# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a338797 Showing 1-1 of 1 %I A338797 #18 Nov 21 2020 00:59:35 %S A338797 1,2,1,3,6,1,4,4,12,1,5,10,15,20,1,6,3,2,12,30,1,7,14,21,28,35,42,1,8, %T A338797 8,24,8,40,24,56,1,9,18,9,36,45,18,63,72,1,10,5,30,20,2,15,70,40,90,1, %U A338797 11,22,33,44,55,66,77,88,99,110,1 %N A338797 Triangle read by rows: T(n,k) is the least m such that there exist positive integers x, y and z satisfying x/n + y/k = z/m where all fractions are reduced; 1 <= k <= n. %H A338797 Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened) %F A338797 A051537(n,k) <= T(n,k) <= A221918(n,k) <= lcm(n,k) = A051173(n,k). %F A338797 T(n,k) = lcm(n,k) when gcd(n,k) = 1. %e A338797 Table begins: %e A338797 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 %e A338797 ---+----------------------------------------------- %e A338797 1 | 1, %e A338797 2 | 2, 1, %e A338797 3 | 3, 6, 1, %e A338797 4 | 4, 4, 12, 1, %e A338797 5 | 5, 10, 15, 20, 1, %e A338797 6 | 6, 3, 2, 12, 30, 1, %e A338797 7 | 7, 14, 21, 28, 35, 42, 1, %e A338797 8 | 8, 8, 24, 8, 40, 24, 56, 1, %e A338797 9 | 9, 18, 9, 36, 45, 18, 63, 72, 1, %e A338797 10 | 10, 5, 30, 20, 2, 15, 70, 40, 90, 1, %e A338797 11 | 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 1, %e A338797 12 | 12, 12, 4, 3, 60, 4, 84, 24, 36, 60, 132, 1. %e A338797 T(20,10) = 4 because 1/20 + 7/10 = 3/4, and there is no choice of numerators on the left that results in a smaller denominator on the right. %o A338797 (Haskell) %o A338797 import Data.Ratio ((%), denominator) %o A338797 farey n = [k % n | k <- [1..n], gcd n k == 1] %o A338797 a338797T n k = minimum [denominator $ a + b | a <- farey n, b <- farey k] %Y A338797 Cf. A051173, A051537, A221918. %K A338797 nonn,tabl %O A338797 1,2 %A A338797 _Peter Kagey_, Nov 09 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE