# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a326205 Showing 1-1 of 1 %I A326205 #14 Aug 23 2023 08:43:12 %S A326205 1,1,1,4,30,391,9400,398140,30500696,4161339596,1058339281896, %T A326205 515295969951016 %N A326205 Number of n-vertex labeled simple graphs not containing a Hamiltonian path. %C A326205 A path is Hamiltonian if it passes through every vertex exactly once. %H A326205 Wikipedia, Hamiltonian path %H A326205 Gus Wiseman, Enumeration of paths and cycles and e-coefficients of incomparability graphs, arXiv:0709.0430 [math.CO], 2007. %H A326205 Gus Wiseman, The a(4) = 30 simple graphs not containing a Hamiltonian path. %F A326205 A006125(n) = a(n) + A326206(n). %t A326205 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],FindHamiltonianPath[Graph[Range[n],#]]=={}&]],{n,0,4}] (* Mathematica 10.2+ *) %Y A326205 The unlabeled case is A283420. %Y A326205 The case for digraphs is A326213 (without loops) or A326216 (with loops). %Y A326205 Simple graphs with a Hamiltonian path are A326206. %Y A326205 Simple graphs without a Hamiltonian cycle are A326207. %Y A326205 Cf. A003216, A006125, A057864. %K A326205 nonn,more %O A326205 0,4 %A A326205 _Gus Wiseman_, Jun 14 2019 %E A326205 a(7)-a(11) added from formula by _Falk Hüffner_, Jun 21 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE