# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a370367 Showing 1-1 of 1 %I A370367 #13 Feb 17 2024 17:41:20 %S A370367 1,0,2,252,2604732,5192229797500,3708511647508346445685, %T A370367 1461034020983306348666869275743970, %U A370367 450538781472323736156501178553451135548626208528,146413934881756079673947032145931312279368061228255235014292945848 %N A370367 Number of partitions of [n^2] into n sets of size n having no set of consecutive numbers whose maximum (if k>n) is a multiple of n. %H A370367 Alois P. Heinz, Table of n, a(n) for n = 0..27 %H A370367 Wikipedia, Partition of a set %F A370367 a(n) = Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*(n*j)!/(j!*n!^j). %F A370367 a(n) = A370366(n,n). %F A370367 a(n) = A057599(n) - A370364(n). %e A370367 a(2) = 2: 13|24, 14|23. %p A370367 a:= n-> add((-1)^(n-j)*binomial(n, j)*(n*j)!/(j!*n!^j), j=0..n): %p A370367 seq(a(n), n=0..10); %Y A370367 Main diagonal of A370366. %Y A370367 Cf. A057599, A370364. %K A370367 nonn %O A370367 0,3 %A A370367 _Alois P. Heinz_, Feb 16 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE