# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a354862 Showing 1-1 of 1 %I A354862 #25 Aug 30 2023 02:00:25 %S A354862 1,5,37,601,14401,520801,25401601,1626189601,131682257281, %T A354862 13168407228481,1593350922240001,229442707280223361, %U A354862 38775788043632640001,7600054676241325858561,1710012252750418295078401,437763137119219420513804801,126513546505547170185216000001 %N A354862 a(n) = n! * Sum_{d|n} (n/d)! / d!. %F A354862 E.g.f.: Sum_{k>0} k! * (exp(x^k) - 1). %F A354862 If p is prime, a(p) = 1 + (p!)^2 = A020549(p). %t A354862 a[n_] := n! * DivisorSum[n, (n/#)! / #! &]; Array[a, 17] (* _Amiram Eldar_, Aug 30 2023 *) %o A354862 (PARI) a(n) = n!*sumdiv(n, d, (n/d)!/d!); %o A354862 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k!*(exp(x^k)-1)))) %o A354862 (Python) %o A354862 from math import factorial %o A354862 from sympy import divisors %o A354862 def A354862(n): %o A354862 f = factorial(n) %o A354862 return sum(f*(a := factorial(n//d))//(b:= factorial(d)) + (f*b//a if d**2 < n else 0) for d in divisors(n,generator=True) if d**2 <= n) # _Chai Wah Wu_, Jun 09 2022 %Y A354862 Cf. A020549, A057625, A121860, A354843, A354863. %K A354862 nonn %O A354862 1,2 %A A354862 _Seiichi Manyama_, Jun 09 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE