD) deficiencies (Additional file  1; Table  S1). The 
most frequent disorder was CTD followed by VLCAD 
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and MCAD deficiencies (Fig.  1). A few patients were 
detected by neonatal screening (two CTD, one VLCAD, 
three MCAD, and two SCAD deficiency patients). The 
two SCAD deficiency patients were excluded from the 
aggregate data, as SCAD deficiency is currently consid-
ered as a pure biochemical finding with no phenotypic 
expression, and its clinical relevance is controversial [16]. 
Among the studied 19 families, the majority were diag-
nosed when clinically symptomatic (78%). The age at 
onset varied between two days of life and 14 years (aver-
age 2 years) whereas age at diagnosis ranged from 10 days 
to 19  years (average: 3  years). Follow-up duration var-
ied between two months and 15 years (average: 5 years). 
Most families (79%) were consanguineous (first-degree 
cousins). Confirmatory diagnosis was achieved in 89% 
of the families, by enzymatic assays in fibroblasts or by 
molecular testing using single gene sequencing for CTD 
patients and exome sequencing for the others.

Three CTD and two VLCAD deficiency patients were 
considered as possibly affected, based on their clinical 
presentation and suggestive repeatedly abnormal bio-
chemical profiles.

The treatment was based on avoidance of prolonged 
fasting in all FAO types. Dietary fat restriction was rec-
ommended for patients with long chain fatty acid oxida-
tion defects such as CPT, VLCAD, and MTP deficiencies 
as well as for MAD deficiency. Supplementation with 
oral L-carnitine and/or coenzyme Q10 and/or riboflavin 
was prescribed depending on each FAO defect type. The 

overall mortality was 25%: the highest in VLCAD defi-
ciency reaching 67% (four out of six patients), followed 
by MTP deficiency in 33% (one out of three patients) and 
CTD in 19% (three out of 16 patients).

Carnitine cycle defects (Table 1)
Carnitine transporter defect
The majority of CTD patients (75%, 12/16) presented 
exclusively with dilated cardiomyopathy (92%,11/12). 
Sudden infant death was the primary manifestation in 
one patient (N4). The age at onset varied from 6 months 
to 10  years (average 2  years 5  months). Four patients 
(N7, N11, N15, and N16) were identified by screen-
ing while asymptomatic, due to a positive history of 
affected siblings. All patients had decreased plasma 
total carnitine between 9.0 and 31  µmol/L (reference 
range: 33–72 µmol/L) and free carnitine between 3.7 and 
24.7 µmol/L (reference range: 27–59 µmol/L). The diag-
nosis was confirmed by identification of homozygous 
pathogenic variants in the SLC22A5 gene. Three patients 
from one family (F8) did not undergo molecular testing 
and were considered as possibly affected by CTD, based 
on their plasma carnitine levels and/or clinical presenta-
tion. All CTD patients were treated with oral L-carnitine 
supplementation (100 mg/kg/day in three divided doses) 
with complete resolution of the cardiomyopathy within 
six months of therapy, regardless of their age at diagnosis.

Carnitine palmitoyl-CoA transferase-IA deficiency
CPT-IA deficiency was diagnosed in two patients, at 
6.5 and 4  years of age, following episodes of hypoke-
totic hypoglycemia and hepatomegaly, during intercur-
rent febrile illnesses, occurring since 2 and 3  years of 
age, respectively. The diagnosis was suspected on acyl-
carnitine profile and confirmed by enzyme assay on 
fibroblasts. Both patients remained asymptomatic after 
dietary management and recommendations to avoid pro-
longed fasting.

β-oxidation defects (Table 2)
Very long chain Acyl-CoA dehydrogenase deficiency
VLCAD deficiency was identified in six patients (18%) 
from three families. The first patient (N19) from fam-
ily F11 was not screened neonatally, despite a positive 
family history of two siblings who were lost to sudden 
infant death syndrome. He presented at day 2 of life with 
hypoketotic hypoglycemia and seizures. Echocardiogra-
phy performed at day 5 of life revealed a mild biventricu-
lar hypertrophy. Qualitative acylcarnitine profile on dried 
blood by mass spectrometry showed highly elevated 
C14:1 and C16. The diagnosis was confirmed by enzyme 
assay on fibroblasts. He was treated with low-fat diet and 

CTD, 50%

VLCAD, 19%

MCAD,13%

MTP, 9%

CPT-1A, 6%
MAD, 3%

Fig. 1 Distribution of fatty acid oxidation defects in a total of 32 
Lebanese patients. CTD -carnitine transporter defect, CPT-IA-carnitine 
palmitoyl-CoA transferase-IA deficiency, VLCAD-Very long chain 
acyl-CoA dehydrogenase deficiency, MTP- Mitochondrial trifunctional 
protein deficiency, MCAD- Medium chain acyl-CoA dehydrogenase 
deficiency, SCAD- Short chain acyl-CoA dehydrogenase deficiency, 
MAD-Multiple acyl-CoA dehydrogenase deficiency
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medium chain triglycerides supplementation. In addition 
to the neurological and cardiac involvement, the patient 
developed recurrent episodes of rhabdomyolysis since 
5 years of age requiring repeated hospitalizations. At last 
assessment at the age of 15  years, he had severe devel-
opmental delay, epilepsy, myopathy, and hypertrophic 
cardiomyopathy with no evidence of arrythmias. The 2 
siblings (N20 and N21) of patient N19 were presump-
tively considered as suffering from VLCAD deficiency, in 
view of their clinical presentation with unexplained sud-
den infant death and the positive family history.

In the second family (F12), patient N22 was diagnosed 
with hypertrophic cardiomyopathy at one month of age. 
Family history was positive for sudden infant death at 
2  months of age. Acylcarnitine profile showed elevated 
C14:1 and C14:2 in conjunction with a very low free car-
nitine level. VLCAD deficiency was suspected. Dietary 
treatment and L-carnitine supplementation at 50  mg/
kg/day in three divided doses was initiated to normalize 
plasma carnitine levels. Genetic testing could not be per-
formed, and the patient was lost to follow-up at 3 months 
of age.

Patient N23 was also presumptively considered to have 
VLCAD deficiency in view of the family history and the 
unexplained sudden death at 2 months of age.

Patient N24, from family F13, presented at 2 days of life 
with hypoketotic hypoglycemia before neonatal screen-
ing results were reported. She developed hypertrophic 
cardiomyopathy at one month and died at 3  months of 
age due to cardiac failure. Exome sequencing post-mor-
tem revealed compound heterozygous variants (one 
pathogenic and one variant of unknown significance) in 
the ACADVL gene.

Mitochondrial trifunctional protein deficiency
MTP deficiency was identified in three patients (9%), 
born after uncomplicated pregnancies without signs of 
maternal HELLP (Hemolysis, Elevated Liver enzymes, 
Low Platelets) syndrome. Patient N25 had a late-onset 
presentation at 12  years of age, while the two other 
patients were symptomatic by one year of age. All three 
patients had the neuromyopathic phenotype. Molecular 
genetic testing of HADHA gene revealed homozygous 
likely pathogenic variant in F14 and a variant with con-
flicting classifications of pathogenicity in F15. Patients 
were treated with a long-chain fat-restricted diet with 
medium chain triglycerides supplementation and low-
dose L-carnitine at 25 mg/kg/day in three divided doses 
to maintain normal plasma carnitine levels. In fam-
ily F15, acylcarnitine profiles tested while patients were 
on treatment came back normal (Table  2). One patient 
(N27) died at 9 months of age during an intercurrent res-
piratory infection with rhabdomyolysis. The surviving 

two patients suffer from progressive myopathic deterio-
ration and peripheral neuropathy.

Medium chain Acyl-CoA dehydrogenase deficiency
Three out of four patients (12%) diagnosed with MCAD 
deficiency were detected by neonatal screening while 
still asymptomatic. Interestingly, one patient (N28) had a 
history of undiagnosed “hepatitis” at 2 years of age, and 
he was retrospectively diagnosed at 10 years of age after 
detection by systematic neonatal screening of an affected 
sibling (N29). The acylcarnitine profile in all patients 
revealed an increase in C6, C8 and C10:1. Molecular test-
ing by exome sequencing identified homozygous patho-
genic variants in the ACADM gene in all patients. At last 
follow-up, all patients remained asymptomatic on pre-
ventive treatment (Additional file 1).

Short chain acyl-CoA dehydrogenase deficiency
SCAD deficiency was detected in two patients by sys-
tematic neonatal screening. Urine organic acids chroma-
tography showed elevated excretion of ethylmalonic acid 
and methylsuccinic acid.

Plasma acylcarnitine profile showed elevated butyryl-
isobutyryl carnitine (C4) (Table  2). Genetic testing in 
patient N32 detected a homozygous benign variant in 
ACADS gene. Both patients remained asymptomatic 
without any treatment.

Electron transfer defects (Table 2)
Multiple acyl-CoA dehydrogenase deficiency
One patient with late-onset MAD deficiency presented 
at 14  years of age with progressive muscle weakness 
associated with episodes of acute rhabdomyolysis. Acyl-
carnitine profile showed increased C6, C8 and C10. The 
diagnosis was confirmed at 19  years of age by exome 
sequencing, revealing compound heterozygous patho-
genic and likely pathogenic variants in the ETFDH gene. 
The patient was treated with a combination of ribofla-
vin at 300 mg daily, L-carnitine at 50 mg/kg/day in three 
divided doses, and coenzyme Q10 at 200 mg daily in two 
divided doses. A significant improvement in the myopa-
thy was noted within one month of initiation of therapy 
with no recurrence of acute rhabdomyolysis episodes at 
last follow-up, at 23 years of age.

Discussion
Diagnosis and outcome of FAO disorders remain chal-
lenging with scarce data in the literature from resource-
constrained countries [17]. Early detection of these 
defects by expanded neonatal screening has been shown 
to reduce mortality and morbidity rates [1, 10]. In Leb-
anon, despite high rates of consanguinity [18] linked to 
autosomal recessive disorders like fatty acid oxidation 
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defects, neonatal screening is not mandatory and is 
selectively offered in some hospitals [8, 19]. Few patients 
(9%, 3/32) were detected by systematic neonatal screen-
ing or due to positive family history (9%, 3/32) while still 
asymptomatic. Usually, MCAD deficiency is reported 
as the most common FAO disorder detected by neona-
tal screening [20]. In this Lebanese series of patients, the 
majority (79%) were diagnosed upon clinical manifesta-
tions at various ages, in contrast to 37% (14/38) of symp-
tomatically identified patients in Canada, for example [2]. 
As a result, CTD rather than MCAD deficiency was the 
most frequent clinically identified disorder (50% vs 13%).

Half of the patients with LC-FAO defects were still 
available between 5 to 15 years for follow-up, similarly to 
a larger study of 426 patients in the United States [17]. 
A shorter follow-up duration (average 2.4  years) was 
reported from low- to middle-income countries [6].

The overall survival in our cohort of 32 patients 
reached 75% at last follow-up, with a five-year survival of 
53% despite the late diagnosis of most cases, in compari-
son to 52% in a large French pediatric cohort [21].

Genotype–phenotype correlation, when available, 
revealed rare variants, sometimes related to a founder 
effect in the highly consanguineous Lebanese population.

Interestingly, the phenotypic presentation of CTD 
was exclusively an isolated dilated cardiomyopathy in all 
cases. No muscular, hepatic or neurological symptoms 
were noted. The genotypic predominance of the non-
sense variant, c.981C > T: (p.Arg254Ter) in the SLC22A5 
gene, already reported in three Lebanese families [22, 
23] and further identified in two others in this study, is 
in line with a founder effect linked to this phenotypic 
expression. Few CTD patients (19%) were considered as 
possibly affected based on their clinical and biochemi-
cal profile as reported in other series [24] in the absence 
of genetic testing. Although most of the cases were late-
diagnosed and had profoundly decreased free plasma 
carnitine levels, the cardiomyopathy was totally reversed 
following L-carnitine supplementation.

VLCAD deficiency patients were all symptomatic 
before one month of age with a family history of sudden 
infant death by 2 months of age. They exhibited the worst 
prognosis and the highest mortality, similar to previous 
reports [21]. One patient carried compound heterozy-
gous variants in ACADVL gene: a pathogenic variant 
c.711_712delTG, (p.Cys237Trpfs*15), recently reported 
by Arunath et  al. [25] in a South Asian patient with a 
similar phenotype, and a variant of unknown significance 
c.1393A > C, (p.Asn465His).

MTP deficiency patients had variable ages at onset with 
no history of maternal HELLP syndrome. Typical pheno-
types were observed with chronic peripheral neuropa-
thy in surviving patients [26, 27]. Both families carried 

homozygous HADHA missense variants confirmed by 
parental testing.

While acylcarnitine profile in patient N25 from family 
F14 was suggestive of MTP deficiency, it was normal in 
both patients in family F15. Acylcarnitine profiles were 
tested while patients N26 and N27 were on treatment, 
outside any metabolic decompensation. In recent reviews 
on fatty acid oxidation disorders, Vianey-Saban et  al. 
(2023) [16] along with Spiekerkoetter and Vockley (2022) 
[28] report that acylcarnitines may be normal in patients 
with neuromyopathic presentation, similarly to these two 
siblings in family F15.

The variant c.955G > A, (p.Gly319Ser)in HADHA gene, 
identified by whole exome sequencing in family F15, 
was recently described as a “variant of conflicting clas-
sifications of pathogenicity” [29]. Homozygosity for this 
variant was confirmed by parental testing. Both parents 
were heterozygote carriers of the variant c.955G > A, 
(p.Gly319Ser) in HADHA gene. In addition, in silico 
parameters were all suggestive of a disease-causing 
variant:

Polymorphism Phenotyping: probably damaging, 
Align-GVGD (Grantham Variation Grantham Devia-
tion): C55 (C0: least likely to interfere with function, 
C65: most likely to interfere with function), SIFT (Sort-
ing Intolerant From Tolerant): deleterious, and Mutation 
Taster: disease causing. Furthermore, no further variant 
clinically relevant to the described phenotype was found. 
A neuropathy panel gene testing came out negative. Fur-
ther clinical reports or functional studies are still needed 
to confirm the conflicting effect of the c.955G > A, 
(p.Gly319Ser) variant in HADHA gene.

All MCAD deficiency patients remained asymptomatic 
after diagnosis. The homozygous pathogenic variant 
c.985A > G, usually reported to cause enzymatic defi-
ciency of less than 1% with a severe phenotype [30], did 
not lead to similar outcome in affected patients from two 
Lebanese families.

SCAD patients displayed a biochemical phenotype 
without any clinical expression, reflecting the benign 
effect of the detected variant c.625G > A, (p.Gly209Ser) 
in exon 6 of ACADS gene [31]. This variant is considered 
as a “susceptibility” variant, requiring other genetic or 
environmental factors to cause symptoms [31]. Homozy-
gous patients for this variant may have a higher incidence 
of increased excretion of ethylmalonic acid [32], even 
though they are asymptomatic, similarly to our SCAD 
deficiency patients (N32, N33).

Late-onset MAD deficiency was diagnosed in one 
patient harboring compound heterozygous variants, 
c.1130  T > C; c.1529C > T, (p.Leu377Pro); (p.Leu510Pro) 
in the ETFDH gene. The previously unreported vari-
ant, c.1529C > T, (p.Leu510Pro) was considered likely 
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pathogenic according to the American College of Medical 
Genetics and Genomics. Despite the lack of a clear geno-
type–phenotype correlation with riboflavin responsiveness 
[33, 34], the c.1130 T > C, (p.Leu377Pro) variant was previ-
ously described in another late-onset MAD deficiency case 
showing dramatical improvement upon coenzyme Q10 
and riboflavin supplementation [35], like our patient.

In conclusion, our experience highlights the diagnos-
tic challenges and outcome of FAO deficiency patients 
in a resource-constrained country. The outcome of other 
defects, mainly VLCAD remains guarded despite early 
detection.

CTD, the most frequently encountered FAO defect had 
a favorable outcome even in late-diagnosed patients. The 
identification of a mild variant c.981C > T, ( p.Arg254*) in 
the SLC22A5 gene may explain the observed good out-
come in CTD, despite the absence of systematic neonatal 
screening for this disorder.

In countries with limited resources like Lebanon, the 
implementation of systematic neonatal screening would 
allow earlier identification of FAO defects demonstrating 
a good outcome with treatment, like MCAD deficiency. 
Furthermore, an increased awareness among physicians 
of the suggestive clinical presentations of FAO defects 
and the appropriate diagnostic testing may allow timely 
recognition of these disorders. The choice of advanced 
biochemical testing including total and free plasma carni-
tine, blood acylcarnitine profile, and urine organic acids 
chromatography relies on the physicians’ diagnostic acu-
men. Molecular testing is key for an accurate diagnosis 
despite the cost incurred by families, in the absence of a 
third-party payer for such testing. Larger genotype–phe-
notype studies of FAO defects are still needed, especially 
in highly consanguineous populations. Nevertheless, 
performing a single gene or panel sequencing in these 
populations poses the difficulty of ruling out a possible 
dual diagnosis in the same patient. Hence, exome or even 
genome sequencing may overcome such limitation and 
confirm the diagnosis. Genotype–phenotype correlations 
would enable further detection and understanding of the 
natural history of these defects, thus tailoring the preven-
tion and management of these rare disorders accordingly.
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