# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a341164 Showing 1-1 of 1 %I A341164 #14 Feb 09 2021 22:02:30 %S A341164 0,1,0,2,3,4,3,1,0,2,3,4,3,5,6,5,6,7,6,8,9,10,9,7,6,4,3,2,3,1,0,1,0,2, %T A341164 3,4,3,5,6,5,6,7,6,8,9,10,9,7,6,8,9,10,9,11,12,11,12,11,12,10,9,8,9, %U A341164 11,12,13,12,14,15,16,15,13,12,14,15,16,15,17 %N A341164 a(n) is the Y-coordinate of the n-th point of the space filling curve A defined in Comments section; A341163 gives X-coordinates. %C A341164 Coordinates are given on a hexagonal lattice with X-axis and Y-axis as follows: %C A341164 Y %C A341164 / %C A341164 / %C A341164 0 ---- X %C A341164 We define the family {A_n, n >= 0} as follows: %C A341164 - A_0 corresponds to the points (0, 0), (1, 1) and (3, 0), in that order: %C A341164 . __+__ . %C A341164 __---- ----__ %C A341164 + . . + %C A341164 0 %C A341164 - for any n >= 0, A_{n+1} is obtained by arranging 4 copies of A_n as follows: %C A341164 + %C A341164 /B\ %C A341164 + / \ %C A341164 /B\ /A C\ %C A341164 / \ --> +-------+ %C A341164 /A C\ /B\C B/A\ %C A341164 +-------+ / \ / \ %C A341164 O /A C\A/B C\ %C A341164 +-------+-------+ %C A341164 O %C A341164 - the space filling curve A is the limit of A_n as n tends to infinity. %H A341164 Rémy Sigrist, Table of n, a(n) for n = 0..8192 %H A341164 Zbigniew Fiedorowicz, The Peano Curve Theorem %H A341164 Rémy Sigrist, PARI program for A341164 %H A341164 Index entries for sequences related to coordinates of 2D curves %e A341164 The curve A starts as follows: %e A341164 . %e A341164 . . %e A341164 . 5 . %e A341164 4 . . 6 %e A341164 . . 3 . . %e A341164 . 1 . . 7 . %e A341164 0 . . 2 . . 8 %e A341164 - so a(0) = a(2) = a(8) = 0, %e A341164 a(1) = a(7) = 1, %e A341164 a(3) = 2, %e A341164 a(4) = a(6) = 3, %e A341164 a(5) = 4. %o A341164 (PARI) See Links section. %Y A341164 Cf. A341163. %K A341164 nonn,look %O A341164 0,4 %A A341164 _Rémy Sigrist_, Feb 06 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE