# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a356128 Showing 1-1 of 1 %I A356128 #21 Oct 24 2023 15:43:33 %S A356128 1,11,103,1373,20657,381795,7921825,187452793,4916743582,142471278944, %T A356128 4506381463150,154747691135574,5729252807696052,227595085199164036, %U A356128 9654855890695727316,435664037303036699736,20836069678062430493950,1052867409176853099312712 %N A356128 a(n) = Sum_{k=1..n} k * sigma_n(k). %H A356128 Seiichi Manyama, Table of n, a(n) for n = 1..385 %F A356128 a(n) = Sum_{k=1..n} k^(n+1) * binomial(floor(n/k)+1,2). %F A356128 a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} k^(n+1) * x^k/(1 - x^k)^2. %t A356128 a[n_] := Sum[k * DivisorSigma[n, k], {k, 1, n}]; Array[a, 18] (* _Amiram Eldar_, Jul 28 2022 *) %o A356128 (PARI) a(n) = sum(k=1, n, k*sigma(k, n)); %o A356128 (PARI) a(n) = sum(k=1, n, k^(n+1)*binomial(n\k+1, 2)); %o A356128 (Python) %o A356128 from math import isqrt %o A356128 from sympy import bernoulli %o A356128 def A356128(n): return ((s:=isqrt(n))*(s+1)*(bernoulli(n+2)-bernoulli(n+2,s+1))+sum(k**(n+1)*(n+2)*(q:=n//k)*(q+1)+(k*(bernoulli(n+2,q+1)-bernoulli(n+2))<<1) for k in range(1,s+1)))//(n+2)>>1 # _Chai Wah Wu_, Oct 24 2023 %Y A356128 Cf. A356046, A356124. %K A356128 nonn %O A356128 1,2 %A A356128 _Seiichi Manyama_, Jul 27 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE