# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a367780 Showing 1-1 of 1 %I A367780 #23 Jan 11 2024 11:06:15 %S A367780 0,1,20,189,1356,8426,47944,257085,1321036,6574190,31911320,151841906, %T A367780 710828600,3282862644,14988894992,67769474077,303823057164, %U A367780 1352059744070,5977826290936,26277396651558,114916296684008,500229317398156,2168403190878960,9364025672275634 %N A367780 a(n) is the sum of the squares of the area under Dyck paths of length 2*n. %H A367780 AJ Bu, Explicit Generating Functions for the Sum of the Areas Under Dyck and Motzkin Paths (and for Their Powers), arXiv:2310.17026 [math.CO], 2023. %F A367780 G.f.: ((-1 + sqrt(-4*x^2 + 1))*(40*x^4 + 14*sqrt(-4*x^2 + 1)*x^2 - 14*x^2 - sqrt(-4*x^2 + 1) + 1))/( 4*(4*x^2 - 1)^3*x^2). %F A367780 D-finite with recurrence -(n+1)*(133*n-262)*a(n) +4*(564*n^2-1229*n+262)*a(n-1) +4*(-2916*n^2+7294*n-2765)*a(n-2) +16*(596*n-553)*(2*n-3)*a(n-3)=0. - _R. J. Mathar_, Jan 11 2024 %p A367780 G:= ((-1 + sqrt(-4*x^2 + 1))*(40*x^4 + 14*sqrt(-4*x^2 + 1)*x^2 - 14*x^2 - sqrt(-4*x^2 + 1) + 1))/( 4*(4*x^2 - 1)^3*x^2): Gser:=series(G, x=0, 41): seq(coeff(Gser, x, 2*n), n=0..19); %t A367780 G[x_] := ((-1 + Sqrt[-4*x^2 + 1]) * (40*x^4 + 14*Sqrt[-4*x^2 + 1]*x^2 - 14*x^2 - Sqrt[-4*x^2 + 1] + 1)) / (4*(4*x^2 - 1)^3*x^2); Gser = Series[G[x], {x, 0, 46}]; Table[Coefficient[Gser, x, 2*n], {n, 0, 23}] (* _James C. McMahon_, Dec 10 2023 *) %Y A367780 Cf. A000108, A008549. %K A367780 nonn %O A367780 0,3 %A A367780 _AJ Bu_, Nov 29 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE