# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a329685 Showing 1-1 of 1 %I A329685 #75 Aug 08 2023 22:22:15 %S A329685 1,0,0,1,1,0,2,8,470,30502 %N A329685 Number of main classes of self-orthogonal diagonal Latin squares of order n. %C A329685 A self-orthogonal diagonal Latin square is a diagonal Latin square orthogonal to its transpose. %C A329685 A333366(n) <= a(n) <= A309210(n) <= A330391(n). - _Eduard I. Vatutin_, Apr 26 2020 %H A329685 A. D. Belyshev, List of 30502 essentially distinct self-orthogonal diagonal Latin squares of order 10 %H A329685 E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian). %H A329685 E. I. Vatutin, About the number of main classes for SODLS of order 9 (in Russian). %H A329685 E. I. Vatutin, About the number of SODLS of order 10 (in Russian). %H A329685 E. I. Vatutin, List of all main classes of self-orthogonal diagonal Latin squares of orders 1-10. %H A329685 E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian) %H A329685 E. I. Vatutin and A. D. Belyshev, About the number of self-orthogonal (SODLS) and doubly self-orthogonal diagonal Latin squares (DSODLS) of orders 1-10. High-performance computing systems and technologies. Vol. 4. No. 1. 2020. pp. 58-63. (in Russian) %H A329685 E. Vatutin and A. Belyshev, Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597. %H A329685 Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian). %H A329685 Index entries for sequences related to Latin squares and rectangles %e A329685 0 1 2 3 4 5 6 7 8 9 %e A329685 5 2 0 9 7 8 1 4 6 3 %e A329685 9 5 7 1 8 6 4 3 0 2 %e A329685 7 8 6 4 9 2 5 1 3 0 %e A329685 8 9 5 0 3 4 2 6 7 1 %e A329685 3 6 9 5 2 1 7 0 4 8 %e A329685 4 3 1 7 6 0 8 2 9 5 %e A329685 6 7 8 2 5 3 0 9 1 4 %e A329685 2 0 4 6 1 9 3 8 5 7 %e A329685 1 4 3 8 0 7 9 5 2 6 %Y A329685 Cf. A309210, A287761, A287762. %K A329685 nonn,more,hard %O A329685 1,7 %A A329685 _Eduard I. Vatutin_, Feb 25 2020 %E A329685 a(9) from _Eduard I. Vatutin_, Mar 12 2020 %E A329685 a(10) from _Eduard I. Vatutin_, Mar 14 2020 %E A329685 a(10) corrected by _Natalia Makarova_, Apr 10 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE