# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a333235 Showing 1-1 of 1 %I A333235 #15 Sep 06 2024 14:09:01 %S A333235 1,1,2,3,4,2,5,6,7,4,8,6,9,5,8,10,11,7,12,12,10,8,13,12,14,9,15,15,16, %T A333235 8,17,18,16,11,20,21,19,12,18,24,20,10,21,24,28,13,22,20,23,14,22,27, %U A333235 24,15,32,30,24,16,25,24,26,17,35,27,36,16,28,33,26,20 %N A333235 a(n) is the product of indices of unitary prime power divisors of n. %C A333235 Equivalently: replace each prime power p^e in the prime factorization of n by its index in A246655. - _M. F. Hasler_, Jun 16 2021 %H A333235 Robert Israel, Table of n, a(n) for n = 1..10000 %F A333235 If n = Product (p_j^k_j) then a(n) = Product (A025528(p_j^k_j)). %F A333235 a(prime(n)) = A027883(n). %F A333235 a(2^n) = A182908(n). %F A333235 a(A246655(n)) = n. %e A333235 a(600) = a(2^3 * 3 * 5^2) = a(A246655(6) * A246655(2) * A246655(14)) = 6 * 2 * 14 = 168. %p A333235 N:= 1000: # for a(1)..a(N) %p A333235 R:= NULL: p:= 2: %p A333235 while p < N do %p A333235 R:= R, seq(p^k,k=1..ilog[p](N)); %p A333235 p:= nextprime(p); %p A333235 od: %p A333235 L:= sort([R]): %p A333235 f:= proc(n) local F, t; %p A333235 F:= ifactors(n)[2]; %p A333235 mul(ListTools:-BinarySearch(L,t[1]^t[2]),t=F) %p A333235 end proc: %p A333235 map(f, [$1..N]); # _Robert Israel_, Feb 11 2021 %t A333235 PrimePowerPi[n_] := Sum[Boole[PrimePowerQ[k]], {k, 1, n}]; a[1] = 1; a[n_] := Times @@ (PrimePowerPi[#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 70}] %o A333235 (PARI) apply( {A333235(n)=vecprod([A322981(f[1]^f[2])|f<-factor(n)~])}, [1..99]) \\ _M. F. Hasler_, Jun 16 2021 %Y A333235 Cf. A003963, A025528, A027883, A141128, A141809, A156061, A182908, A246655. %Y A333235 Cf. A322981 (the index of n = p^e in A246655). %K A333235 nonn,mult,look %O A333235 1,3 %A A333235 _Ilya Gutkovskiy_, Mar 12 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE