# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a325065 Showing 1-1 of 1 %I A325065 #14 Mar 29 2019 21:42:24 %S A325065 1,2750,240792500,476435807656250,23281990342550349218750, %T A325065 28421639578439751858524316406250, %U A325065 867361627854127751979489169989053222656250,661744485814033466080522054941127992979336242675781250,12621774479565721940094050972136407827779530711644791809997558593750 %N A325065 G.f. A(x) satisfies: 1 + 5*x = Sum_{n>=0} (5^n + q*sqrt(A(x)))^n * x^n / (1 + 5^n*q*x*sqrt(A(x)))^(n+1), where q = 25/sqrt(8). %C A325065 For a given integer k > 1, there exists an integer series G(x,k)^2 that satisfies: 1 + k*x = Sum_{n>=0} (k^n + q*G(x,k))^n * x^n / (1 + k^n*q*x*G(x,k))^(n+1) iff q^2 = k^4/(2*k-2). In that case, G(x,k)^2 = 1 + k^3*(k^2-3)*x + k^4*(2*k^8 - 18*k^4 + 21*k^2 + 2*k + 1)*x^2/2 + ...; the g.f. for this sequence is A(x) = G(x,k=5)^2. %H A325065 Paul D. Hanna, Table of n, a(n) for n = 0..50 %F A325065 Let q = 25/sqrt(8), then g.f. A(x) satisfies: %F A325065 (1) 1 + 5*x = Sum_{n>=0} (5^n + q * sqrt(A(x)))^n * x^n / (1 + 5^n * q * x*sqrt(A(x)))^(n+1). %F A325065 (2) 1 + 5*x = Sum_{n>=0} (5^n - q * sqrt(A(x)))^n * x^n / (1 - 5^n * q * x*sqrt(A(x)))^(n+1). %e A325065 G.f.: A(x) = 1 + 2750*x + 240792500*x^2 + 476435807656250*x^3 + 23281990342550349218750*x^4 + 28421639578439751858524316406250*x^5 + ... %e A325065 Let q = 25/sqrt(8) and B = A(x)^(1/2), then %e A325065 1 + 5*x = 1/(1 + x*q*B) + (5 + q*B)*x/(1 + 5*x*q*B)^2 + (5^2 + q*B)^2*x^2/(1 + 5^2*x*q*B)^3 + (5^3 + q*B)^3*x^3/(1 + 5^3*x*q*B)^4 + (5^4 + q*B)^4*x^4/(1 + 5^4*x*q*B)^5 + (5^5 + q*B)^5*x^5/(1 + 5^5*x*q*B)^6 + (5^6 + q*B)^6*x^6/(1 + 5^6*x*q*B)^7 + ... %e A325065 and also %e A325065 1 + 5*x = 1/(1 - x*q*B) + (5 - q*B)*x/(1 - 5*x*q*B)^2 + (5^2 - q*B)^2*x^2/(1 - 5^2*x*q*B)^3 + (5^3 - q*B)^3*x^3/(1 - 5^3*x*q*B)^4 + (5^4 - q*B)^4*x^4/(1 - 5^4*x*q*B)^5 + (5^5 - q*B)^5*x^5/(1 - 5^5*x*q*B)^6 + (5^6 - q*B)^6*x^6/(1 - 5^6*x*q*B)^7 + ... %o A325065 (PARI) /* Set k = 5 to generate this sequence (requires high precision) */ %o A325065 {a(n,k) = my(q = k^2/sqrt(2*k-2), A=[1, k^3*(k^2-3), 0]); for(i=0, n, %o A325065 A=concat(A, 0); A[#A-1] = round( polcoeff( sum(m=0, #A, (k^m + q * Ser(A)^(1/2))^m * x^m / (1 + k^m * q * x*Ser(A)^(1/2))^(m+1) ), #A)/k^4)); A[n+1]} %o A325065 for(n=0, 20, print1(a(n,k=5), ", ")) %Y A325065 Cf. A325062, A325063, A325064, A325066. %K A325065 nonn %O A325065 0,2 %A A325065 _Paul D. Hanna_, Mar 26 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE