# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a367672 Showing 1-1 of 1 %I A367672 #16 Dec 03 2023 11:34:40 %S A367672 1,1,3,3,14,21,84,21,12,1008,126,21,315,5040,126,126,2016,1008,126, %T A367672 672,60,99792,4989600,1155,3780,9072,66,30240,3360,4536,554400,453600, %U A367672 60,45360,60,277200,498960,66,5184,9072,45360,189,13860,554400,4620,50400,1260,3465,73920,712800,554400,3465,12960,12600,453600,360 %N A367672 a(n) is the denominator of the probability that the free polyomino with binary code A246521(n+1) appears in the version of the Eden growth model described in A367671 when n square cells have been added. %C A367672 Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1. %C A367672 Terms on the n-th row are (2*n-1)-smooth. %H A367672 Index entries for sequences related to polyominoes. %F A367672 A367671(n)/a(n) = (A367675(n)/A367676(n))*A335573(n+1). %e A367672 As an irregular triangle: %e A367672 1; %e A367672 1; %e A367672 3, 3; %e A367672 14, 21, 84, 21, 12; %e A367672 1008, 126, 21, 315, 5040, 126, 126, 2016, 1008, 126, 672, 60; %e A367672 ... %Y A367672 Cf. A000105, A246521, A335573, A367671 (numerators), A367674, A367675, A367676, A367761. %K A367672 nonn,frac,tabf %O A367672 1,3 %A A367672 _Pontus von Brömssen_, Nov 26 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE