# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a323444 Showing 1-1 of 1 %I A323444 #28 Feb 01 2019 11:56:52 %S A323444 0,0,1,2,6,6,11,10,23,28,33,28,45,38,44,50,86,74,96,82,106,110,114,96, %T A323444 147,150,153,182,211,184,215,186,281,280,279,278,347,308,306,304,380, %U A323444 336,374,328,368,408,403,352,489,482,524,516,559,498,596,586,686,674 %N A323444 Sum of exponents in prime-power factorization of Product_{k=0..n} binomial(n,k) (A001142). %C A323444 Also sum of exponents in prime-power factorization of hyperfactorial(n) / superfactorial(n). %H A323444 Jeffrey C. Lagarias, Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014. %H A323444 Eric Weisstein's World of Mathematics, Hyperfactorial %H A323444 Eric Weisstein's World of Mathematics, Superfactorial %H A323444 Index entries for sequences related to factorial numbers %H A323444 Index entries for sequences computed from exponents in factorization of n %F A323444 a(n) = A303281(n) - A303279(n), for n > 0. %F A323444 a(n) = A001222(A001142(n)). %e A323444 a(4) = 6 because C(4,0)*C(4,1)*C(4,2)*C(4,3)*C(4,4) = 2^5 * 3^1 and 5 + 1 = 6, where C(n,k) is the binomial coefficient. %t A323444 Array[Sum[PrimeOmega@ Binomial[#, k], {k, 0, #}] &, 57] (* _Michael De Vlieger_, Jan 19 2019 *) %o A323444 (PARI) a(n) = sum(k=0, n, bigomega(binomial(n, k))); %o A323444 (PARI) a(n) = my(t=0); sum(k=1, n, my(b=bigomega(k)); t+=b; k*b-t); %o A323444 (PARI) first(n) = my(res = List([0]), r=0, t=0, b=0); for(k=1, n, b=bigomega(k); t += b; r += k*b-t; listput(res, r)); res \\ adapted from _Daniel Suteu_ \\ _David A. Corneth_, Jan 16 2019 %Y A323444 Cf. A000178, A001142, A001222, A002109, A004788, A007318, A022559, A303279, A303281. %K A323444 nonn %O A323444 0,4 %A A323444 _Daniel Suteu_, Jan 15 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE