# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a350845 Showing 1-1 of 1 %I A350845 #9 Jan 27 2022 20:46:51 %S A350845 6,12,18,21,24,30,36,42,48,54,60,63,65,66,72,78,84,90,96,102,108,114, %T A350845 120,126,130,132,133,138,144,147,150,156,162,168,174,180,186,189,192, %U A350845 195,198,204,210,216,222,228,231,234,240,246,252,258,260,264,266,270 %N A350845 Heinz numbers of integer partitions with at least two adjacent parts of quotient 2. %C A350845 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with at least two adjacent prime indices of quotient 1/2. %e A350845 The terms and corresponding partitions begin: %e A350845 6: (2,1) %e A350845 12: (2,1,1) %e A350845 18: (2,2,1) %e A350845 21: (4,2) %e A350845 24: (2,1,1,1) %e A350845 30: (3,2,1) %e A350845 36: (2,2,1,1) %e A350845 42: (4,2,1) %e A350845 48: (2,1,1,1,1) %e A350845 54: (2,2,2,1) %e A350845 60: (3,2,1,1) %e A350845 63: (4,2,2) %e A350845 65: (6,3) %e A350845 66: (5,2,1) %e A350845 72: (2,2,1,1,1) %e A350845 78: (6,2,1) %e A350845 84: (4,2,1,1) %e A350845 90: (3,2,2,1) %e A350845 96: (2,1,1,1,1,1) %t A350845 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A350845 Select[Range[100],MemberQ[Divide@@@Partition[primeptn[#],2,1],2]&] %Y A350845 The complement is A350838, counted by A350837. %Y A350845 The strict complement is counted by A350840. %Y A350845 These partitions are counted by A350846. %Y A350845 A000041 = integer partitions. %Y A350845 A000045 = sets containing n with all differences > 2. %Y A350845 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A350845 A116931 = partitions with no successions, ranked by A319630. %Y A350845 A116932 = partitions with differences != 1 or 2, strict A025157. %Y A350845 A323092 = double-free integer partitions, ranked by A320340. %Y A350845 A325160 ranks strict partitions with no successions, counted by A003114. %Y A350845 A350839 = partitions with gaps and conjugate gaps, ranked by A350841. %Y A350845 Cf. A000929, A001105, A018819, A045690, A045691, A094537, A154402, A319613, A323093, A337135, A342094, A342095, A342098, A342191. %K A350845 nonn %O A350845 1,1 %A A350845 _Gus Wiseman_, Jan 20 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE