# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a369927 Showing 1-1 of 1 %I A369927 #10 Feb 06 2024 19:31:57 %S A369927 1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,2,0,0,0,1,0,0,1,3,5,0,0,0,3,5,0,0,1,5, %T A369927 17,11,0,0,0,4,20,21,0,0,1,9,53,80,34,0,0,0,6,60,167,91,0,0,1,11,121, %U A369927 418,410,87,0,0,0,10,149,816,1189,402 %N A369927 Triangle read by rows: T(n,k) is the number of non-isomorphic set multipartitions (multisets of sets) of weight n with k parts and no singletons or endpoints, 0 <= k <= floor(n/2). %C A369927 A singleton is a part of size 1. An endpoint is a vertex that appears in only one part. %C A369927 T(n,k) is the number of binary matrices with n 1's, k rows and every row and column sum at least two up to permutation of rows and columns. %H A369927 Andrew Howroyd, Table of n, a(n) for n = 0..675 (rows 0..50) %F A369927 T(2*n,n) = A307316(n). %e A369927 Triangle begins: %e A369927 1; %e A369927 0; %e A369927 0, 0; %e A369927 0, 0; %e A369927 0, 0, 1; %e A369927 0, 0, 0; %e A369927 0, 0, 1, 2; %e A369927 0, 0, 0, 1; %e A369927 0, 0, 1, 3, 5; %e A369927 0, 0, 0, 3, 5; %e A369927 0, 0, 1, 5, 17, 11; %e A369927 0, 0, 0, 4, 20, 21; %e A369927 0, 0, 1, 9, 53, 80, 34; %e A369927 0, 0, 0, 6, 60, 167, 91; %e A369927 0, 0, 1, 11, 121, 418, 410, 87; %e A369927 0, 0, 0, 10, 149, 816, 1189, 402; %e A369927 ... %e A369927 The T(4,2) = 1 partition is {{1,2},{1,2}}. %e A369927 The corresponding matrix is: %e A369927 [1 1] %e A369927 [1 1] %e A369927 The T(8,3) = 3 matrices are: %e A369927 [1 1 1] [1 1 1 0] [1 1 1 1] %e A369927 [1 1 1] [1 1 0 1] [1 1 0 0] %e A369927 [1 1 0] [0 0 1 1] [0 0 1 1] %o A369927 (PARI) %o A369927 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} %o A369927 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A369927 K(q, t, k)={my(g=x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g} %o A369927 H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); K(q, t, k) - c*x} %o A369927 G(n, y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!} %o A369927 T(n)={my(v=Vec(G(n, 'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))} %o A369927 { my(A=T(15)); for(i=1, #A, print(A[i])) } %Y A369927 Row sums are A369926. %Y A369927 Cf. A307316, A369286, A369287. %K A369927 nonn,tabf %O A369927 0,16 %A A369927 _Andrew Howroyd_, Feb 06 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE