# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a326850 Showing 1-1 of 1 %I A326850 #9 Dec 17 2020 05:41:51 %S A326850 0,1,1,1,1,1,2,1,2,1,3,1,4,1,5,2,6,1,10,1,10,5,12,1,23,1,18,15,23,1, %T A326850 49,1,34,36,38,1,106,1,54,79,81,1,189,1,124,162,104,1,412,1,145,307, %U A326850 289,1,608,12,437,559,256,1,1432,1,340,981,976,79,1730,1 %N A326850 Number of strict integer partitions of n whose maximum part divides n. %H A326850 Fausto A. C. Cariboni, Table of n, a(n) for n = 0..300 %e A326850 The initial terms count the following partitions: %e A326850 1: (1) %e A326850 2: (2) %e A326850 3: (3) %e A326850 4: (4) %e A326850 5: (5) %e A326850 6: (6) %e A326850 6: (3,2,1) %e A326850 7: (7) %e A326850 8: (8) %e A326850 8: (4,3,1) %e A326850 9: (9) %e A326850 10: (10) %e A326850 10: (5,4,1) %e A326850 10: (5,3,2) %e A326850 11: (11) %e A326850 12: (12) %e A326850 12: (6,5,1) %e A326850 12: (6,4,2) %e A326850 12: (6,3,2,1) %e A326850 13: (13) %e A326850 14: (14) %e A326850 14: (7,6,1) %e A326850 14: (7,5,2) %e A326850 14: (7,4,3) %e A326850 14: (7,4,2,1) %e A326850 15: (15) %e A326850 15: (5,4,3,2,1) %t A326850 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&]],{n,0,30}] %Y A326850 Positions of 1's appear to be A308168. %Y A326850 The non-strict case is given by A067538. %Y A326850 Cf. A018818, A033630, A067538, A102627, A200745, A316413, A326625, A326836, A326843, A326851. %K A326850 nonn %O A326850 0,7 %A A326850 _Gus Wiseman_, Jul 28 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE