# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a320477 Showing 1-1 of 1 %I A320477 #17 Oct 22 2018 14:49:17 %S A320477 1,3,5,5,3,1,-1,-2,-5,-6,-6,-6,-4,-1,-1,-1,-2,-5,-7,-7,-9,-12,-14,-18, %T A320477 -20,-23,-25,-26,-28,-31,-33,-37,-39,-42,-44,-45,-46,-50,-52,-55,-57, %U A320477 -59,-62,-65,-69,-71,-75,-77,-80,-82,-83,-84,-88,-89,-93,-94,-95 %N A320477 a(n) = floor(x(n)), where (x(n),y(n)) are defined by the Chirikov "standard map" y(n) = y(n-1) + 2*sin(x(n-1)), x(n) = x(n-1) + y(n), with x(0)=y(0)=1. %C A320477 The Chirikov map is an example of a nonlinear dynamical system which can exhibit chaotic behavior. Most such maps do not easily lead to integer sequences, but this map does. %C A320477 Note that some websites reduce x(n) mod 2*Pi, but this version does not. %D A320477 H. A. Lauwerier, Two-dimensional iterative maps, Chapter 4 of A. V. Holden, ed., Chaos, Princeton, 1986. See Eq. (4.67). %D A320477 E. N. Lorenz, The Essence of Chaos, Univ. Washington Press, 1993. See p 191. %H A320477 Roderick V. Jensen, Classical chaos, American Scientist 75.2 (1987): 168-181. See Eq. (2), (3). %e A320477 The initial values of x(n) and y(n) are %e A320477 1, 3.682941970, 5.335298253, 5.363285286, 3.800190225, 1.013078481, -0.077102958, -1.321337570, -4.503664553, -5.729399487, -5.903312461, -5.335620669, -3.143935907, ... %e A320477 and %e A320477 1, 2.682941970, 1.652356283, 0.027987033, -1.563095061, -2.787111744, -1.090181439, -1.244234612, -3.182326983, -1.225734934, -0.173912974, 0.5676917924, 2.191684762, ... %p A320477 k:=2; M:=120; x[0]:=1; y[0]:=1; %p A320477 for n from 1 to M do %p A320477 y[n]:=y[n-1]+k*evalf(sin(x[n-1])); %p A320477 x[n]:=x[n-1]+y[n]; %p A320477 od: %p A320477 [seq(x[n],n=0..M)]; %p A320477 [seq(y[n],n=0..M)]; %p A320477 [seq(floor(x[n]),n=0..M)]; # A320477 %Y A320477 Cf. A320472-A320480. %K A320477 sign %O A320477 0,2 %A A320477 _N. J. A. Sloane_, Oct 14 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE