# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a374369 Showing 1-1 of 1 %I A374369 #10 Jul 12 2024 10:16:50 %S A374369 2,3,2,2,3,2,3,2,3,2,2,3,2,3,2,4,2,3,2,3,2,2,4,2,3,2,3,2,3,2,4,2,3,2, %T A374369 3,2,2,3,2,4,2,3,2,3,2,3,2,3,2,4,2,3,2,3,2,2,3,2,3,2,4,2,3,2,3,2,5,2, %U A374369 3,2,3,2,4,2,3,2,3,2,2,5,2,3,2,3,2,4,2,3,2,3,2 %N A374369 Triangle T(n, k), n > 0, k = 0..n-1, read by rows; T(n, k) is the least m such that n and k differ modulo m. %F A374369 T(n, k) = A007978(n-k). %e A374369 Triangle T(n, k) begins: %e A374369 n n-th row %e A374369 -- ---------------------------------- %e A374369 1 2 %e A374369 2 3, 2 %e A374369 3 2, 3, 2 %e A374369 4 3, 2, 3, 2 %e A374369 5 2, 3, 2, 3, 2 %e A374369 6 4, 2, 3, 2, 3, 2 %e A374369 7 2, 4, 2, 3, 2, 3, 2 %e A374369 8 3, 2, 4, 2, 3, 2, 3, 2 %e A374369 9 2, 3, 2, 4, 2, 3, 2, 3, 2 %e A374369 10 3, 2, 3, 2, 4, 2, 3, 2, 3, 2 %e A374369 11 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2 %e A374369 12 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2 %t A374369 T[n_,k_]:=Module[{m=2},While[Mod[n,m]==Mod[k,m], m++]; m]; Table[T[n,k],{n,13},{k,0,n-1}]//Flatten (* _Stefano Spezia_, Jul 12 2024 *) %o A374369 (PARI) T(n, k) = { for (m = 2, oo, if ((n%m) != (k%m), return (m););); } %Y A374369 Cf. A007978, A374381, A374383. %K A374369 nonn,easy,tabl %O A374369 1,1 %A A374369 _Rémy Sigrist_, Jul 06 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE