# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a370786 Showing 1-1 of 1 %I A370786 #13 Mar 02 2024 03:51:05 %S A370786 8,27,32,72,108,125,128,200,243,288,343,392,432,500,512,648,675,800, %T A370786 968,972,1125,1152,1323,1331,1352,1372,1568,1728,1800,2000,2048,2187, %U A370786 2197,2312,2592,2700,2888,3087,3125,3200,3267,3528,3872,3888,4232,4500,4563,4608 %N A370786 Powerful numbers with an odd number of prime factors (counted with multiplicity). %C A370786 Jakimczuk (2024) proved: %C A370786 The number of terms that do not exceed x is N(x) = c * sqrt(x) + o(sqrt(x)) where c = (zeta(3/2)/zeta(3) - 1/zeta(3/2))/2 = 0.895230... . %C A370786 The relative asymptotic density of this sequence within the powerful numbers is (1 - zeta(3)/(zeta(3/2)^2))/2 = 0.411930... . %C A370786 In general, the relative asymptotic density of the s-full numbers (numbers whose exponents in their prime factorization are all >= s) with an odd number of prime factors (counted with multiplicity) within the s-full numbers is smaller than 1/2 when s is odd. %H A370786 Amiram Eldar, Table of n, a(n) for n = 1..10000 %H A370786 Rafael Jakimczuk, Arithmetical Functions over the Powerful Part of an Integer, ResearchGate, 2024. %t A370786 q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, AllTrue[e, # > 1 &] && OddQ[Total[e]]]; Select[Range[2500], q] %o A370786 (PARI) is(n) = {my(e = factor(n)[, 2]); n > 1 && vecmin(e) > 1 && vecsum(e)%2;} %Y A370786 Intersection of A001694 and A026424. %Y A370786 Complement of A370785 within A001694. %Y A370786 A370788 is a subsequence. %Y A370786 Cf. A002117, A078434, A090699. %K A370786 nonn,easy %O A370786 1,1 %A A370786 _Amiram Eldar_, Mar 02 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE