# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a322147 Showing 1-1 of 1 %I A322147 #12 Apr 15 2021 21:39:24 %S A322147 1,1,1,0,2,3,0,1,10,16,0,0,12,79,125,0,0,6,162,847,1296,0,0,1,179, %T A322147 2565,11436,16807,0,0,0,116,4615,47100,185944,262144,0,0,0,45,5540, %U A322147 121185,987567,3533720,4782969,0,0,0,10,4720,220075,3376450,23315936,76826061,100000000 %N A322147 Regular triangle read by rows where T(n,k) is the number of labeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1. %H A322147 Andrew Howroyd, Table of n, a(n) for n = 0..1274 %e A322147 Triangle begins: %e A322147 1 %e A322147 1 1 %e A322147 0 2 3 %e A322147 0 1 10 16 %e A322147 0 0 12 79 125 %e A322147 0 0 6 162 847 1296 %e A322147 0 0 1 179 2565 11436 16807 %t A322147 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; %t A322147 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A322147 Table[If[n==0,1,Length[Select[Subsets[multsubs[Range[k],2],{n}],And[Union@@#==Range[k],Length[csm[#]]==1]&]]],{n,0,6},{k,1,n+1}] %o A322147 (PARI) %o A322147 Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u} %o A322147 M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, (1 + x + O(x*x^n) )^binomial(j+1,2)))[1..n+1]])} %o A322147 { my(T=M(10)); for(n=1, #T, print(T[n,][1..n])) } \\ _Andrew Howroyd_, Nov 29 2018 %Y A322147 Row sums are A322151. Last column is A000272. %Y A322147 Column sums are A062740. %Y A322147 Cf. A000664, A007718, A007719, A054923, A191646, A275421, A321254, A322114, A322115, A322137. %K A322147 nonn,tabl %O A322147 0,5 %A A322147 _Gus Wiseman_, Nov 28 2018 %E A322147 Terms a(28) and beyond from _Andrew Howroyd_, Nov 29 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE