# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a322197 Showing 1-1 of 1 %I A322197 #10 Dec 30 2018 09:48:27 %S A322197 1,2,3,6,15,46,168,710,3405,18270,108438,705334,4989075,38126414, %T A322197 313034088,2748039078,25685633625,254672239678,2669718010218, %U A322197 29502715813142,342784073066655,4177349457737262,53279132429530428,709785147883342726,9858698782067445765,142530638751865262366,2141519206261256136318,33391802751245681847030,539616796036523449056555,9026558167976152019922190 %N A322197 Antidiagonal sums of square table A322190. %C A322197 Table A322190 gives the coefficients of x^n*y^k/(n!*k!) in (cosh(x)*cosh(y) + sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)). %H A322197 Paul D. Hanna, Table of n, a(n) for n = 0..150 %F A322197 a(n) ~ Pi * n^(n+1) / (2^(n - 3/4) * exp(n) * (log(1+sqrt(2)))^(n + 3/2)). - _Vaclav Kotesovec_, Dec 30 2018 %t A322197 nmax = 30; %t A322197 t[n_, k_] := SeriesCoefficient[(Cosh[x] Cosh[y] + Sinh[x] + Sinh[y])/(1 - Sinh[x] Sinh[y]), {x, 0, n}, {y, 0, k}] n! k!; %t A322197 a[n_] := Sum[t[n - k, k], {k, 0, n}]; %t A322197 Table[a[n], {n, 0, nmax}] (* _Jean-François Alcover_, Dec 29 2018 *) %Y A322197 Cf. A244920. %K A322197 nonn %O A322197 0,2 %A A322197 _Paul D. Hanna_, Dec 20 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE