# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a337591 Showing 1-1 of 1 %I A337591 #4 Sep 02 2020 19:24:20 %S A337591 1,1,6,51,760,15545,428256,15043483,653049664,34204348305, %T A337591 2118834917200,152834879685851,12670536337934256,1194143629239156505, %U A337591 126753440317516749660,15031687739886065433375,1977667235694725269563136,286890421090357737699794209,45637300134026406622214264592 %N A337591 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k^3 * a(n-k). %F A337591 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x * BesselI(0,2*sqrt(x))). %F A337591 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} n^2 * x^n / (n!)^2). %t A337591 a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}] %t A337591 nmax = 18; CoefficientList[Series[Exp[x BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2 %Y A337591 Cf. A033462, A336227. %K A337591 nonn %O A337591 0,3 %A A337591 _Ilya Gutkovskiy_, Sep 02 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE