# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a363248 Showing 1-1 of 1 %I A363248 #6 May 25 2023 07:52:16 %S A363248 0,1,4,6,9,121,222,717,989,1331,10201,13231,15251,15751,15851,18281, %T A363248 19291,28882,28982,31613,34043,35653,37073,37673,37873,38383,38683, %U A363248 40304,41814,50405,97079,98789,99899,536635,913319,980089,1030301,1115111,1226221,1336331,1794971,2630362,2882882,3303033 %N A363248 Nonprime base-10 palindromes whose arithmetic derivative is a base-10 palindrome. %C A363248 Nonprime members k of A002113 such that A003415(k) is also in A002113. %C A363248 A003415(p) = 1 is a palindrome for all primes p. It seems that most members of A363246 are primes. %e A363248 a(7) = 222 is a term because it is a palindrome, is not prime, and its arithmetic derivative 191 is a palindrome. %p A363248 ader:= proc(n) local t; %p A363248 n*add(t[2]/t[1],t=ifactors(n)[2]) %p A363248 end proc: %p A363248 rev:= proc(n) local L,i; %p A363248 L:= convert(n,base,10); %p A363248 add(L[-i]*10^(i-1),i=1..nops(L)) %p A363248 end proc: %p A363248 palis:= proc(d) local x,y; %p A363248 if d::even then seq(10^(d/2)*x+rev(x),x=10^(d/2-1)..10^(d/2)-1) %p A363248 else seq(seq(10^((d+1)/2)*x+10^((d-1)/2)*y+rev(x), y=0..9),x=10^((d-3)/2) ..10^((d-1)/2)-1) %p A363248 fi %p A363248 end proc: %p A363248 palis(1):= $0..9: %p A363248 filter:= proc(n) local d; %p A363248 if isprime(n) then return false fi; %p A363248 d:= ader(n); %p A363248 d = rev(d) %p A363248 end proc: %p A363248 select(filter, [seq(palis(i),i=1..7)]); %Y A363248 Cf. A002113, A003415. Complement of A002385 in A363246. %K A363248 nonn,base %O A363248 1,3 %A A363248 _Robert Israel_, May 23 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE