# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a369939 Showing 1-1 of 1 %I A369939 #9 Aug 07 2024 03:07:55 %S A369939 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27, %T A369939 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51, %U A369939 52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71 %N A369939 Numbers whose maximal exponent in their prime factorization is a Fibonacci number. %C A369939 First differs from its subsequence A115063 at n = 2448. a(2448) = 2592 = 2^5 * 3^4 is not a term of A115063. %C A369939 First differs from A209061 at n = 62. %C A369939 Numbers k such that A051903(k) is a Fibonacci number. %C A369939 The asymptotic density of this sequence is 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... . %H A369939 Amiram Eldar, Table of n, a(n) for n = 1..10000 %t A369939 fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; %t A369939 Select[Range[100], fibQ[Max[FactorInteger[#][[;; , 2]]]] &] %o A369939 (PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4); %o A369939 is(n) = n == 1 || isfib(vecmax(factor(n)[, 2])); %Y A369939 Cf. A000045, A013662, A051903, A209061. %Y A369939 Subsequences: A005117, A062503, A062838, A113850, A115063. %Y A369939 Similar sequences: A368714, A369937, A369938. %K A369939 nonn,easy %O A369939 1,2 %A A369939 _Amiram Eldar_, Feb 06 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE