# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a342337 Showing 1-1 of 1 %I A342337 #20 Jun 03 2021 13:44:12 %S A342337 1,1,2,3,4,4,7,6,9,10,12,11,19,14,20,24,27,24,37,31,44,45,49,48,71,61, %T A342337 72,80,92,84,118,102,128,132,144,151,191,166,197,211,244,226,287,263, %U A342337 313,330,348,347,435,399,462,476,524,508,614,591,674,680,732,731,890,814,916,966,1042,1032,1188,1135,1280,1303 %N A342337 Number of integer partitions of n with all adjacent parts (x, y) satisfying either x = y or x = 2y. %H A342337 Alois P. Heinz, Table of n, a(n) for n = 0..10000 %e A342337 The a(1) = 1 through a(9) = 10 partitions: %e A342337 1 2 3 4 5 6 7 8 9 %e A342337 11 21 22 221 33 421 44 63 %e A342337 111 211 2111 42 2221 422 333 %e A342337 1111 11111 222 22111 2222 4221 %e A342337 2211 211111 4211 22221 %e A342337 21111 1111111 22211 42111 %e A342337 111111 221111 222111 %e A342337 2111111 2211111 %e A342337 11111111 21111111 %e A342337 111111111 %p A342337 b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, j), %p A342337 j=`if`(i=0, 1..n, select(x-> x<=n, [i, 2*i])))) %p A342337 end: %p A342337 a:= n-> b(n, 0): %p A342337 seq(a(n), n=0..80); # _Alois P. Heinz_, May 24 2021 %t A342337 Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i-1]]||#[[i-1]]==2*#[[i]],{i,2,Length[#]}]&]],{n,0,30}] %t A342337 (* Second program: *) %t A342337 b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j], %t A342337 {j, If[i == 0, Range[n], Select[{i, 2i}, # <= n&]]}]]; %t A342337 a[n_] := b[n, 0]; %t A342337 a /@ Range[0, 80] (* _Jean-François Alcover_, Jun 03 2021, after _Alois P. Heinz_ *) %Y A342337 The first condition alone gives A000005 (for partitions). %Y A342337 The second condition alone gives A154402 (for partitions). %Y A342337 The Heinz numbers of these partitions are given by A342339. %Y A342337 A000929 counts partitions with adjacent parts x >= 2y. %Y A342337 A002843 counts compositions with adjacent parts x <= 2y. %Y A342337 A224957 counts compositions with x <= 2y and y <= 2x (strict: A342342). %Y A342337 A274199 counts compositions with adjacent parts x < 2y. %Y A342337 A342094 counts partitions with adjacent parts x <= 2y (strict: A342095). %Y A342337 A342096 counts partitions without adjacent x >= 2y (strict: A342097). %Y A342337 A342098 counts partitions with adjacent parts x > 2y. %Y A342337 A342330 counts compositions with x < 2y and y < 2x (strict: A342341). %Y A342337 A342331 counts compositions with adjacent parts x = 2y or y = 2x. %Y A342337 A342332 counts compositions with adjacent parts x > 2y or y > 2x. %Y A342337 A342333 counts compositions with adjacent parts x >= 2y or y >= 2x. %Y A342337 A342335 counts compositions with adjacent parts x >= 2y or y = 2x. %Y A342337 A342338 counts compositions with adjacent parts x < 2y and y <= 2x. %Y A342337 Cf. A003114, A003242, A034296, A167606, A342083, A342084, A342087, A342191, A342334, A342336, A342340. %K A342337 nonn %O A342337 0,3 %A A342337 _Gus Wiseman_, Mar 10 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE