# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a327837
Showing 1-1 of 1
%I A327837 #12 Feb 28 2023 08:02:03
%S A327837 1,6,0,2,3,1,7,1,0,2,3,0,5,4,1,8,0,5,2,3,4,9,6,2,6,3,1,5,6,2,1,1,6,1,
%T A327837 0,0,3,7,7,6,9,3,9,4,9,5,7,8,5,5,7,2,7,3,7,7,4,6,5,3,5,2,8,5,9,8,7,8,
%U A327837 8,8,8,6,0,2,1,6,3,3,5,4,7,2,7,5,6,6,7,3,3,9,0,4,9,4,8,8,0,6,4,1,8,0,7,5,7
%N A327837 Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).
%H A327837 Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 52 (constant Z3).
%H A327837 Abdelhakim Smati and Jie Wu, On the exponential divisor function, Publications de l'Institut Mathématique, Vol. 61 (1997), pp. 21-32.
%H A327837 László Tóth, An order result for the exponential divisor function, Publ. Math. Debrecen, Vol. 71, No. 1-2 (2007), pp. 165-171, arXiv preprint,, arXiv:0708.3552 [math.NT], 2007.
%H A327837 Jie Wu, Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré, Journal de théorie des nombres de Bordeaux, Vol. 7, No. 1, (1995), pp. 133-141.
%F A327837 Equals lim_{k->oo} A145353(k)/k.
%F A327837 Equals Product_{p prime} (1 + Sum_{e >= 2} p^(-e) * (d(e) - d(e-1))), where d(e) is the number of divisors of e (A000005).
%F A327837 Equals Product_{p prime} (1 - 1/p) * (2 - (log(p-1) + QPolyGamma(0, 1, 1/p)) / log(p)). - _Vaclav Kotesovec_, Feb 27 2023
%e A327837 1.602317102305418052349626315621161003776939495785572...
%t A327837 $MaxExtraPrecision = 1500; m = 1500; em = 500; f[x_] := 1 + Log[1 + Sum[x^e * (DivisorSigma[0, e] - DivisorSigma[0, e - 1]), {e, 2, em}]]; c = Rest[ CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m] ]; RealDigits[ Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
%Y A327837 Cf. A000005, A049419, A145353, A361013.
%Y A327837 Cf. A059956 (constant for unitary divisors), A306071 (bi-unitary), A327576 (infinitary).
%K A327837 nonn,cons
%O A327837 1,2
%A A327837 _Amiram Eldar_, Sep 27 2019
%E A327837 More digits from _Vaclav Kotesovec_, Jun 13 2021
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE