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If we adopt a more flexible version for the Einstein’s summation convention
allowing to assume summation over pairs of indices both either down-down or
up-up (both covariant or both contravariant according the context of the tensor
calculus), the original summations remain unchanged there. Now, continuing
the non-conventional treatment:
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The ”Kronecker Delta” implies a standard summation. Since it is valued 1
only when j = k, then we are allowed to replace both j and k with a single
index:
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Therefore:
A224924 (n) −A000217(n) = 0 mod 2 (5)

Both sequences have the same parity.
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Also both sequences shares the following property1:

a (2n) = a (2n − 1) + 2n (6)

Now by solving for 2n in each case we can state the identity:

A224924 (2n) −A224924 (2n − 1) = A000217 (2n) −A000217 (2n − 1) (7)

Then, re-arranging terms in (7) we realize that2:

A224924 (2n) −A000217 (2n) = A224924 (2n − 1) −A000217 (2n − 1) (8)

1For A000217, it is direct to verify this property by definition.
2This was observed by first time empirically.

2


