# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a338145 Showing 1-1 of 1 %I A338145 #6 Oct 14 2020 10:39:03 %S A338145 1,1,4,3,0,1,68,1200,7268,20025,27750,18900,5040,0,0,0,0,1,93022, %T A338145 293878020,90807857080,7503022894800,258528829444320,4681671089961600, %U A338145 50981530073846400,363246007692204000 %N A338145 Triangle read by rows: T(n,k) is the number of achiral colorings of the edges of a regular n-D orthotope (or ridges of a regular n-D orthoplex) using exactly k colors. Row n has n*2^(n-1) columns. %C A338145 An achiral coloring is identical to its reflection. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is a cube (octahedron) with 12 edges. The number of edges (ridges) is n*2^(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,...,3,3} and {3,3,...,4} respectively, with n-2 3's in each case. The figures are mutually dual. %C A338145 The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1). %H A338145 K. Balasubramanian, Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications, J. Math. Sci. & Mod. 1 (2018), 158-180. %F A338145 A337410(n,k) = Sum_{j=1..n*2^(n-1)} T(n,j) * binomial(k,j). %F A338145 T(n,k) = 2*A338143(n,k) - A338142(n,k) = A338142(n,k) - 2*A338144(n,k) = A338143(n,k) - A338144(n,k). %F A338145 T(2,k) = A338149(2,k) = A325019(2,k) = A325011(2,k); T(3,k) = A338149(3,k). %e A338145 Triangle begins with T(1,1): %e A338145 1 %e A338145 1 4 3 0 %e A338145 1 68 1200 7268 20025 27750 18900 5040 0 0 0 0 %e A338145 ... %e A338145 For T(2,2)=4, the achiral colorings are AAAB, AABB, ABAB, and ABBB. For T(2,3)=3, the achiral colorings are ABAC, ABCB, and ACBC. %t A338145 m=1; (* dimension of color element, here an edge *) %t A338145 Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]]; %t A338145 FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]); %t A338145 CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 0, (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]); %t A338145 PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]); %t A338145 pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*) %t A338145 row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))] %t A338145 array[n_, k_] := row[n] /. b -> k %t A338145 Table[LinearSolve[Table[Binomial[i,j],{i,2^(n-m)Binomial[n,m]},{j,2^(n-m)Binomial[n,m]}], Table[array[n,k],{k,2^(n-m)Binomial[n,m]}]], {n,m,m+4}] // Flatten %Y A338145 Cf. A338142 (oriented), A338143 (unoriented), A338144 (chiral), A337410 (k or fewer colors), A325019 (orthotope vertices, orthoplex facets). %Y A338145 Cf. A327090 (simplex), A338149 (orthoplex edges, orthotope ridges). %K A338145 nonn,tabf %O A338145 1,3 %A A338145 _Robert A. Russell_, Oct 12 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE