# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a370777 Showing 1-1 of 1 %I A370777 #12 Apr 20 2024 10:30:53 %S A370777 1,2,2,3,1,4,8,9,1,6,18,19,1,8,32,33,1,10,50,51,1,12,72,73,1,14,98,99, %T A370777 1,16,128,129,1,18,162,163,1,20,200,201,1,22,242,243,1,24,288,289,1, %U A370777 26,338,339,1,28,392,393,1,30,450,451,1,32,512,513,1,34,578,579,1,36,648,649,1,38,722,723,1,40,800,801 %N A370777 Table read by rows: row n is the unique primitive Pythagorean quadruple (a,b,c,d) such that (a+b+c-d)/2 = n and a+c=d. %C A370777 A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer. %D A370777 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024. %H A370777 Miguel-Ángel Pérez García-Ortega, Cuaternas pitagóricas %F A370777 Row n = (a, b, c, d) = (1, 2*n, 2*n^2, 2*n^2 + 1). %e A370777 Table begins: %e A370777 n=1: 1, 2, 2, 3; %e A370777 n=2: 1, 4, 8, 9; %e A370777 n=3: 1, 6, 18, 19; %e A370777 n=4: 1, 8, 32, 33; %e A370777 n=5: 1, 10, 50, 51; %t A370777 cuaternas={};Do[cuaternas=Join[cuaternas,{1,2n,2n^2,2n^2+1}],{n,1,35}];cuaternas %K A370777 nonn,easy,tabf %O A370777 1,2 %A A370777 _Miguel-Ángel Pérez García-Ortega_, Mar 01 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE