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Abstract
The diagnostic odysseys for rare disease patients are getting shorter as next-generation sequencing becomes more 
widespread. However, the complex genetic diversity and factors influencing expressivity continue to challenge 
accurate diagnosis, leaving more than 50% of genetic variants categorized as variants of uncertain significance.

Genomic expression intricately hinges on localized interactions among its products. Conventional variant 
prioritization, biased towards known disease genes and the structure-function paradigm, overlooks the potential 
impact of variants shaping the composition, location, size, and properties of biomolecular condensates, genuine 
membraneless organelles swiftly sensing and responding to environmental changes, and modulating expressivity.

To address this complexity, we propose to focus on the nexus of genetic variants within biomolecular 
condensates determinants. Scrutinizing variant effects in these membraneless organelles could refine prioritization, 
enhance diagnostics, and unveil the molecular underpinnings of rare diseases. Integrating comprehensive 
genome sequencing, transcriptomics, and computational models can unravel variant pathogenicity and disease 
mechanisms, enabling precision medicine. This paper presents the rationale driving our proposal and describes a 
protocol to implement this approach. By fusing state-of-the-art knowledge and methodologies into the clinical 
practice, we aim to redefine rare diseases diagnosis, leveraging the power of scientific advancement for more 
informed medical decisions.
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The idea
The diagnosis of rare diseases (RDs) remains a challeng-
ing and complex endeavor. The genetic diversity present 
among the nearly 8 billion living humans, with 5·106 vari-
ants on average [1], hinders the understanding of genetic 
traits [2, 3]. This is reinforced by the intricate genetic reg-
ulation and the complex interplay of factors that modu-
late expressivity in RDs. Therefore, it is unsurprising that 
more than half of genetic variants are considered vari-
ants of uncertain significance (VUS) [4, 5], with patients 
of non-European descendants bearing the brunt [6, 7]. 
In RDs, this abundance of VUSs is especially significant 
because it is estimated that around 80% of them have a 
genetic basis [8].

In the last two decades, genetics has made significant 
progress, revealing new gene-disease associations, caus-
ative molecular mechanisms, and therapeutic develop-
ments [9]. However, the intricate interplay of extensive 
genetic diversity, variable expressivity, and incomplete 
penetrance in RDs hampers genetic diagnosis and the 
establishment of clinical relevance in variants related 
to conditions. A task that is further complicated by the 
influence of genetic background diversity, epigenetic 
modifications, environmental factors, and the limited 
number of cases [10]. Even identical causal variants over 
different genetic backgrounds can lead to diverse patho-
logical phenotypes, This complexity requires physicians 
to apply “clinical diagnostic criteria” a set of phenotypic 
characteristics that patients with a given genetic variant 
may exhibit in different numbers and degrees. For exam-
ple, a patient with a pathogenic variant in PTPN11 (MIM 
#176876) causing Noonan syndrome may have pulmo-
nary stenosis, while a different patient with the same 
variant may have a different congenital heart disease, 
or even no heart disease but shows many other Noonan 
syndrome characteristics [11]. Conversely, some individ-
uals with disease-causing alleles remain healthy despite 
affected family members in the same environment [10, 
12]. Moreover, the lack of comprehensive studies and 
adequate tools to gather and analyze this information 
hinders our ability to fully understand the pathological 
significance of genetic variants. As a result, diagnosing 
RDs remains a relevant challenge despite advances in 
genetic medicine [13].

Identifying the causative variant and mode of inheri-
tance is mandatory to guide a patient’s clinical manage-
ment, inform patients about related risks, and aid in 
evaluating family planning options. Unfortunately, diag-
nosis is long delayed, depending on the patient’s pheno-
type, age, and resources. On average, it takes around 4–5 
years to accurately diagnose a specific RD, but in some 
cases, a definitive diagnosis can take more than a decade 
or even die without it [14–17]. Patients often undergo 
costly and extensive evaluations at multiple institutions 

and may remain undiagnosed or misdiagnosed, causing 
emotional distress to patients and relatives. Fortunately, 
as our understanding of mechanisms behind phenotypic 
causation advances, new pieces of the puzzle emerge, and 
we will become better equipped to generate and experi-
mentally verify hypotheses regarding the origins of this 
phenotypic variability.

The reductionist approach in prioritizing variants, 
focusing only on well-known disease-causing genes, 
hinders genetic diagnosis. Despite Fisher’s seminal work 
proposing polygenic inheritance in 1918 [18] and later 
validated [19, 20], most variant prioritization algorithms 
persist in a gene-to-gene approach. But, navigating the 
complex pathways connecting genotypes to phenotypes 
requires more comprehensive approaches to avoid uncer-
tain significance scenarios. Genome-wide association 
studies have further supported the necessity of a systemic 
view by demonstrating that common SNPs contribute to 
the genetic architecture of multifactorial traits [21–23]. 
These variants may affect genes not directly linked to a 
specific disease, but their cumulative effect may ulti-
mately impact the resulting phenotype [24]. Our adher-
ence could be due to our limited comprehension of the 
emergent properties arising from epistatic interactions, 
as well as the need to facilitate clinical management.

Although we are starting to analyze epistatic cross-
regulation mediated by nonadditive gene-to-gene 
interactions, this remains largely unexplored in the pri-
oritization of genetic variants. The individual actions 
of each of our genes are limited, but collective behavior 
arises as a result of their local interactions, giving rise to 
a complex organization [25–27]. Thereby, we must con-
sider the genome as a whole, without overlooking that 
it comprises individual pieces that coordinate this col-
lective behavior. This complexity may hinder the pre-
cise elucidation of the exact number of genes involved 
and their contributions to phenotypes. To comprehen-
sively understand complex traits, alternative approaches 
beyond current genotypic analysis are needed. Therefore, 
we propose an open-minded approach, exploring innova-
tive strategies and thoroughly investigating all variants 
impacting specific molecular self-organization.

Analyzing patient variants requires considering gene 
products beyond transcriptional regulation or catalytic 
activities. Proteins, RNAs, or their combinations oper-
ate in crowded environments with competitive molecu-
lar interactions. Understanding the collective behavior of 
genetic diseases relies on two key elements: intrinsically 
disordered regions (IDRs) [28] and biomolecular con-
densates (BCs) [29]. Both IDRs and BCs have emerged 
as significant contenders in unraveling the mysteries of 
conditions such as cancer, neurodegenerative disorders, 
or RDs [30–35]. The dysregulation of IDRs and BCs 
presents an intriguing enigma (see Fig.  1) that requires 
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further exploration. However, their integration into rou-
tine clinical practice remains unexplored despite their 
potential impact. Beyond diagnostic and therapeutic 
applications, IDRs and BCs offer valuable insights into 
complex phenomena like variable expressivity and epista-
sis, which are characteristic of RDs.

Why explore the effects of variants in IDRs?
In the 1960s, the experiments of biochemist Christian 
B. Anfinsen established the sequence-structure-func-
tion paradigm [36]. The sequence-structure-function 

paradigm proposes that a protein’s primary amino acid 
sequence dictates its three-dimensional structure and 
function. However, biology has shown exceptions, such 
as the IDRs or intrinsically disordered proteins (IDPs) 
that lack a fixed three-dimensional structure and exhibit 
a wide range of conformations and functions [28, 37].

Unlike the conventional protein structure-function 
model, half of the proteome still performs cellular func-
tions without fully or partially well-defined three-dimen-
sional structures under physiological conditions [38, 
39]. In humans, fully folded proteins (37%) or IDPs (5%) 

Fig. 1 Schematic representation of the factors that modulate the LLPS dynamics in the formation of biomolecular condensates and the potential conse-
quences of variants affecting IDRs. LCRs: The low-complexity regions exhibit a limited range of amino acid compositions, leading to reduced amino acid 
diversity within these regions. Locally, amino acids tend to cluster, forming hydrophobic or electrostatic patches that facilitate the molecular aggregation 
process; SLiMs: short linear interacting motives, PTMs: Post-translational modifications, MID: modular interacting domain, IDR: Intrinsically disordered 
regions, CC: critical concentration
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only represent the two ends of the continuum [40]. Most 
human proteins (58%) contain folded protein domains 
and IDRs [41]. But, so far, little attention has been paid 
to IDRs or IDPs [37]. However, IDRs deviate from the 
classical paradigm and have led to the emergence of the 
disorder-function paradigm that postulates that proteins 
can remain unfolded while still carrying out their essen-
tial physiological functions [34].

IDRs exhibit a captivating functional diversity, span-
ning up to 8 distinct subtypes [42]. Of particular interest 
is the fact that these functional subtypes may individually 
manifest or coexist within a single protein, showing the 
intricate complexity that can arise from the convergence 
of multiple disordered regions. This interplay among 
IDRs highlights their pivotal role in shaping the multifac-
eted functionality of proteins.

Additional evidence suggests that we should pay more 
attention to IDRs. Computational analyses estimate that 
approximately 14% of the proteome in archaea and bac-
teria, and a substantial portion ranging from 44 to 54% 
in eukaryotes, consists of disordered regions [43]. More-
over, evolutionary trends reveal that as the genome’s 
complexity increases, so does the proportion of IDRs 
within the proteome, particularly during the transition 

from prokaryotic to eukaryotic life [44, 45]. Furthermore, 
IDRs tend to be enriched in proteins performing complex 
functions like signaling, while they are depleted in pro-
teins with more structure-dependent functions, such as 
metabolic proteins [39, 46]. The fundamental attribute of 
these sequences is their capacity to regulate and modify 
protein activity, enabling adaptive responses to diverse 
situations. This is achieved thanks to the conformational 
heterogeneity of facilitating proteins, which influences 
their interactions with other molecules [34].

Notably, IDRs are estimated to be involved in over 20% 
of genetic diseases on average but can be increased to 
50%, such as in skeletal disorders [40]. Focusing on dis-
ordered charged biased proteins, 95% of them are associ-
ated with multiple diseases [47]. Furthermore, up to 25% 
of documented disease mutations have been identified 
within IDRs [48]. Mutations in IDPs such as β-amyloid, 
α-synuclein, and FUS, have emerged as key contributors 
to a spectrum of neurodegenerative diseases [49]. These 
alterations disrupt the interaction dynamics of these 
IDPs, prompting their aberrant aggregation and, conse-
quently, instigating the pathogenesis of disorders such 
as Alzheimer’s Disease [49], Parkinson’s Disease [50], or 
amyotrophic lateral sclerosis [51].

Fig. 2 Schematic representation of the workflow. WT P. Seqs, Wild type protein sequences; NSV P. Seqs, Non-synonymous variant derived protein se-
quences; RDr NSVPS, Rare disease related non-synonymous variant derived protein sequences; B, Benign; P, Pathological; VUS, Variant of uncertain signifi-
cance; RD DBs, Rare diseases databases; BCs DBs, Protein-protein interactions, and biomolecular condensates databases;
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Moreover, the adaptive and regulatory capacity of IDRs 
is further supported by observed facts related to alter-
native splicing events [34, 52–54]. Proteins containing 
tissue-specific exons exhibit a higher average number of 
interaction partners and serve as central hubs in protein-
protein interaction networks [34, 53]. Furthermore, these 
differentially expressed exons are enriched in IDRs [53]. 
In addition, IDRs exhibit conserved linear interactive 
motifs and post-translational modification sites. Hence, 
tissue-specific splicing of exons facilitates the rewiring 
of protein-protein interaction networks, enabling adap-
tation to environmental cues and changing the nature 
of the response itself. IDRs evolve faster than structured 
segments due to the reduced constraints on amino acid 
substitution [55–58], resulting in a higher frequency of 
variants in these regions.

Structured domains and IDRs should be considered as 
two functional components of proteins [42]. However, 
variants within IDRs are often underestimated, leading 
to their frequent classification as VUS, as a result of the 
structure-function paradigm use. This limitation hinders 
our understanding of protein functionality and its impli-
cations for human health. The up to now presented facts 
leave unanswered questions about the functional conse-
quences of variants impacting IDRs in disease contexts 
and how those IDRs execute specific functions without 
well-defined structures. Variant-interpretation criteria 
are applied regardless of whether the region is structured 
or disordered. Studies carried out in the field of cancer 
and evolution, point out that folded domains and IDRs 
differ in terms of their tolerance to mutations [58]. IDRs 
can display higher tolerance to sequence variations, as 
they don’t rely on a specific structure to function. How-
ever, residues involved in interactions or post-trans-
lational modification (PTM) sites within IDRs exhibit 
similar constraints as globular proteins [58].

Despite the extensive evidence, studies tend to focus on 
mutations within folded regions, sometimes neglecting 
or classifying mutations within IDRs as VUS. Consider-
ing these findings, it is crucial to thoroughly study the 
effects of variants in IDRs when prioritizing variants of 
RDs.

Why explore the effect of variants in BCs?
Within the crowded cellular milieu, processes require 
precise spatiotemporal regulation and organization. Con-
ventionally, this organization has been attributed to lipid 
membrane organelles. However, the emerging concept 
of biomolecular condensation demonstrates that fun-
damental cellular biochemistry extends beyond mem-
brane barriers [29, 59]. These BCs selectively concentrate 
biomolecules in defined foci, leading to membraneless 
organelles (MLOs). The absence of membranes in these 
condensates facilitates rapid sensing and adaptation to 

environmental changes, allowing the exchange of their 
constituents with the surrounding cytoplasm or nucleo-
plasm without requiring specialized transporters [51]. 
The emergence of MLOs is mainly attributed to the 
liquid-liquid phase separation (LLPS) in biomolecules 
[60, 61] (see Fig. 1). Through this organizational mecha-
nism, cells create unique environments by selecting spe-
cific components that regulate biomolecule availability, 
reducing noise in cellular computation and facilitating 
enhancing reaction rates [62–64]. This dynamic regional-
ization of components enables the precise orchestration 
of a myriad of cellular reactions and processes. BCs have 
thus emerged as primary organizers at different scales, 
and their role in both physiological and pathological pro-
cesses has been fully demonstrated [32, 33, 60, 65–67].

BCs acting as hubs for signal modulation add another 
layer of complexity to phenotype determination [68, 69]. 
Therefore, understanding the interplay between variable 
expressivity and BCs is vital for deciphering pathological 
mechanisms and phenotypic heterogeneity in RDs. How-
ever, to the best of our knowledge, variant prioritization 
algorithms that address this have not yet been developed 
for RDs. This pending task can be facilitated by filtering 
variants as affecting scaffolds or clients [70, 71]. Scaffolds 
are biomolecules that self-associate through multivalent 
interactions, driving molecular condensation, while cli-
ents join this scaffolding, modulating the condensate’s 
composition and creating a liquid network of competitive 
interactions [72]. This process causes interacting com-
ponents to segregate, leading to a condensed phase with 
higher biomolecule density, analogous to precipitation in 
saturated solutions. Specific proteins exhibit fundamen-
tal characteristics that promote condensate formation 
[51, 73–76].

IDPs and IDRs play a crucial role in cellular homeo-
stasis through molecular condensation processes [29, 
77]. In each protein, the primary structures and par-
ticular portions of linear sequences within it, as low 
complexity regions (LCRs) or short linear interacting 
motives (SLiMs), influence the formation and com-
position of the condensate [72, 73, 78]. These linear 
sequences encompass various interactions such as elec-
trostatic interactions, π-π and cation-π contacts, hydro-
phobic interactions, and the valency and arrangement 
of LCRs [79–82] (see Fig.  1). However, the relevance of 
these sequences and the constraints governing their 
interactions are not yet fully understood [83–85]. Stud-
ies about the relationship between protein phase behav-
ior and sequence modifications, such as deletions, 
truncations, or site-specific mutations, have revealed 
sequence-dependent characteristics that influence 
the phase separation of proteins [32, 33, 74, 86–88]. 
These include SLiMs and LCRs found within IDRs and 
modular interaction domains (MIDs) [32, 39]. MIDs 
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are well-structured protein domains known for their 
essential functions in homo/heterotypic interactions 
among proteins, nucleic acids, or other molecules, i.e.: 
14-3-3 domain, SH2 domain, Methyl-CpG DNA binding 
domain, etc. Unfortunately, the experimental challenges 
in studying IDRs limit our understanding of them. Recent 
discoveries highlight the pivotal roles of SLiMs, and 
LCRs in the formation of phase-separated condensates. 
SLiMs and LCRs, acting as mediators, play a crucial role 
in the selective partitioning and distinct composition of 
these condensates. By orchestrating such interactions, 
SLiMs and LCRs significantly contribute to shaping the 
architecture and functional diversity of cellular compart-
ments, providing insights into the intricate mechanisms 
governing their formation and regulation [89]. Pappu 
and colleagues proposed the linkers-and-spacers model, 
which reduces this complexity to a pair of components: 
“linkers” as adhesive elements driving interactions, and 
“spacers” connecting stickers and influencing biomole-
cule-solvent interactions [78]. In IDRs, aromatic amino 
acids (Tyr or Phe) act as linkers, facilitating intra- and 
intermolecular contacts, while glycine and polar amino 
acids act as spacers without strong interaction patterns. 
Therefore, genetic variants on MIDs or IDRs can alter 
several aspects of BCs, including their formation, size, 
localization, material properties, and composition, con-
sequently affecting the functional characteristics of BCs. 
This has been demonstrated in various pathologies, giv-
ing rise to the term “condensatopathies”: abnormal con-
densation leading to a specific disease phenotype [90] 
(see Fig. 1).

While only a subset of biomolecular components 
appears to be essential for maintaining condensate integ-
rity [91–93], the potential number of these molecules 
within a condensate is vast, encompassing tens to hun-
dreds of different biomolecules [94]. Thereby, conden-
sates provide a platform for spatiotemporal regulation 
of cellular processes by self-organizing specific biomol-
ecules and orchestrating their interactions [29].

Studying variant effects on condensate-promoting 
features like IDRs and their impact on BCs’ collective 
behavior can complement prioritization protocols, aid-
ing in reclassifying VUS and enhancing diagnostics. 
Indeed, this approach may also provide valuable insights 
into phenotypic heterogeneity, missing heritability, 
and incomplete penetrance observed in RDs patients. 
We propose to analyze the effect of genetic variation 
in protein regions that promote condensation, such as 
IDRs, and their propensity to undergo phase separation 
due to the set of non-synonymous variants present in 
patients with RDs, using a single and multi-gene causa-
tion approach. These innovative strategies hold immense 
potential for identifying pathogenic variants, enhancing 
diagnostic capabilities for individuals affected by RDs, 

and elucidating their underlying molecular mechanisms, 
opening new avenues for therapeutic exploration.

To improve variant prioritization, we propose to study 
a new set of variables derived from in-silico predictors of 
disorder and condensation. We will assess the cumulative 
effect of patient-specific variants and their correlation 
with alterations in the composition of BCs, discriminat-
ing between linkers and spacers in scaffolds and clients. 
This comprehensive evaluation will elucidate the signifi-
cance of individual components in disease manifestation 
and phenotypic diversity, providing deeper insights into 
the molecular underpinnings of disease and the relation-
ship between genetic variations and phenotypes.

The method
To gain a deeper understanding of the role of BCs in cel-
lular organization and function, it is essential to compile 
an accurate annotation of the IDRs of the human pro-
teome, a precise inventory of those proteins involved in 
BCs, and all the competitive interactions among them. In 
the field of IDRs, the accumulation of experimental evi-
dence over two decades has robustly substantiated the 
notion that IDRs can be inferred from sequence features. 
This body of research has paved the way for the devel-
opment of databases and [95] multiple IDR prediction 
methods, employing diverse principles and sophisticated 
computing techniques [96, 97]. These advancements 
have significantly enhanced our capacity to identify and 
characterize IDRs, thus deepening our understand-
ing of their functional significance in protein structure 
and function. The same has happened in the field of 
BCs, where research in the past decade has advanced 
in the elucidation of the protein composition of differ-
ent BCs and the characterization of their roles as scaf-
folds and clients [98–101], thus allowing cataloging them 
according to their propensity to undergo condensation 
in-vitro[102-106].

In the evaluation of the propensity of each protein to 
condensate, it is noteworthy that while scaffolds have 
been recognized as pivotal components [107], clients, 
which do not possess inherent phase separation capabili-
ties, may influence the formation and regulation of BCs 
through their interactions with one or more drivers [72, 
108]. However, it should be noted that many clients have 
not been thoroughly characterized or individually tested 
in vitro, and the existence of additional scaffold proteins 
cannot be ruled out [109]. This distinction between scaf-
folds and clients underscores the challenge of predicting 
whether a protein will localize into a BC and whether 
changes in the aminoacidic composition will affect the 
cellular self-organizing process. While all BCs proteins 
may share certain standard features, those distinguishing 
clients from scaffolds differ. Therefore, further research 
is needed to unravel the precise mechanisms underlying 
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protein localization to MLOs and to gain a more compre-
hensive understanding of its various properties.

Despite these weaknesses, depicted advances have 
greatly enhanced our understanding of the various fac-
tors influencing molecular condensation. Based on this 
knowledge, new computational methods have been 
developed to accurately predict the propensity of pro-
teins to remain disordered or undergo condensation [73, 
84, 110–117].

Machine learning algorithms enable us to explore the 
categories of the American College of Medical Genet-
ics and the Association for Molecular Pathology [118] 
and others for predicting variant pathogenicity. Algo-
rithms are trained on pathogenic and population variant 
data using a wide range of features including evolution-
ary information (such as “conserved sites”), gene-level 
properties (e.g., “essentiality”), and specific amino acid 
substitutions in protein sequences [119–123]. While 
these methods aid in predicting causality and improving 
genetic diagnosis [124, 125], predictions generated are 
not always biologically interpretable, making it difficult 
to determine the reasons why a particular missense vari-
ant is predicted to have a high or low pathogenicity score.

In this perspective, we propose to apply machine learn-
ing algorithms to the information from multiple predic-
tors, network analysis metrics, and database annotation 
to enhance the classification of VUS, leading to more 
informed clinical decisions (see Fig. 2).

For model training and validation, variants from Clin-
var [126] are segregated into a training dataset (contain-
ing well-characterized pathological and benign variants) 
and a test dataset (comprising likely benign, likely patho-
genic, and VUS variants). Data preprocessing ensures 
data quality and reliability. For feature selection, we 
adopt a multi-faceted approach, incorporating predictors 
of IDRs to identify disorder propensity, linear interact-
ing peptides, arginine and tyrosine-enriched domains, 
and polyproline regions within the protein sequence. 
By incorporating IDR predictors, such as MobiDB-Lite 
[127], flDPnn [128], and Bio2Bite tools (Disomine [129], 
Dynamine [130], Efoldmine [131], and Agmata [131, 
132]) we predict protein biophysical properties from their 
amino-acid sequences. This enables us to capture the 
propensity of specific regions within a protein to exhibit 
disorder, thereby highlighting the potential impact of a 
variant on the protein-disordered regions. Secondly, to 
evaluate the likelihood of a protein undergoing phase 
separation and forming BCs, we apply condensation pro-
pensity predictors. These predictors leverage sequence 
features associated with condensate formation, such as 
LCRs, prion-like domains, and specific amino acid com-
positions. By employing established algorithms like ParSe 
[110], LLPhyScore [115], MaGS [133], PScore [134], and 
PhasePre [114], we assess the condensation propensity 

of proteins and identify variants that may influence their 
ability to form or modulate BCs. Condensation propen-
sity predictors are used to evaluate the global and local 
likelihood of a protein and its regions undergoing phase 
separation. Third, in addition to sequence-based fea-
tures, we incorporate topological measures derived from 
a bipartite protein-protein interaction network labeled 
as scaffolds and clients. By analyzing network proper-
ties such as degree centrality, betweenness centrality, 
nestedness, fuzzy modular segregation, and assortativ-
ity, we gain insights into the relevance of proteins within 
cellular processes and a comprehensive understand-
ing of the functional relevance of genetic variants in the 
protein-protein interactions network. This enables us to 
identify variants that may disrupt critical protein interac-
tions and perturb cellular pathways, thus providing valu-
able insights into the clinical significance of the variants. 
Finally, database information such as Scaffold or client 
annotation or HPO and GO terms related to the proteins 
is added to improve interpretability.

By integrating these sets of features, we aim to capture 
a wide range of biological characteristics associated with 
genetic variants. The inclusion of IDR predictors allows 
us to identify regions of disorder within proteins, high-
lighting their functional relevance. Condensation pro-
pensity predictors provide insights into the potential for 
phase separation and condensate formation, elucidating 
the role of variants in cellular organization. Topological 
measures derived from protein-protein interaction net-
works further enhance our understanding of the func-
tional impact of these variants in cellular processes.

The comprehensive set of features selected in our pro-
posed method facilitates a multi-dimensional analysis 
of genetic variants, enabling us to redefine their clinical 
significance. By leveraging machine learning algorithms, 
including support vector machines, random forests, and 
neural networks, to develop robust classification mod-
els with these informative features, we aim to develop 
a robust model for variant classification and provide a 
more accurate assessment of variants classified as VUSes. 
We hope that our approach will improve clinical deci-
sion-making and increase our understanding of the func-
tional implications of genetic variants in the context of 
genetic diseases. These models are trained using a care-
fully selected training dataset over the features previously 
described and learn to classify VUSes as either patho-
genic or benign, thus improving variant classification.

To prioritize informative features and maximize inter-
pretability in machine learning models, we propose uti-
lizing various strategies that offer valuable insights into 
the variant classification process. These strategies include 
feature importance analysis, partial dependence plots, 
individual instance interpretation, rule-based models, 
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and model-agnostic interpretability techniques [135, 
136].

Feature importance analysis reduces model dimen-
sionality and prioritizes informative features, enabling 
clinicians to focus on critical factors driving accurate 
classification decisions. Partial dependence plots and 
individual instance interpretation techniques, visualize 
the relationship between specific variables and model 
output, allowing a clear understanding of their impact 
on variant classification independently of other vari-
ables. Individual instance interpretation techniques may 
provide detailed explanations for classifying individual 
variants, highlighting key factors considered by the 
model in its prediction. Model-agnostic interpretabil-
ity techniques, such as LIME and SHAP, offer post-hoc 
explanations for any black-box machine learning model. 
By perturbing input features and analyzing the model’s 
response, these techniques generate local explanations 
that help clinicians understand the factors influencing 
predictions for individual variants. Finally, to enhance 
interpretability, rule-based models such as decision 
trees or rule sets could be employed. These models map 
input features to predicted classes, providing transparent 
guidelines for clinical decision-making.

By incorporating these interpretability methods, cli-
nicians will gain access to a comprehensive toolbox for 
understanding and interpreting predictions made by the 
proposed machine-learning models. These strategies 
provide transparent insights into the decision-making 
process, instill trust in the model’s predictions, and facili-
tate effective integration into clinical practice. Examin-
ing these explanations will enable clinicians to validate 
and interpret the model’s predictions on a case-by-case 
basis, enhancing the overall utility of the models in clini-
cal decision-making.

It won’t be an easy road
While the low frequency of each RD may seem insignifi-
cant for this type of study, in the US alone, approximately 
30 million people are affected by RDs, impacting around 
1 in 10 Americans [14]. Moreover, there are currently 
recognized between 5,000 and 10,000 RDs, depending on 
the source [137], providing a vast phenotypic landscape 
to explore the interdependence between variants and the 
unfolded phenotype.

Obviously, not all VUSes are linked to alterations in 
condensation processes. Exome sequencing covers less 
than 2% of the genome, allowing a diagnostic yield of 
around 30% [138] and leaving precise disease mecha-
nisms largely unexplored [139]. Recent research has 
aimed at expanding the search space beyond coding 
regions to the immediate regulatory regions, revealing 
new pathogenic variants in a small fraction of cases [140]. 
Additionally, emerging reports suggest the involvement 

of distal enhancers and alterations in the three-dimen-
sional (3D) genome structure in disease pathogenesis 
[141, 142]. Thus, the comprehensive exploration of the 
non-coding genome will provide valuable insights into 
the underlying mechanisms of genetic disorders and 
expand our understanding of the intricate regulatory 
networks that govern gene expression and cellular func-
tions. In the context of the BCs these non-coding regions, 
whether expressed or not, have the potential to influence 
the cellular biomolecule composition. They can impact 
enhancers or promoter regions, alter the target selec-
tion of microRNAs, affect splicing variants, or influence 
transcript lifespan. Such changes can disrupt the criti-
cal balance of biomolecules involved in LLPS, thereby 
impacting condensation and the resulting biomolecu-
lar condensates’ composition. The reasons mentioned 
above further emphasize the necessity of adopting a sys-
tems biology approach. By integrating whole-genome 
sequencing, transcriptomic analysis, and computational 
models including biomolecular condensation propen-
sity, competing RNA-RNA and RNA-protein interaction 
networks, and phenotypic enrichment, we can gain a 
comprehensive understanding of the underlying mecha-
nisms of these diseases. This integrative approach could 
allow us to unravel the intricate interactions within bio-
logical systems and provide valuable insights into disease 
pathogenesis.

The fields of disorder and condensation prediction, 
as well as coarse-grained models of biomolecular self-
organization, are rapidly evolving. However, it is impor-
tant to note that predictors of disorder and condensation 
propensity, which rely on the primary sequence of pro-
teins, have notable limitations [96, 117, 143]. The predic-
tion of condensation propensity faces several challenges. 
For example, in the case of condensation propensity 
predictors, they commonly rely on a limited set of vali-
dated scaffolds for training algorithms, which greatly 
restricts their ability to accurately predict the condensa-
tion propensity of client proteins or other molecules also 
involved in the condensate. Additionally, our understand-
ing of the underlying grammar of these processes is still 
very limited, and further experimental investigations 
are required to elucidate the logic behind condensa-
tion processes. Moreover, the role of post-translational 
modifications in triggering the condensation-decon-
densation process is well-known, but comprehensive 
data on these modifications for training machine learn-
ing algorithms are currently lacking. The prioritization 
of variants affecting linkers or spacers is a scientifically 
sound approach, provided the validity of the proposed 
model of linkers and spacers is acknowledged. It is cru-
cial to recognize that models, albeit valuable tools, inher-
ently reduce the complexity to achieve mathematical and 
computational tractability, potentially excluding critical 
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information. Nevertheless, even with its limitations, 
employing a partial rule-based framework remains pref-
erable to the absence of any guiding principles in variant 
prioritization.

Regarding disorder, the plasticity and interactivity of 
IDRs and their potential cellular function remain hard 
to predict [96, 127]. Understanding the grammar of IDRs 
is the first step on the path to deciphering these cellular 
self-organization processes. We lack experimental data 
about IDRs. However, given the experimental challenges 
associated with their study, multiple efforts are being 
made in the development of computational tools that 
enable us to delve deeper into this field, including the 
establishment of initiatives such as the Critical Assess-
ment of Protein Intrinsic Disorder Prediction (CAPIDP) 
to set quality standards in the field. This highlights the 
continued interest in optimizing these predictors and in 
the need observed by the scientific community to access 
this valuable information for medical use.

Concluding remarks
In recent years, the concepts of intrinsically disordered 
regions IDRs, BCs, and liquid-liquid phase separa-
tion LLPS determinants have significantly advanced the 
fields of molecular biology and genetics, providing novel 
insights into gene regulation, protein function, and the 
underlying biology of diseases. As these concepts have 
matured, the integration of this knowledge into the pri-
oritization of genetic variants becomes increasingly 
compelling. By incorporating predictors of functional 
properties of IDRs and condensation propensity in vari-
ant prioritization, we can take advantage of the mounting 
evidence that highlights the crucial role of condensation 
processes in disease pathogenesis. This integration prom-
ises to improve diagnostic accuracy, unravel molecular 
mechanisms underlying rare diseases, and facilitate the 
discovery of novel therapeutic targets and pathways, 
enabling innovative interventions for complex disor-
ders. Combining advanced computational models with 
precision medicine approaches opens new horizons for 
more effective treatments, driving forward rare disease 
research and enhancing patient outcomes.

As the scientific understanding of IDRs, BCs, and LLPS 
continues to advance, their integration into clinical prac-
tice becomes increasingly essential. A comprehensive 
grasp of the complexities of genetic variant pathogenic-
ity, including the impact of condensation processes, is 
crucial for improving diagnostic accuracy and patient 
care. Embracing this evolving field and incorporating 
predictive tools into clinical workflows better equips 
us to address the challenges posed by extensive genetic 
diversity, variable expressivity, and incomplete pene-
trance associated with rare diseases. Ultimately, integrat-
ing these cutting-edge approaches into clinical settings 

will lead to a more personalized and precise approach 
to medicine, yielding improved patient outcomes and 
deeper insights into genetic diseases.
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