# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a365924 Showing 1-1 of 1 %I A365924 #14 Sep 28 2023 04:41:17 %S A365924 0,0,1,1,3,3,6,7,12,14,22,25,38,46,64,76,106,124,167,199,261,309,402, %T A365924 471,604,714,898,1053,1323,1542,1911,2237,2745,3201,3913,4536,5506, %U A365924 6402,7706,8918,10719,12364,14760,17045,20234,23296,27600,31678,37365,42910,50371,57695,67628,77300,90242,103131,119997 %N A365924 Number of incomplete integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset. %C A365924 The complement (complete partitions) is A126796. %H A365924 Joerg Arndt, Table of n, a(n) for n = 0..10000 %F A365924 a(n) = A000041(n) - A126796(n). %e A365924 The a(0) = 0 through a(8) = 12 partitions: %e A365924 . . (2) (3) (4) (5) (6) (7) (8) %e A365924 (2,2) (3,2) (3,3) (4,3) (4,4) %e A365924 (3,1) (4,1) (4,2) (5,2) (5,3) %e A365924 (5,1) (6,1) (6,2) %e A365924 (2,2,2) (3,2,2) (7,1) %e A365924 (4,1,1) (3,3,1) (3,3,2) %e A365924 (5,1,1) (4,2,2) %e A365924 (4,3,1) %e A365924 (5,2,1) %e A365924 (6,1,1) %e A365924 (2,2,2,2) %e A365924 (5,1,1,1) %t A365924 nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]]; %t A365924 Table[Length[Select[IntegerPartitions[n],Length[nmz[#]]>0&]],{n,0,15}] %Y A365924 For parts instead of sums we have A047967/A365919, ranks A080259/A055932. %Y A365924 The complement is A126796, ranks A325781, strict A188431. %Y A365924 These partitions have ranks A365830. %Y A365924 The strict case is A365831. %Y A365924 Row sums of A365923 without the first column, strict A365545. %Y A365924 A000041 counts integer partitions, strict A000009. %Y A365924 A046663 counts partitions w/o a submultiset summing to k, strict A365663. %Y A365924 A276024 counts positive subset-sums of partitions, strict A284640. %Y A365924 A325799 counts non-subset-sums of prime indices. %Y A365924 A364350 counts combination-free strict partitions. %Y A365924 A365543 counts partitions with a submultiset summing to k, strict A365661. %Y A365924 Cf. A002865, A006827, A018818, A264401, A299701, A304792, A364272, A365658, A365918, A365921. %K A365924 nonn %O A365924 0,5 %A A365924 _Gus Wiseman_, Sep 26 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE